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Abstract
We report on a new framework service for design tool
encapsulation, based on an information model for design
management. The new service uses generated language
processors that perform import and export of design files
to and from a design management database with the sup-
port of nested syntax specifications and extension lan-
guage scripts. Our prototype design environment is based
on the Nelsis CAD Framework and several tools from the
Synopsys high-level synthesis and simulation tool suite.

1. Introduction
Successful cooperative design of complex systems
requires the maintenance of a complex web of structural
information (relationships and annotations) on design
objects [5]. Several researchers [1,2,3,4,10,14] have
pointed to the most important relationships:hierarchical
composition, version derivation, andequivalence between
design objects. In addition, design objects may be anno-
tated withlevel of abstraction, view type, owner, or status
[9,15]. Electronic design automation (EDA) environments
maintain this structural information in a dedicated design
data management (DDM) component [6] and keep it
accessible, up-to-date and consistent with regard to actual
design object representations.

Competitive designs often not only require standard
tools but utilize tools developed or customized for a specif-
ic design task. EDA environments must be open to incor-
porate such specialized design tools. Today’s open EDA
environments are constructed from framework components
which provide design data management and other services,
and design tools which perform the actual design steps. An
important objective of frameworks is to provide interoper-
ability among the tools and between the tools and the DDM
component [7]. However, after five years in existence, the
design representation programming interface (DRPI) de-

fined by the CAD Framework Initiative (CFI), the domi-
nant standardization body in the field, is still restricted to
representing connectivity data. Connectivity is only one as-
pect of a complete electronic design so the DRPI has to be
supplemented by other means of design description and ac-
cess.

Already in 1987 the hardware description language
VHDL became an IEEE standard [13] and has become a
driving force in EDA interoperability today. Based on se-
quential files, however, designs described in VHDL are not
accessible without syntax processing. As a prime goal of
EDA frameworks is to “facilitate cost effective, efficient,
seamless incorporation of tools into design systems” [7], a
framework needs to provide a service to efficiently process
design languages in general and VHDL in particular to
bridge the gap between file-based design reality and the
promises of integrated EDA environments.

In this paper, we describe such a service. Based on a de-
sign methodology, we develop a suitable information mod-
el for design data management and show how to map it to
the schema of the Nelsis CAD Framework. We then show
how to process design files for import and export to and
from a DDM component with the support of nested syntax
specifications and extension language scripts. Finally, we
describe the implementation of a prototype design environ-
ment for high-level synthesis based on the Nelsis CAD
Framework and Synopsys synthesis and simulation tools
and present our conclusions.

2. A VHDL-based design methodology
We assume a design methodology that proceeds basically
top-down. Design starts with a functional description of a
design unit on a high level of abstraction. This description
defines the top-level behaviour of the design in terms of
programming language constructs like communicating
processes, (recursive) procedures, loops, abstract data
types, or variables. The design interface is defined in terms
of high-level data types.

The design implementation is then partitioned into a
structural hierarchy of functional blocks, each of which is
again defined by its behaviour. The functional blocks do
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not need to have distinct interfaces when reuse is not an is-
sue for them. On each level of abstraction, first a partition-
ing into blocks with well-defined interfaces is defined and
only then are the individual block implementations speci-
fied. A block implementation is transformed from the func-
tional domain to the structural and physical domains (or
“view types”), either manually or by design tools. This
strictly top-down approach is particularily useful when de-
signing in a team.

An electronic module is a design unit that realizes a spe-
cific electrical behaviour. This behaviour can only be con-
trolled and observed through its interface. An interface has
a number of interface elements which are used to interface
the module with the outside word. The behaviour on a very
high level of abstraction (i.e. on system level) is reflected
in a core interface. The more refined the specification be-
comes on lower levels of abstraction, the more the data
types for interface elements are refined [14]. In addition to
data type refinement, there may be completely new inter-
face elements on lower levels of abstraction, for example:
• alternative clocking schemes like single as opposed to

2-phase overlapping clocks
• different power line requirements due to different tech-

nologies (e.g. +12V, +5V, -5V as opposed to single +5V)

Moving to a different domain, however, will most cer-
tainly completely change the interface, simple because the
interface primitives are different. Related to the greater
difference in the kind of information represented, espe-
cially modules in the physical domain may have interfaces
non-isomorphic with those in the functional and structural
domains. Following this observation, we have to refine our
notion of modules and state that a module may have more
than one interface associated with it. These interfaces of
one module are not identical but rather related to each
other in an inheritance tree, where specializations have
refined interfaces (cf. Figure 1).

