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Abstract - This paper addresses the problem of true delay estimation
during high level design. The existing delay estimation techniques ei-
ther estimate the topological delay of the circuit which may be pes-
simistic, or use gate-level timing analysis for calculating the true de-
lay, which may be prohibitively expensive.

We show that the paths in the implementation of a behavioral spec-
ification can be partitioned into two sets, SP and UP. While the paths
in SP can affect the delay of the circuit, the paths in UP cannot. Con-
sequently, the true delay of the resulting circuit can be computed by
just measuring the topological delay of the paths in SP, eliminating
the need for the computationally intensive process of path sensitiza-
tion. Experimental results show that high-level true delay estimation
can be done very fast, even when gate-level true delay estimation be-
comes computationally infeasible. The high-level delay estimates are
verified by comparing with delay estimates obtained by gate-level tim-
ing analysis on the actual implementation.

I. INTRODUCTION

In the process of designing a circuit from a behavioral specifica-
tion, parameters like area, delay, or power consumption of the final
implementation influence many of the high-level trade-off decisions.
Exact values of these parameters are attainable only by way of a time-
consuming implementation of the design. Hence the need for fast and
accurate estimation techniques. This paper addresses the problem of
true (functional) delay estimation during high level design.

The topological delay of the longest path in the circuit, while sim-
ple to estimate, can be overly pessimistic, since many long paths may
not be sensitizable [1, 2]. Several gate-level timing analysis tech-
niques have investigated the exact conditions under which a path can
affect the clock period of the circuit [1, 2, 3, 4, 5]. Using static sensiti-
zation condition, the delay of the circuit is the delay of the longest stat-
ically sensitizable path in the circuit. However, timing analysis using
static sensitization may produce inaccurate results. A statically un-
sensitizable path may be dynamically sensitizable, and determine the
delay of the circuit, when delays of circuit elements are considered [2].
Dynamically sensitizable paths are also referred to as simply sensiti-
zable paths, or true paths. The true delay of the circuit is the delay of
the longest true path.

Gate-level timing analysis techniques which consider path sensiti-
zation for circuit delay estimation have been presented in [1, 2, 3, 4, 5].
However, since they have to check every path for sensitization, the
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gate-level timing analysis techniques can be computationally very ex-
pensive, and are not feasible for circuits having arithmetic functions.
Specifically, the gate-level techniques are too slow for the purposes of
most high level design tools.

Delay models and estimation techniques for behavioral synthesis
have been presented in [6, 7, 8, 9]. These techniques calculate esti-
mates of the topological delay of the circuit at the layout or RT-level.
A topological and path sensitization based estimation technique for
behavioral synthesis has been proposed in [10]. However, since the
method relies on true path delay analysis at the gate-level, it can esti-
mate the true delay of only the control part of the design. In [9], high
level functional information has been used for a refined timing analy-
sis at a high-level instead of at the gate-level. Functional false paths,
which arise due to unused functionalities of chained multi-function
ALU units, are avoided while computing the delay. However, false
paths due to resource sharing and the effect of control signals on the
datapath delay have been ignored [9].

In this paper, we address the problem of true delay estimation dur-
ing high level synthesis of behavioral specifications. A circuit imple-
mentation can have false paths due to presence of false paths in the
behavioral specification [11]. However, we show that even when the
specification does not have false paths, resource sharing can introduce
false paths in the implementation. This has been earlier observed in
[12]. We provide a comprehensive analysis of the sources of unsensi-
tizable paths during resource sharing and assignment. We show that
the paths in the implementation can be partitioned into two sets, SP
and UP. The set SP consists of statically sensitizable paths. While
the paths in UP may or may not be sensitizable, we prove that for ev-
ery dynamically sensitizable path in UP, there is a longer path in SP.
Hence, paths in UP can never determine the clock period of the circuit.
To compute the true delay of the resulting circuit, we simply measure
the topological delay of all paths in SP. The significance of the pro-
posed technique is that it eliminates the need for checking whether
long paths in the circuit can be sensitized, a process which makes gate-
level timing analysis computationally expensive and impractical for
data-path intensive circuits.

