
AN OBJECT-ORIENTED CELL LIBRARY MANAGER

Naresh K. Sehgal†, C. Y. Roger Chen‡, John M. Acken+

Intel Corporation† ECE Department, Syracuse University‡ CrossCheck Technology, Inc.
+

Santa Clara, CA Syracuse, NY San Jose, CA

New techniques are proposed to obtain better
estimates and optimizations at higher levels of design
abstractions, which are then used for library cell
selection. A single object-oriented database repository
is used during all phases of VLSI design to enhance the
early design estimates. As compared to a relational
database using sorted tables of attribute values, the
proposed object-oriented cell library manager reduces
search time for an appropriate cell, with m constraints
among n cells, from O(nm) to O(m log n). The pro-
posed method also reduces design cycle time by reduc-
ing the number of iterations due to mismatched
performance estimates done in the earlier phases of a
design.

1.0 Introduction

Existing VLSI design methodologies for a
custom design often do not meet the conflicting need
for high design productivity, low power consumption,
and higher performance goals. The current VLSI prod-
uct design methodology is to develop an RTL model
[36] after high-level architectural details are known.
This model is tested for functionality and power esti-
mates are obtained on the basis of preliminary map-
ping to a logic library. After the designer determines
individual tasks to be performed in each clock cycle,
any necessary buffers and multiplexors are inserted,
and driving strengths of individual cells and devices
are determined [37] to complete the circuit design.
During the layout phase, place and route algorithms
use the circuit netlist information to place individual
components and interconnect them. Power adds yet
another dimension to the design space.

Performance and power estimations at RTL
and circuit level are difficult because of the lack of lay-
out capacitance data, e.g., two gates which may be in
close proximity to each other at a higher level of
design representation could be placed far apart in the
actual layout. This results in a mismatch in the esti-
mated area, power and performance at the logic level
to the actual characteristics of the finished layout
design, as shown in Fig. 1.

One possible solution is to the overlap the
design steps so that estimates done at the higher levels
are more realistic. The trade-off is in the increased
complexity of estimation models and an effort to com-
plete part of the layout design before the logic map-
ping is fully done. Our approach is to use a library of
cells with views at every design abstraction level for

aiding the decision making process. The cell informa-
tion is stored in a database, which is queried at each
design phase. At the lowest level of hierarchy, various
cells are stored as objects with attributes and at higher
levels they are grouped by functionality. This informa-
tion is difficult, if not impossible, to represent in the
tabular format of a relational database. Ifn cells, each
with m attributes, were to be arranged in a table, then
O(nm)searches would be needed to satisfy design con-
straints on all them attributes. This stems from the fact
that after a subset of cells in each ordered attribute
value table has been identified to satisfy a design con-
straint on that attribute, all them tables ofO(n) cells
need to be merged together. A cell library many con-
tain thousands of cells, and an efficient method to rep-
resent and search cells in the library is needed.

1.1 An Object-oriented Paradigm

Existing relational databases may be suitable
for a financial or a spread-sheet like application, but do
not well represent the complex relationship between
different cells and the variable placement of a cell in
the 3-dimensional search space consisting of area, tim-
ing performance, and power. On the other hand,
object-oriented paradigm uses the following properties
[1] to mimic the way we form performance and power
consumption data models of cells:

1) Encapsulation: The fact that the layout
area of a cell is a fixed value whereas its power con-
sumption is a function of the actual load being driven,
is completely oblivious to the user of the cell. At
search time, depending on the usage environmental
values such as voltage, temperature, loading require-
ments etc., the variable attribute values of a cell are
computed and tested against the design constraints to

logic

circuit

layout

verification

happy?

Fig. 1: A classical model of VLSI design cycle.

Done

no

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0750 $3.50

judge the suitability of that cell.