While exploring design alternatives for a complex mod-
ule, the selection of a specific implementation of a sub-
module needs to be flexible. During early design stages, it

Figure 1. Inheritance tree of compatible interfaces.
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is appropriate to always select a working implementation
of a component by some default selection rule. Depending
on the design task, however, the explicit selection of imple-
mentations from different levels of abstraction and from
different domains may be more appropriate. Alternatively,
the designer of a sub-module may designate a selected im-
plementation as the default, leaving it up to the designers of
compound modules to select other implementations for
special purposes. During simulation, for example, only sus-
picious components need to be simulated to full detail. Oth-
er components may just be simulated functionally at a high
level of abstraction. Designers will want to build a specific
configuration of a design object for different design tasks
and store them in the DDM database alongside the actual
design objects.

To summarize, we have the following requirements on
the management of design information:

1. Manage design objects from different domains and dif-
ferent levels of abstraction

2. Support abstraction by distinguishing interfaces and
implementations of modules

3. Support top-down design. Design objects may be
incorporated into a composition hierarchy when only
their interface but no implementation is defined yet

4. Support configurations of design objects for different
design tasks

3. Information modelling
In this section we describe a conceptual schema that satis-
fies the requirements stated above. We proceed in two
phases. The first phase presents a schema that deliberately
abstracts from existing design management schemas to
cover our requirements in the most natural way. It is nev-
ertheless necessary to carefully map this schema to the
schema of the framework used as implementation plat-
form to provide interoperability with tools integrated into
this framework. The second phase maps this schema onto
the Nelsis CAD Framework. Both schemas are defined
using the Xplain semantic data model [12]. When drawing
Xplain graphs, object types are represented as rectangles.
Aggregation is depicted as a compound type drawn above
its attribute types, with lines connecting adjacentsides.
Roles may be assigned to attributes of a type.Generaliza-
tion is depicted by a line connecting adjacentcorners of
the participating types, the more general type being drawn
below the specialization.

3.1 Phase 1: A schema for design management

Figure 2 shows a schema for design management that nat-
urally supports our VHDL-based design methodology. As
the
design procedes, a module specification (e.g. “dp32”) is
stepwise refined; its interface evolves through the abstrac-



tion levels (e.g. “dp32.system”), each having a number of
implementations in different view types (e.g. dp32.sys-
tem.structure”).

Hierarchy relationships are established between a com-
pound implementation and an instantiated sub-module.
The sub-module is represented in the compound module by
an object of typeComponent. A component may be instan-
tiated any number of times, each instance being identified
by its name and a constructor that specifies the exact cir-
cumstances under which it is used in its parent.

Components do not reference the sub-system directly but
via component configurations. Component configurations
bind a component to a child design unit (either of interface,
implementation, or configuration) for a particular purpose.
A configuration collects component configurations and
may be used as the representative of a design object for a
specific purpose like “Release 2", “Fast-CPU”, or “Simu-
late-ALU”. Configurations can be nested by having com-
ponent configurations bound to subordinate configurations.
Note that our schema does not allow to configure individu-
al instances as is possible in VHDL. This has to be simulat-
ed by introducing additional components.

3.2 Mapping to the Nelsis CAD Framework

In this section, we show how to map the design manage-
ment schema onto the schema used in the Nelsis CAD
Framework. Figure 3 gives the overall picture. The funda-
mental object type in the Nelsis design data management
schema is theDesignObject. The framework manages
design representation at the granularity of this object type.
A design object represents an element in a single-view-
type-version-set, calledModule. Every design object is
uniquely defined by its version number and its module.
Additional attributes hold its version status (eitherbackup,
actual, working, or derived), and its modification date. A

module is uniquely determined by its name and view type.
Design objects may be related by the many-to-many rela-
tionshipsHierarchy, Equivalence, andVersionDerivation.
Transaction records design transactions performed on a
particular design objects and thus allows to retrieve its his-
tory. A more thorough explanation of the bells and whis-
tles in the Nelsis schema can be found in [15].

The central problem in mapping the design management
schema is how to map the specializations ofDesignUnit.
Our solution is to combine an implementation with its as-
sociated interface and represent this pair as aDesignOb-
ject. This approach ensures that interface and implementa-
tion evolve together and can be kept consistent. Configura-
tions are not represented explicitly in the schema, but are
emulated by theinstall operation provided by Nelsis and a
special flagBindingMode on Hierarchy. When a dynamic
hierarchy relationship needs to be established, a design ob-
ject with empty implementation part is created and used as
the child design object in the hierarchy. In addition, the hi-
erarchy's binding mode is set todynamic.

Whenever a design hierarchy is used by a tool that needs
a static binding (e.g. a simulator), hierarchies with binding
modedynamic are treated specially. Theinstall operation is
used to replace the child design object with empty imple-
mentation part with a design object from the same module,
i.e. one with a “compatible”, possibly refined interface. The
actual version is chosen if one exists, otherwise the design
object with the highest version number will be used.