In Section II, we review the concept of path sensitization. Section
III presents a comprehensive analysis of the sources of false paths due
to resource sharing. Section IV discusses how to identify the set SP of
paths which alone determine the delay of a circuit. Section V proves
that paths in UP can never affect the delay of a circuit. An algorithm
for delay estimation is given in Section VI. Experimental results in
Section VII demonstrate the validity and efficiency of the proposed
high level true delay estimation technique.
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II. BASIC CONCEPTS IN TIMING ANALYSIS

In this section we define certain properties of acyclic combina-
tional circuits. Much of the notation has been taken from [1]. The
delay of a gate G and lead f are denoted by d(G) and d(f). Let
P =(f0,G1,f1,. . . ,Gm−1,fm−1) be a path in the combinational cir-
cuit, where fi is a lead and Gj is a gate. The leads f0 and fm−1 are
a primary input and output respectively. All inputs to Gj other than
fj−1 are called side-inputs of gate Gj .

A logic value is the controlling value of a gate if the logic value
at an input of the gate determines the gate output independently of
the other inputs. Otherwise the logic value is called a non-controlling
value. The controlling and non-controlling values for a gate G are
called c(G) and n(G) respectively. For example, if G is an AND gate,
c(G) = 0 and n(G) = 1.

Definition 1 A path P is called statically sensitizable, if for some in-
put vector v, none of the side inputs to a gate G on P has a controlling
value for G.

On applying a primary input vector v at time t = 0, eventually
the logic value at every node in the circuit will stabilize. The stable
logic values under v at any lead f and output of gate G is denoted
as sv(v, f) and sv(v, G) respectively. The times when these values
become stable are denoted as st(v, f) and st(v, G) respectively.

We say that fi dominates Gi+1 if any one of the following condi-
tions are true. (1) The only controlling input to Gi+1 is fi. (2) There
are more than one controlling inputs to Gi+1, but fi arrives before
the other controlling inputs. In other words, st(v, fi) has the smallest
value of all the controlling inputs. (3) Every input to Gi+1 is non-
controlling. However, fi is the last input to stabilize and st(v, fi) is
the maximum for all the inputs to Gi+1. Given the above definition of
dominating inputs, the stable time of the output of a gateGi with dom-
inating input fi−1 is given by st(v,Gi) = st(v, fi−1) + d(Gi). If
the output of Gi is connected to fi+1, then st(v, fi+1) = st(v,Gi)+
d(fi+1).

Definition 2 A path P is defined to be dynamically sensitizable or true
if there is at least one input vector v under which every lead fi on P
dominates Gi+1, 0 ≤ i ≤ (m − 2). A dynamically unsensitizable
path is a false path.

Lemma 1 Every statically sensitizable path is dynamically sensiti-
zable. A statically unsensitizable path may be dynamically sensitiz-
able.

Only dynamically sensitizable paths determine the output of a cir-
cuit. Since the longest path in a circuit may not be dynamically sensi-
tizable, the topological delay is a pessimistic estimate of the delay of
a circuit. The delay of the longest statically sensitizable path is opti-
mistic, since there may be a longer statically unsensitizable path which
is dynamically sensitizable.

Definition 3 The correct clock period, CP, of a circuit is greater than
or equal to the delay of the longest dynamically sensitizable path.

We illustrate the above ideas for the circuit in Figure 1. Let us as-
sume that each lead has zero delay and each gate has unit delay. Let
input vector v = (I1, I2) = (1, 0). It can be easily shown that
(a, b, c, d, e, f, g, o) has stable logic values (0, 1, 1, 1, 1, 1, 1, 1) un-
der vector v. Since every lead on P = (b, G2, e, G3, f, G4, o) domi-
nates the successor gate in P, P is dynamically sensitizable. However
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Figure 1: Circuit for illustrating path sensitization.

it can be shown that P is statically unsensitizable. The longest stati-
cally sensitizable path in the circuit is (d,G3, f, G4, o) and has delay
2. The longest path (a, G1, c, G2, e, G3, f, G4, o) has delay 4 but can
not be dynamically sensitized. Hence, even though P is statically un-
sensitizable, since it is the longest dynamically sensitizable path, CP
for the circuit is greater than or equal to the delay of P which is 3.