2) Inheritance: This property is very useful to
represent cells, pins and their attributes as individual
objects. No matter if a cell is a NAND gate or an
ADDER, they both share several common properties (of
course with different values) such as a list of input-output
pins, layout area cost value and a boolean function. Fur-
thermore, a 2-input and a 3-input OR gate have a com-
mon function representation and the later can be
constructed by a repeated use of the former. It means that
the library need not have each type of cell pre-stored and
methods can be introduced to derive new cells on
demand. This is very useful to build an 8-bit, 16-bit or
32-bit comparator from the basic building block of a 1-
bit comparator.

3) Polymorphism: This property is used to mix
cells with different VLSI implementation techniques,
e.g., an adder at behavioral level can be implemented
with a Carry Look-ahead circuit or a simple Ripple Carry
structure. The dynamic delay computation of input to
output pins will be modelled by different characteristic
equations in both circuits and will be stored as a method
in each cell. The search routine simply needs to specify
the interfacing pins and the external conditions to the
adder cell and functions with same name but different
bodies will compute the delay result for both the cells.
This property is very useful when making trade-offs at a
higher level without considering the internal implemen-
tation details of each cell.

Consider the inverter cell, INV1, shown in Fig.
2. At the root of the hierarchy is the list of various cell
groups, each group typically contains cells with common
functionality. Directly below in the hierarchy is the list of
attributes on the cell: area, power etc. and a list of output
pins. Each output pin further has more attributes such as
a maximum capacitive load that can be driven within a
clock period. Each output pin further has a list of input
pins that affect its logic function value. This is very use-
ful in case of combinational cells with multiple output
pins, where not all primary input pins can influence each
of the output pins. Each of these input pins has a list of
inter-pin attributes, e.g., pin-to-pin delay.

Some of the attributes have fixed values which
depend on the design of the cell, i.e., area of the layout
view of a cell or its maximum load driving strength.
However, other attribute values depend on the design
environment in which the cell is to be used, e.g., pin-to-
pin delay depends on the actual load being driven and the
slope of the input signal transition. For the latter case of
variable value attributes, characteristic equations are for-
mulated and their coefficients are obtained with exten-
sive simulations with device models of the circuit and
layout parasitics. These simulations are done over a
range of possible loads expected to be driven and then
load-delay curves are drawn. Each curve is represented
by a characteristic equation and the same equation with

different values of coefficients is used to represent differ-
ent cells in a group. These coefficients are stored in the
database in order to select an appropriate cell later. Since
pin attributes can have an integer, a floating point or a
string data type of value, an internal tag is used to iden-
tify the data type of value. Also an index, attrIndex, in a
global table of all the attributes in the database helps
identify the name of the containing attribute. This tech-
nique helps to save memory and improves efficiency.
The output pin class definition is derived from the input
pin class by adding an object store collection data mem-
ber to store the list of input pins driving the output pin.
Collections provide a convenient means of storing and
manipulating groups of objects. They are used to model
many-valued attributes, and they have member functions
for inserting, removing, and retrieving elements as well
as a function that returns the collections’s cardinality.
They also have member functions analogous to set-theo-
retic operations such as intersection and comparisons. In
addition, queries can be performed over collections, to
look up particular collection elements by name or ID
number. Using the inheritance property, the output pin
definition is derived from the input pin data class.

A higher class of cell is further derived with the
collection of input and output pins, and more attributes of
its own. A template is a mechanism in the object-oriented
programming paradigm which enables a generic function
to operate on a family of classes without knowing the
specific details of each class. Templates in the cell library
manager are used to manipulate the data inherited from a
common base class, e.g., a simple search by name can be
performed on either the input or output pin types. In a
library database, the individual attributes are classified as
follows:

1) Cell attributes: these are the properties on the
cell, i.e., the area of a cell, its boolean or sequential func-
tion. This category can also include additional informa-
tion to manage the library, such as a version number,

Fig.2: Schema information for an inverter cell.

inverter
mux

INV1

cell groups

area power

o1

i1

delay current

load

skew

list of cell attributes

list of output pins

list of input pins
driving an output

input pin attributes

output
 pin
 attributes

name of the designer, and a time-date stamp.

2) Pin attributes: these are the properties associ-
ated with the individual input or output pins, e.g., the
maximum load that can be driven a particular output pin
or any restriction on the drive type for the input pins such
as no domino logic in a noise susceptible circuit.