A module represents a set of implementations with sim-
ilar interfaces (Figure 4). Implementations with incompat-
ible interfaces are collected in separate modules, related to
each other by equivalence relationships.

Figure 2.Conceptual schema for design management. For ease of layout, the single schema is split into three parts. Sub-schema (A)
models the inheritance hierarchy of interfaces. Sub-schema (B) represents aspects related to composition hierarchies and configurati-
ons. Sub-schema (C) is concerned with dynamic aspects of a design. Design units are marked with a cloud to make them more visible.
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4. Processing textual design descriptions
One of the foremost features of a framework-based, inte-
grated design environment is to offer design management
functions to the designer. The information model pre-
sented in section 3 constitutes the conceptual basis to inte-
grate design tools and to organize the various design
objects created and manipulated during a design project.
Following the assumption that commercial design tools
interface to design descriptions stored in files, this section
presents the steps necessary to manipulate files with
design descriptions in the context of framework-based
design management.

Our approach is to extract structural information and de-
sign object representation from design files on import and
to reconstruct valid design files on export from the design
management system. Using this approach, it is possible to
exploit the features of a design management system while

Figure 4. Implementations with similar interfaces represented by
a module. The box at the root of the tree has no implementation and
is the target for dynamic hierarchy relationships. Arrows denote
version derivation. The figures are consecutive version numbers.
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at the same time being able to use commercial, file based
tools:
• a single environment manages all information relevant to

a design project, helping to maintain consistency and to
foster reuse

• design history is automatically maintained by establish-
ing version derivation and equivalence relationships be-
tween design objects

• graphical browsers can guide designers to assess the state
and structure of their design

4.1 Design file import

These are the steps to import a set of design files into the
design management system:

1. Split the files into text chunks by looking for start and
end markers

2. Extract chunk types (e.g. entity declaration, architec-
ture body) and names

3. If necessary, recursively do a thorough syntax analysis
of selected text chunks (e.g configuration declarations)

4. Create objects in the design management database and
associate them with the corresponding text chunks.

5. Build composition hierarchies from information (i.e.
component declarations) in the design files.

6. Establish equivalence relationships between original
design objects and their derivations.

7. Resolve configuration declarations into configurations
and component configurations on design management.

We accomplish these steps with the aid of parser modules
and some extension language scripts. The parser modules
are generated from a specification of lexical properties and
syntax of the design description language to be supported.
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Figure 3.Mapping to Nelsis. The shaded boxes denote the added types. DOviewType is used to store the view type of an
architecture_body (either of "data_flow", "structural", or "behavioural"). DOname stores the name of an implementation. BindingMode
(either "dynamic" or "static") marks a hierarchical relation (cf. explanation in the text).
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Language specifications can be extremely simple because
only little information is needed from a design description.
The top-level specification for VHDL looks like this:

syntax  vhdl {
token  comment -ignore -pattern  <"--“.*$>
token  ID -pattern  <[_a-zA-Z0-9]+>
token  USE -pattern  <"use“[^;]*“;“>
token  LIBRARY -pattern  <"library“[^;]*“;“>
token  END -pattern  <"end“[^;]*“;“>

rule  design_file { repeat  { toplevel } }

rule  toplevel { LIBRARY | USE
| "entity“ Name:ID guts END
| "architecture“ Name:ID ID EntityName:ID guts END
| "package“ guts END
| configuration }

rule  configuration -syntax  { "configuration“ guts END }
rule  guts { list  { item | ID } }
rule  item { "procedure“ guts END | "function“ guts END

| "units“ guts END | "record“ guts END
| "block“ guts END | "generate“ guts END
| "process“ guts END | "case“ guts END
| "if“ guts END | "loop“ guts END
| "component“ Name:ID guts END | "for“ guts END
| USE }

}

This specification has little to do with the VHDL language
specification. It only defines start and end markers as well
as names for text chunks. A parser module is generated
from such a specification with the aid of YACC and LEX
that automatically builds a parse tree of its input. The tree
nodes are marked with the start and end offsets of their
text regions. By mapping the design files into virtual mem-
ory, these offsets can be used directly to locate the text
regions and store them as chunks in the design manage-
ment database.

Certain chunk types need to be analysed to a finer gran-
ularity. The corresponding rules are marked with the flag
syntax (e.g. onconfiguration) to signal the generator that it
should generate semantic parse actions to recursively in-
voke a parser generated from the syntax with the same
name as the flagged rule. The parse tree created by this sub-
ordinate parser is inserted as sub-tree into the top-level tree,
the start and end offsets on its nodes pointing to the same
memory mapped design file as its parent.

With this “delegation“ of the fine-grained analysis of cer-
tain chunk types to subordinate parsers, the top-level lan-
guage specification can be greatly simplified. Our whole
VHDL specification, including the fine-grained specifica-
tion of configuration declarations, is way below 100 lines,
a moderate size compared with the original size of the
VHDL grammar.