III. SOURCES OF STATICALLY UNSENSITIZABLE PATHS

In [13] we identify the sources of long paths due to resource shar-
ing in circuits implementing behavioral descriptions. In this section,
we provide a comprehensive analysis of sources of statically unsensi-
tizable paths due to resource sharing. A pair of operations can share
the same resource if, (a) they are never executed in the same clock cy-
cle and, (b) it is possible to assign them to the same resource. Two
operations are never executed in the same clock cycle if (a) they are
scheduled in separate states, or (b) they are in the same state but on
mutually exclusive paths.
Sharing Mutually Exclusive Operations. Consider the CFG shown
in Figure 2(a) which has been extracted from the behavioral descrip-
tion of the dealer process of the Blackjack benchmark. The schedule
and assignment is given in 2(b). An abstraction of the circuit imple-
mentation which is used for delay estimation, the DelayG, is given in
Figure 2(e). The actual circuit implementation can be found in [14].
There is a path in the circuit from the (+) unit to which operation 2
has been assigned to the (<) unit to which operation 3 has been as-
signed, since operation 3 uses the output of operation 2. Operations 6
and 7 are assigned to the(+/−) unit. The (<) unit to which operation
5 has been assigned decides whether operation 6 or 7 should be exe-
cuted by the ALU. Hence there is a path from the (<) unit to the ALU
in the circuit. Since operations 3 and 5 in the CFG are both in state
s0 and are assigned to the (<) unit we get a path ((+), (>), (+)) in
Figure 2(e). Assuming the variable Incr of operation 2 is stored in the
register Incr and the variable Card of operation 6 in Card, there is a
register to register path (Incr, (+), (>), (+/−), Card) in the circuit
implementation of Figure 2(e). However, since operation 2 assigned
to the (+) unit is never executed in the same clock cycle as either op-
eration 6 or 7 assigned to the (+/−) unit, the above path from Incr
to Card is never completely executed in the same clock cycle and is
statically unsensitizable.
Explicit Sharing across States. Consider the CFG shown in Figure
2(a). Operations 2 and 8 are in different states. Since they will never
be executed in the same clock cycle, they are assigned to the (+) unit
in Figure 2(e). Since variable Incr is an input to operation 2 and vari-
able Avalue is an output of operation 8, a path (Incr, (+), Avalue)
is created in the circuit of Figure 2(e). However, since Incr is an input
to the (+) unit only in state s0 and the (+) unit output goes to Avalue
only in state s1, the above path is false. It arises due to operations 2
and 8 which are in different states sharing the same resource.
Implicit Sharing across States. Figure 3 shows a portion of the CFG,
schedule, assignment and a circuit implementation for the Unmanned
Aerial Vehicle (UAV) controller [15]. Note that operation 6 is sched-
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Figure 2: The dealer example. Its (a) control flow graph CFG, (b) resource allocation, schedule and assignment (c) schedule graph SchedG,
(d) sensitizable path graph SensPG, and (e) delay graph DelayG.



uled in both state s0 and s2. Assigning both occurences of opera-
tion 6 to the same resource unit, ALU2, is termed implicit sharing
across states [13]. In the corresponding implementation shown in
Figure 3(c), a path (MaxVal, ALU1, ALU2, cmp2, RTI) is created.
The part (MaxVal, ALU1, ALU2) is exercised in state s0 and corre-
sponds to execution of operations 2 and 6 in s0. In state s2 the part
(ALU2, cmp2, RTI) is exercised and corresponds to execution of op-
erations 6 and 7 in state s2. Since these two parts are never exercised
simultaneously, the complete path is false. This false path was a result
of the implicit sharing of operation 6 across states.