3) Inter-pin attributes: these are the properties
expressing a relationship between input-output pins or
the input-input pins. The former category is useful for
pin-to-pin delays and the later is used to express special
design conditions such as that reset and set input pins on
a cell should always be mutually exclusive.

A library database is created before the target
cell based VLSI design begins. Since all the data access
is read-only, multiple readers accessing the same infor-
mation have no locking conflicts. Each reader is actually
a design tool using inter-tool communication protocol to
invoke the cell library manager. The invoking tool has
the client part of the library manager process which
knows how to interpret the data and validate the cells.
The actual library manager process is running on a data-
base server machine, which is aware of the various meth-
ods to traverse the library data. Design constraints are
provided to the library manager client which orders them
according to the hierarchy, e.g., the function is the high-
est level of a constraint, as all cells with a common func-
tion are grouped together on one server segment. After
the server library manager receives the request, an entire
segment of data is transferred over the network to the cli-
ent machine where it is virtually mapped to the local disk
of the client. Remaining constraints are used on this
mapped data to find matching cells. In case no cell satis-
fies all the given constraints, some constraints are
relaxed according to a design objective function to iden-
tify the closest matching cell, without requiring another
transfer of data over the network. This reduces the net-
work communication overhead during the search and
improves the throughput to the design tool. All computa-
tion of variable value attributes is done on the client end,
and the selected cell is presented to the user. Hence add-
ing more client readers to the library has little perfor-
mance degrading effect on the overall system. In case
more servers are needed, the read-only database is sim-
ply duplicated to many server machines which work
independently serving their clients.

1.2 The Library Data Structures

The cell library is expected to grow beyond
10,000 cells, and it is important that cells be arranged
properly to optimize searching, as well as to guarantee a
result whenever a desired cell exists in the library. This
problem gets more complicated when the sizes of the
stored cells range from a simple inverter to complete 64-
bit adder circuits. Our approach is to use multiple levels
of hierarchy, as shown in Fig. 3, to store these cells. The
library may have information regarding performance of
the cells in various design environmental conditions, i.e.

supply voltage, operating temperature, frequency, type
of driver etc. The first level of hierarchy is created by
specifying each set of environmental conditions. These
sets are mutually exclusive and are termed process-cor-
ners. Each process-corner is stored on a unique segment
of the database. Information of a particular cell is split
among various process-corners, and a particular designer
may choose to work in any available corner. Only data on
the chosen corner is transferred from the database server
to the client machine. The second level of hierarchy is a
functional representation of cells, followed by cell-spe-
cific grouping, e.g., a group of NAND gates is catego-
rized in 2-bit, 3-bit NAND gates, etc. On each cell, pin
information and inter-pin performance information in
terms of coefficients of characteristic equations is stored
as shown in Fig. 2. During a search, the value of these
equations is computed at run-time and compared with the
given constraints. Special algorithms using set theory to
optimize the multiple constraints based query time have
been developed. A description of the search algorithm is
provided later.

Such an arrangement helps to model the behav-
ior of a circuit when the operating conditions change,
e.g., to find the potential loss of external load driving
strength if the operating temperature is increased.
Another advantage is the ability to simultaneously
design a circuit for various market segments, e.g., 5 volts
and 3.3 volts. All that needs to be changed is the actual
cell mapping with similar functional and performance
specifications. The range of operational parameters of
the library cells can be extended or modified by adding
or deleting a process-corner without affecting rest of the
database. Similarly individual cells can be added to spec-
ified process-corners incrementally.

1.3 Search Algorithms

We have successfully implemented a prototype
with more than 5,000 cells in the library. The cell library
manager is actually capable of providing more cells than
are stored in the database using the methods of decom-

Fig. 3: A symbolic arrangement of cell power
 consumption information in the library.