We use Tcl/Tk [11] as the extension language in our pro-
totype implementation. The kernel language is extended
with bindings to design management functions and with
two traversal methods on parse tree nodes. As the tree is

built during the language parsing by automatically generat-
ed code it contains much detail that is irrelevant to informa-
tion extraction. The traversal methods therefore are defined
so that they allow to only look at “interesting” nodes:

rule  traversals {
node:IDENTIFIER "all" list  { qualifier }

"-var" var:IDENTIFIER code_block
| node:IDENTIFIER "one" list  { qualifier } }

rule  qualifier {
"-type" type:IDENTIFIER

| "-tag" tag:IDENTIFIER" }

The first variant executes a Tcl code block for every node,
optionally considering only those with selected type and
tag in the tree rooted atnode. The node currently looked at
is available in the variable namedvar within the code
block. The code block may containbreak andcontinue
statements to break out of the traversal completely rsp. to
continue with a sibling of the current node. The second
variant traverses the tree rooted atnode and breaks at the
first node of typetype or fails if no such node exists.

With the help of these two methods tree, traversals can be
defined that extract the structural information from the an-
alysed design files and create the necessary objects and re-
lationships in the design management database through
bindings to the design programming interface.

4.2 Design file export

Export of this object graph back into valid VHDL syntax
proceeds in two steps:

1. The DDM database is traversed and a parse tree is cre-
ated

2. A pre-order traversal is performed on this parse tree,
emitting the text chunks associated with each tree node

To create the parse tree, each schema type is associated
with a piece of Tcl code that constructs a valid parse tree
node for objects of this type. This code block is free to
take the text chunk and attributes associated with its object
to create a tree node.

4.3 Handling binary files

The import and export mechanisms assume that design
files have a well-defined structure and contain some kind
of printable description of the design. Quite often, how-
ever, design tools produce and expect some kind of
opaque, intermediate design description. Examples for this
kind of file are results from VHDL analysers, simulation
results, or schematics in undocumented, proprietary for-
mats. When no specification of the lexical and syntactical
structure of such opaque descriptions is available to the
tool integrator, the files containing these descriptions can
only be manipulated as a whole. If such files can be associ-
ated with a specific design object in a composition hierar-



chy, their contents can be associated with this object and
will be imported and exported together with it. If they can-
not be associated with a specific design object they have to
be attached to the root object of the composition hierarchy
and imported and exported whenever a sub-module of this
root object is imported or exported.

5. Related work
The research we describe in this paper consists of two
main parts. The first part presents a schema for design data
management flexible enough to represent structural infor-
mation extracted from VHDL files and describes how to
map this schema to an existing EDA framework. The sec-
ond part presents a new framework service for design file
processing, based on language specification and extension
language scripts.

Most of the design management facilities found in EDA
frameworks today are based on early work by Batory and
Kim, Biliris, and Katz [1,2,10]. This work considers dy-
namic version binding to various degrees. As this research
focuses on database-like functionality, no language
processing capabilities are considered.

Ferrans reports on the HyperWeb system for software en-
gineering [8]. While the goal of this system is similar to
ours, namely to represent structural information explicitly
in an integrated system and to provide powerful browsers
and query mechanisms to access and manipulate it, he as-
sumes that the user extracts structural information manual-
ly from imported files.

6. A Prototype Design Environment
The following design tools are encapsulated in our current
prototype implementation:
• Import. Process a set of VHDL files and store them as

separate structural and representational information in
the framework’s database.

• Text editor. Text chunks may be viewed or edited.
• Synopsys design compiler. When using the design com-

piler the designer is requested to first create and save in-
termediate binary files (*.db). A secondary step creates a
VHDL file from this binary and re-imports it into the da-
tabase. No equivalence relationships are currently estab-
lished between the original (behavioural) design and the
synthesized (structural) ones.

• Synopsys VHDL analyzer and debugger. After a (hierar-
chical) design has been validated by the VHDL analyzer
it can be debugged interactively.

• Export. Export takes a (hierarchical) design from the da-
tabase and exports it to the file system as a set of VHDL
files.

7. Conclusions
We have reported on a new framework service for design
tool encapsulation, based on an information model for

design management. While several EDA frameworks and
software development environments have been reported in
the literature that are based on schemas comparable to
ours, none offers a general service for tool encapsulation
like the one presented. The new service uses generated
language processors that perform import and export of
design files to and from a design management database.
Our prototype design environment is based on the Nelsis
CAD Framework and several tools from the Synopsys
high-level synthesis and simulation tool suite. The new
service shows that the added value of being able to use
consistency checks, versioning and versatile browsers
offered by an EDA framework can be exploited even for
encapsulated design tools.
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