IV. IDENTIFICATION OF SENSITIZABLE PATHS

In this section we develop an efficient technique to identify the sub-
set of paths in a circuit which are sensitizable without explicitly sen-
sitizing the paths as done at the gate level. The paths we consider in-
clude both the control and data path of the circuit. After identifying
the set of sensitizable paths, a simple topological delay analysis on
the paths in the set gives the true delay of the circuit. We define var-
ious graph structures that will be required for defining the set of stat-
ically sensitizable paths, SP, in a circuit implementation of a behav-
ioral description. The schedule graph (SchedG) is a representation of
the schedule suitable for defining the sensitizable paths graph (Sen-
sPG). Every path in SensPG belongs to the set SP. We define a third
graph structure, the delay graph or DelayG, which is an abstraction of
a RT-level implementation of the circuit and allows us to do fast delay
estimation without actually deriving the RT-level implementation. In-
stead of specifying the rules for the derivation of each of these graphs,
we illustrate how to construct them by examples.

A. SchedG - The Schedule Graph

Scheduling a CFG consists of clustering the operations of the CFG
into states. A schedule can be represented in more than one way. A
traditional representation of a schedule is given in Figure 2(b). We
define an alternative representation shown in Figure 2(c) called the
schedule graph (SchedG), which is suitable for our purposes. Execut-
ing the schedule is equivalent to executing the CFG. We assume that
each state of a schedule requires one clock cycle for execution.

Consider execution of the path (1, 5, 7, 8) in the CFG of Figure
2(a). The schedule executes this path in two clock cycles. Assuming
that the initial state of the schedule is s0, the schedule executes the
path (0,1,5,7,12, 14) of the SchedG shown in Figure 2(c) in the first
clock cycle . Since operation 12 assigns s1 to the state variable state,
the operations (0, 8, 13, 14) are executed in the next clock cycle. This
is equivalent to executing operations (1, 5, 7) in the first clock cycle
and operation (8) in the second. It should be noted from Figure 2(c)
that although there are paths in state s0 other than (0,1,5,7,12, 14),
only one path is executed in any clock cycle depending upon the value
of the conditional operations in nodes 1, 3 and 5.

Lemma 2 In any clock cycle, only one path in the SchedG is exe-
cuted. In a circuit implementation of the scheduled CFG, only the op-
erations on the path which is executed determine the new value of the
SchedG variables.

It should be noted that if there is no dependency between two op-
erations on the same path in a SchedG, then they may be executed in
parallel in the same clock cycle. For example, in state s0 of Figure
3(b), operation 5 does not depend on operation 3, and are executed in
parallel whenever state s0 is executed.
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Figure 3: The UAV example for illustrating statically unsensitizable
paths due to implicit sharing across states.

B. SensPG - The Sensitizable Paths Graph.

The sensitizable paths graph (SensPG) represents the dependen-
cies between the variables and the operations in the SchedG. The de-
pendencies give rise to paths in the SensPG. Corresponding to each
path in the SensPG, there exists one or more paths in the circuit im-
plementation. As we show later, these are the only paths in the im-
plementation whose delay has to be determined for clock period cal-
culation. The SensPG can be constructed from the SchedG and the
assignment. We explain how to construct the SensPG in Figure 2(d)
from the SchedG and assignment of Figure 2.

We explain creation of the nodes of the SensPG first. Consider the
nodes on any path P in the SchedG.
(1) If the variable y is being used in the node n1 on P, create a node
ry in the SensPG. Consider path P = (0, 1, 2, 3, 9, 14) in the SchedG
and let n1 be operation 1. Nodes rPresentSuit and rNoSuit are cre-
ated in the SensPG for the variables PresentSuit and NoSuit.
(2) For every variable v that is assigned to in a node on P, create a node
Rv in the SensPG. For example, variable Card is assigned to in node
2 in P and hence there is a node RCard in the SensPG.
(3) For every operation op in node n1 on P, create an operation node
(op)n1 in the SensPG. Node 3 in P has the operation (<) for which
there is a corresponding node (<)3 in the SensPG.