Library Name

v1,volt
t1,temp

v2,volt
t1,temp

v1,volt
t2,temp

v2,volt
t2,temp

nand adder nand adder

2-bit 3-bit n-bit 2-bit 3-bit n-bit

posing the given function to existing library cells. Each
cell group (e.g., 3-input NAND gates) has another col-
lection of attributes, and this collection hierarchically
contains common attribute values for all the cells in that
group. This 2-dimensional value representation is shown
in Fig. 4 and facilitates cell search based on desired func-
tionality and performance constraints. Let a group ofn
cells be represented asG={c1, c2,...,cn} and the set ofm
attributes beA={a1,a2,...,am}, such thatci(aj) represents
the value ofjth attribute on ith cell. Now set G(aj)={-
c1(aj),c2(aj),....,cn(aj)} represent values ofaj attributes on
all cells ofG.

We arrange each ofG(aj) as an ordered binary
tree, such that the search time for a particular value is
O(log n). There are back pointers from each of the
attribute value to the cell on which this particular
attribute instance is defined. For a given set of con-
straints, with cardinality less than or equal ton, on the
attributes of the desired cell, we can reduce population of
each of theG(aj) sets, such that their values meet the
given constraint onaj. Then an intersection of allG(aj)
sets is taken to find the common cells, that meet all the
given constraints. Actual implementation of query itera-
tively applies the remaining constraints on the cells of
the reducedG(aj) set. Each reduction of a set ofO(n)
cells takesO(log n)time, and there arem such reduction
operations taking a total ofO(m log n) time. This is pos-
sible due to a traversal ability from an attribute value,
which meets the given constraint, to its container cell
class, and then to all the remaining attributes on that cell.
As compared to a relational database using sorted tables
of attribute values, the proposed object-oriented cell
library manager reduces the search time for an appropri-
ate cell, with m constraints amongn cells, fromO(nm)to
O(m log n).

1.4 Experimental Results

We have applied the proposed technique to pre-
viously custom designed layouts with fixed pin library
cells. Table 1 shows the size of the database variation in
number of cells and number of attributes. Note that these
attributes represent information at all design levels of a
cell, and the variation of search time for one or more cells
matching a given set of constraints has been shown.

1.5 Conclusions

Special techniques have been proposed to
obtain better estimates to guide cell selection at higher
levels of design abstractions. It is possible to take advan-
tage of the layout parasitics information of mapped cells
at logic and circuit levels. This allows a designer to
explore the design space much early in the design cycle
and improves the accuracy of the estimates. A single
database repository is used during all phases of VLSI
design to aid the early design estimates. As compared to
a relational database, the proposed object-oriented cell
library manager reduces the search time for an appropri-
ate cell, with m constraints amongn cells, fromO(nm)to

O(m log n). Using The proposed method also reduces the
design cycle time by reducing the number of iterations
due to mismatched performance estimates done in earlier
phases of a design.

2.0 Acknowledgments

The authors gratefully acknowledge the conceptual con-
tributions and working tool implementation efforts by
Qinghong Wu and Alan Jen.

3.0 References

[1] Object Store 2.0.1 reference manual, 1992. ODI Inc.

[2] Turbo C++ Users Guide, pp. 127-128, Borland Corp., 1992.

[3] N. K. Sehgal, C. Y. Chen, and J. M. Acken, “Datapath Cell
Design Strategy for Channelless Routing,” ASIC’94.

[4] N. K. Sehgal, C. Y. Chen, and J. M. Acken, “A Cell Library
Paradigm for the Channelless Datapath Layout Design,” IEEE
International Conference on Microelectronics’94.

Table 1: Use of a Cell Library for VLSI Design

Test
case

of
Cells

DB size
(bytes)

Search time
per cell (secs)

Lib1 100 4 Meg. 1

Lib2 500 18 Meg. 3

Lib3 1000 29 Meg. 3.8

Lib4 2000 60 Meg. 5.1

Lib5 3000 89 Meg. 6.2

Lib6 4000 120 Meg. 7

Lib7 5000 146 Meg. 8.6

Fig. 4: An example of 2-dimensional grouping of
 attribute values in a cell group.

3-input NAND Area Pitch max
load

cell1

cell2

cell3

150 25 10

200 50 17

250 55 20

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