There are two principal types of arcs in the SensPG. The data de-
pendency arcs are shown as solid lines, the control dependency arcs
as dashed lines. We first explain creation of the data dependency arcs.
Data dependency arcs arise to data dependencies between operations



in the SchedG.
(4) Consider the (+) operation in node 2 of the SchedG. It has inputs
Card and Incr. Hence, in the SensPG, there are data dependency arcs
from rCard to (+)2 and from rIncr to (+)2. Since Card is being as-
signed to in operation 2 and on P there is no further assignment to
Card, there is a data dependency arc from (+)2 to RCard.
(5) Consider the (<) operation in node 3 of the SchedG. It has
operands Card and DeckSize. Since Card was assigned to in opera-
tion 2 which precedes operation 3 in P, there is a data dependency arc
from (+)2 to (<)3. There is another arc from rDeckSize to (<)3.

Control dependency arcs in the SensPG can arise due to assign-
ing multiple operations to the same resource unit. They can also arise
due to assigning a variable from multiple sources. In an actual imple-
mentation, control dependency arcs create a path from comparators or
control logic to muxes at the inputs of functional units or registers. To
create these arcs, we need to know the assignment.
(6) Operation 3 and 5 have been assigned to the same comparator, a
(<) unit. Since the two operations are on mutually exclusive branches
of operation 1, operation 1 decides which operation, 3 or 5, should be
executed. In the SensPG, the nodes corresponding to operations 1,3
and 5 are (!=)1, (<)3 and (>)5. Hence in the SensPG there is a con-
trol dependency arc from (!=)1 to both (<)3 and (>)5.
(7) The variable Card is being assigned from various sources, as can
be seen from nodes 2, 4, 6 and 7 in the SchedG. Along the path (0, 8,
13, 14) in the SchedG, Card is not assigned and remains unchanged.
Given the assignment, it can be shown that the conditionals in nodes
0, 1 and 2 of the SchedG decide the source from which Card is as-
signed. Hence in the SensPG, there are arcs from (CASE state of)
node, (! =)1 node and (<)3 node to RCard. Note that there is no
control dependency arc from (>)5 to RCard even though Card is as-
signed to on the mutually exclusive branches of operation 5. The rea-
son is, both operation 6 and 7 are assigned to the same ALU. Hence
the source of the input is same for Card irrespective of the result of
the conditional operation 5.
Paths in the SensPG corresponding to a path in the SchedG.
Given a path P in the SchedG, there exists one or more correspond-
ing paths in the SensPG. Consider the path P = (0, 1, 2, 3, 9) in
the SchedG. One of the paths in the SensPG corresponding to P is,
(rState,CASE state of,(+)2,(<)3,RCard). Since the CASE oper-
ation in node 0 of the SchedG decides whether operation (+)2 should
be executed, this creates the subpath (rState,CASE state of,(+)2).
Since the operation in node 3 uses the result of the operation in node 2
of the SchedG, there is an arc from (+)2 to (<)3 in the SensPG. Also,
if the result of the ‘<’ comparison in node 3 is true, only then Card
is assigned the output of the ‘+’ operation in node 2. Hence there is
a control arc from (<)3 to RCard in the SensPG.

Let P be any path in the SchedG. The set of paths corresponding
to P in the SensPG are denoted by:
SensPGmap(P) = {p | every node on p corresponds to a node on P }.

Lemma 3 In a circuit implementation of the scheduled CFG, in any
clock cycle, let P be the path in the SchedG which is executed. Then
the operations on the paths SensPGmap(P) in the SensPG decide the
new value of the SchedG variables.

C. DelayG - The Delay Graph.

The delay graph DelayG is derived from the SensPG and the as-
signment. It closely resembles a circuit implementation of the behav-
ioral description while hiding the actual implementation details. For

example, the DelayG shown in Figure 2(e) corresponds to the assign-
ment in Figure 2(b) and the SensPG in Figure 2(d). We prove some
key results based on our DelayG, thus making the results independent
of the underlying implementation details. Also, since the DelayG is
used for the timing estimation, depending upon requirements, we can
make the estimation as accurate as we like by controlling the details of
the implementation. In the following discussion, we refer to the De-
layG shown in Figure 2(e).

Every node in the SensPG is mapped to a corresponding node in the
DelayG. Every node of type rx, Ry and CASE in the SensPG has an
identical node in the DelayG. The assignment decides the mapping of
the operation nodes in the SensPG to the resource unit nodes in the De-
layG. For example, (<)3 and (<)5 in the SensPG are operation nodes
that correspond to operations 3 and 5 in the SchedG. From the assign-
ment, we see that operations 3 and 5 are both assigned to the (<) re-
source unit. Hence, both these nodes are mapped to the (<) node in
the DelayG.

Every resource node and register node of type Rx in the DelayG
has a Mux node at each data input. Mux nodes have multiple data in-
puts, but only a single output. For example, the (<) node has M4 and
M5 at its two data inputs. For every Mux node, there is a control node,
whose output goes to the corresponding Mux node. Control nodes C4

and C5 correspond to M4 and M5 in our example.
At any time, the Mux node allows only one of its data input to be

connected to its data output. The decision as to which of its data inputs
should be connected to the output is made by the outputs of the control
node. Consider nodes C3 and M3 corresponding to RCard. Node M3

has a data dependency input from the (+) node. This corresponds to
the data dependency arc from (+)2 to RCard in the SensPG. It can be
seen from the SchedG that this assignment was made in state s0 if the
conditional (PresentSuit!= NoSuit) evaluated to true. The node
C4 has control dependency arcs from the nodes (CASE state) and
(! =), and when the former takes on value s0 and the latter takes on
the value true, the input from (+) to M4 is connected to the output of
M4.
Paths in the DelayG corresponding to a path in the SensPG. Let
P be a path in the SensPG. The set of paths corresponding to P in
the DelayG are denoted by DelayGmap(P). Consider the path P1 =
(rCard, (+)2, (<)3, RCard) in the SensPG. The corresponding path
in the DelayG is p1 = (rCard, M1, (+), M4, (<), C3, M3, RCard).
Similarly the path P2 = (rAvalue, (+)8, RAvalue) in the SensPG
has a corresponding path p2 = (rAvalue, M2, (+), M6, RAvalue)
in the DelayG. However, there are paths in the DelayG which arise
due to resource sharing and do not have any corresponding path in the
SensPG. Operation (+)2 on P1 and operation (+)8 on P2 share an
adder for which the corresponding node in the DelayG is (+). This
creates a path p3 = (rAvalue, M2, (+),M4, (<), M3, RCard) where
(rAvalue, M2, (+) belongs to p1 and (+), M4, (<),M3, RCard) be-
longs to p2. No path exists in the SensPG which corresponds to p3.

Definition 4 SP = {path p in DG | p ∈ DelayGmap(P ) and P
is a path in the SensPG }. UP = { path p in DelayG } − SP .

The set SP consists of statically sensitizable paths in the DelayG
while the set UP consists of the statically unsensitizable paths. The
latter set arises due to sharing of the same resource between multiple
SensPG operations.

Lemma 4 In a circuit implementation of the scheduled CFG, in any
clock cycle, let P be the path in the SchedG which is executed. The



subset of the paths in SP which correspond to P are the only paths
whose operations decide the new value of the SchedG variables.

Corollary 1 A path in UP never decides the new value of SchedG
variables.

V. PATHS IN UP CAN NOT AFFECT CIRCUIT DELAY

We prove that paths in UP do not affect the delay of the
circuit even if they are dynamically sensitizable. Let p =
(f0,G1,f1, . . . , Gm−1, fm−1) be a path in the combinational circuit,
where fi is a lead and Gj is a gate. The leads f0 and fm−1 are a
primary input and output respectively. Given an input vector v, let
Pv = {pj}, where path pj has the property that if an fi on pj has
a non-controlling value for Gi+1, then every side input to Gi+1 is on
some path pk ∈ Pv and has a non-controlling value. Such a set of
paths is said to determine the output completely for the vector v.

Theorem 1 Let Pv = {pi} completely determine the output of a cir-
cuit for the input vector v. If there exists a path pj 6∈ Pv and pj

gets sensitized for the input v, there exists a path pi ∈ Pv such that
delay(pi) ≥ delay(pj).

Proof There must be a gate G at which pj meets a path pi in Pv such
that after G, all the leads and wires on both pi and pj are the same.
From the property of paths in Pv , the lead fi on pi which is an input
to G must have a controlling value, since pj 6∈ Pv . For pj to be sen-
sitized, the lead on fj on pj which is an input to G needs to have a
controlling value and also, st(v, fj) ≤ st(v, fi). However, this imme-
diately implies that delay(pj) ≤ delay(pi). 2

Theorem 2 Given any path p1 in UP that can be sensitized, there ex-
ists a path p2 in SP such that delay(p2) ≥ delay(p1).

Proof In any clock period, all the operations on one of the paths in the
SchedG determine the new value of all the circuit variables (Lemma
2). If the path in the SchedG is called P , then the paths SensPGmap(P)
in the SensPG determine the new value of all the circuit variables
(Lemma 3). Similarly, the paths in the DelayG which correspond to
paths in SensPGmap(p) determine the value of all the inputs to the reg-
ister nodes storing the value of the variables (Lemma 4). The above
paths in the DelayG by definition are in SP. Hence, in any clock pe-
riod, a subset of paths in SP completely determine all the circuit out-
puts. Hence for a given input, if the sensitized path belongs to UP,
since SP ∩UP = ∅, from Theorem 1, there must be a path p2 ∈ SP ,
such that delay(p2) ≥ delay(p1). 2

Paths in UP are created due to sharing of resources as explained in
Section IV-C. From Theorem 2, paths in UP can never determine the
clock period of the circuit. Hence, to compute the true delay of the
resulting circuit, we just have to measure the topological delay of the
SP paths without considering path sensitization.

VI. ALGORITHM FOR CLOCK PERIOD ESTIMATION

The clock period estimation algorithm, FEST, finds an estimate of
the correct clock period of the circuit implementing a behavioral de-
scription. The inputs to the algorithm are the schedule of the behavior
in the form of a schedule graph, SchedG, an assignment of the oper-
ations in the SchedG to resource units, and a component library such
as shown in Table 1.

An outline of the algorithm FEST is given below. The algorithm
first creates the SensPG and the DelayG as outlined in Section IV.

It next creates SP, the set of paths in the DelayG which have corre-
sponding paths in the SensPG. The algorithm takes every path which
is in SP and finds an estimate of the path delay using the function
topo delay est. The maximum of the delay of the paths in the SP is
an estimate of the minimum clock period of a circuit implementation
of the DelayG.

An SP path in a DelayG starts at a node of the type rx and ends at a
node Ry and consists of intermediate nodes. The intermediate nodes
can be mux nodes, control nodes or resource unit nodes. To estimate
the delay of a SP path, the function topo delay est uses knowledge of
the implementation of the nodes in the DelayG.

We assume that an n-input Mux node is implemented as a balanced
tree of (n-1) 2-input Muxes. Similarly a block of control logic which
controls multiplexor inputs is implemented as a balanced tree of sim-
ple gates. For every mux or control node that is on a SP path, given the
underlying implementation for the mux and control nodes, the delay
of the node is estimated and added to the delay of the path.

The delays of individual resource units as well as the delay of cas-
cades of resource units are precomputed and stored in a table, as in
Table 1, for fast lookup. The delay of a cascade of resource units may
be less than the sum of the delay of the individual units [7]. For exam-
ple, from Table 1 we find that the delays of an 8 bit alu unit is 14.33ns.
However, the delay of a cascade of two alu units is 19.58ns and not
28.66ns as might be expected. If the path has a cascade of resource
units, the delay of the cascade is used rather than the delay of individ-
ual components. Details of the delay estimation process can be found
in [14].

Table 1: Individual and cascaded library modules in SCMOS 2.0.

4 bit 8 bit
Unit Delay Delay

[ns] [ns]

Comp(=) 3.59 5.45
Comp(<) 6.35 10.87

adder 9.62 20.69
alu(+, −) 9.44 14.33

mux 2.95 4.19
(+, −) → (+, −) 13.76 19.58

(+, −) → (<) 14.96 24.48
(<) → (+/−) 14.42 24.66

(=) → (<) 8.13 13.38

FEST(SchedG, assignment, library) {
1. SensPG ← create senspg(SchedG, assignment);
2. DelayG ← create delayg(SensPG, assignment);
3. SP ← ∅;
4. for (every path pi in SensPG) do
5. SP ← SP ∪ DelayGmap(pi);
6. max delay ← 0;
7. for (every path pj in SP) do
8. max delay ← max(max delay, topo delay est(pj , DelayG));
}

The partitioning of the DelayG paths into SP and UP are imple-
mentation independent and hence the result in Theorem 2 is imple-
mentation independent too. However, the estimated delay value as re-
turned by function topo delay est will not only depend upon the im-



plementation of the DelayG but also on the accuracy of the delay mod-
elling of the implementation.

VII. EXPERIMENTAL RESULTS

We have implemented the high-level timing analysis tool FEST in
C. To evaluate the effectiveness of FEST, we synthesize the follow-
ing conditional-intensive VHDL descriptions: the dealer process of
Blackjack and the controller for the AutoPilot of an Unmanned Aerial
Vehicle (UAV) [15]. Each description is scheduled to satisfy the re-
source constraints specified in Figure 2 for the dealer process and in
Figure 3 for the UAV example. The relevant portions of the CFG for
the Blackjack process is shown in Figure 2, and the mapping of the
CFG operations under the assignment is shown in Figure 2(e). The
relevant portions of the CFG and the mapping for the UAV AutoPilot
process is shown in Figure 3.

A netlist is generated for each RT-level circuit using OASIS [16].
The generated netlists are subjected to technology-dependent delay
optimization, including fanout optimization, using the SIS technology
mapper [17] and the lib2.genlib standard cell SCMOS 2.0 library [16].
The gate count for each circuit as reported by SIS is given under col-
umn Gates.

Table 2 shows the results of topological delay (Top Delay) and true
delay (True Delay) estimation. To estimate the true delay, FEST con-
siders paths only in SP. To estimate the topological delay, FEST con-
siders delay of paths in both SP and UP. To establish the accuracy of
FEST, the actual topological delay was computed by SIS on the gate
level circuit, reported under SIS in the column Top Delay. The true
delay computed by the gate level tool gate-TA [4] on the technology
mapped netlist is reported under gate-TA in the column True Delay.

For the 4-bit implementation of the UAV example, the high-level
topological delay estimate computed by FEST is 37.68 ns while the
gate-level value computed by SIS is 31.60 ns. The true delay esti-
mated at the high-level by FEST is 28.88 ns while at the gate-level,
gate-TA computes a value of 28.00 ns. The data shows that topolog-
ical delay can be pessimistic at both the gate and the high-level. It
also shows that the delay estimates at the high-level returned by FEST
compare well with the results of gate-level tools.

The cpu time taken by FEST and gate-TA is reported under the col-
umn cpu. In all cases, high-level delay estimates by FEST is very fast
even when the gate level timing analyzer fails to complete.

Table 2: Results of Topological and True Delay Estimation

Top Delay[ns]
Circuit # Gates FEST SIS

UAV (4 bits) 315 37.7 31.6
UAV (8 bits) 746 56.4 48.4
dealer (4 bits) 316 38.1 34.3
dealer (8 bits) 578 61.3 56.4

True Delay[ns] cpu[s]
Circuit FEST gate-TA FEST gate-TA

UAV (4 bits) 28.9 28.0 0.46 1153
UAV (8 bits) 40.1 NA 0.52 abrt

dealer (4 bits) 24.1 20.0 0.42 403
dealer (8 bits) 45.94 NA 0.43 abrt

VIII. CONCLUSIONS

We prove that paths created in a circuit due to resource sharing
need not be considered for calculating the true delay of a circuit. We
give a delay model and estimation techniques for a fast and accurate
estimation of the true delay of a circuit without doing path sensitiza-
tion. The accuracy and speed of our delay estimation technique makes
it feasible to be invoked repeatedly in a high level design process. Our
technique can also be extended for a more accurate delay estimation at
the RT-level, making it possible to estimate the delay of large RT-level
circuits which could not be handled by traditional gate-level tools.
Acknowledgments. We acknowledge Toshio Misawa for the formu-
lation of the Schedule Graph, and Pranav Ashar for his help in using
his gate-level timing analysis tool [4].
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