
Timing Uncertainty Analysis for Time-of-Flight Systems

John R. Feehrer and Harry F. Jordan

Optoelectronic Computing Systems Center

Campus Box 525

University of Colorado, Boulder, CO 80309-0525

ffeehrer,harryg@boulder.colorado.edu

Abstract
Time-of-
ight synchronization is a new digital de-

sign methodology that eliminates all latching devices,
allowing higher clock rates than alternative timing
schemes. Synchronization is accomplished by precisely
balancing connection delays. Many e�ective pipeline
stages are created by pipelining combinational logic,
similar in concept to wave pipelining but di�ering in
several respects. Due to the unique
ow-through na-
ture of circuits and to the need for pulse-mode op-
eration, time-of-
ight design exposes interesting new
areas for CAD timing analysis. This paper discusses
how static propagation delay uncertainty limits the
clock period for time-of-
ight circuits built with opto-
electronic devices. We present algorithms for plac-
ing a minimum set of clock gates to restore timing in
feedback loops that implement memory and for prop-
agating delay uncertainty through a circuit graph. A
mixed integer program determining the minimum fea-
sible clock period subject to pulse width and arrival
time constraints is discussed. Algorithms are imple-
mented in XHatch, a time-of-
ight CAD package.

1 Introduction: Time-of-Flight Design
Time-of-
ight synchronization is a new approach

to digital systems design that eliminates all bistable
latching elements, allowing pipelining within combi-
national logic and potentially much higher clock rates
than achievable with conventional or wave pipelining.
A time-of-
ight digital circuit is a sequential circuit
in which all memory is realized by explicit feedback
loops and interacting signals are synchronized by ad-
justing path delays between components. In conven-
tional pipelined systems, the longest sensitizable com-
binational logic path between pipeline registers puts
a lower bound on the clock period [1]. Wave pipelin-
ing [2, 3, 4, 5] eliminates some registers by pipelining
combinational logic, using registers to break feedback
loops and periodically re-synchronize waves. In con-
trast, \time-of-
ight" circuits use clock gates to re-
synchronize pulses which may traverse feedback loops.
A very high number of e�ective pipeline stages, or
\waves," is theoretically possible with this technique.
Maximum clock rate is limited only by the control-
lability of propagation delays through switching and
interconnection devices and by switching bandwidths.
Computational latency and computational through-
put are decoupled to a larger extent than is possible

with the alternative pipeline timing schemes.
Critical requirements for time-of-
ight systems

are high switching bandwidth and highly control-
lable propagation delay. These features character-
ize electro-optic switches and optical �bers, and have
been exploited successfully in building digital optical
time-of-
ight systems [6]. A simple general purpose
stored-program optical computer using no bistable de-
vices 1 for data storage or synchronization has been
built and tested in the laboratory to demonstrate the
principles [7].

A niche commercial application for time-of-
ight
techniques is packet routing processor design for
packet-switched telecommunications or multiproces-
sor interconnection networks in which data is al-
ready in optical form. The goal is to eliminate
opto-electronic conversion bottlenecks to allow 10-20
Gbit/sec link bit-rates. Research in our group has
focused on design, simulation, and construction of
de
ection-routed optical networks [8, 9]. Packet rout-
ing processor designs that use this routing protocol are
highly amenable to pipelining and time-of-
ight syn-
chronization. With recent developments in integrated
optics, GaAs opto-electronics, and
ip-chip bonding,
there is the exciting prospect of building time-of-
ight
processors on a single substrate [10]. We believe the
unique
ow-through nature of time-of-
ight circuits
will create a fertile new area for CAD research in tim-
ing optimization as technology continues to improve.
Our motivation for writing this paper is to stimulate
discussion and further interest in time-of-
ight meth-
ods within the CAD community.

Because of the absence of bistable devices to cor-
rect for logic delay variations, time-of-
ight system
design requires very detailed timing analysis; arrival
times of pulses at node inputs must obey two-sided
constraints. Delays over interconnections must be pre-
cisely adjusted so that arrival times always coincide.
A CAD tool is necessary to manage the complexity of
meeting these synchronization constraints. The tool
balances delays by adjusting lengths of optical waveg-
uide interconnections (single-mode optical �ber in the
case of the optical computer). It also accounts for vari-
ations in device propagation delays. Variations may

1For our purposes, the term \bistable devices" refers to

the general category of static-storage devices, including edge-

triggered and level-sensitive
ip-
ops or latches.

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0728 $3.50

iAB C
D
E

D = AC + BC
E = AC + BC

a. directional coupler switch

opto-electronic
conversion, stretch,
and bufffering

b. optical splitter

Y1 = Y2 = X

Y1
Y2

X

c. optical combiner
 ("wired-OR")

X1

X2

Y1
Y2

Y1 = Y2 = X1 + X2

d. optical clock
 source (laser)

optical input pulses

C terminal pulse

Figure 1: Time-of-
ight circuit components

be static, caused by manufacturing process di�erences,
as well as dynamic, induced by temperature and power
supply
uctuations, dispersion, and laser jitter. We re-
fer to the combined e�ect of these variations as delay
uncertainty. Due to space limitations, we focus this
paper on the static component of delay uncertainty.

Section 2 introduces circuit components and the
time-of-
ight timing model. Section 3 presents an al-
gorithm for placing a minimum set of clock gates cov-
ering all feedback loops. Section 4 discusses how to
compute uncertainty accumulated along signal paths,
and uses the results in an integer program to mini-
mize the clock period. In Section 5 we propose addi-
tional problems for future work. Our algorithms are
implemented in a digital optical CAD package called
XHatch, available via anonymous ftp [11]. XHatch
is an X-Windows program performing schematic cap-
ture, delay distribution, clock period minimization,
simulation, and optical power loss analysis.

2 Components and Timing Model
In optical time-of-
ight circuits, information is con-

stantly moving. Memory is implemented with optical
delay lines which recirculate streams of pulses [6]. A
delay line memory's length depends on the clock rate,
number of bits to be stored, and properties of the phys-
ical medium. Because there is no steady state any-
where in the circuit, there is no meaning to \settling
time." Capacitive charge or discharge does not con-
tribute to the delay of a pulse as it travels along a path,
yielding uniform rise and fall times and decreased
static skew, and eliminating the data-dependent delay
seen in CMOS and other VLSI technologies. Terms
such as \path sensitization" and \false paths" [1] im-
ply level-mode (non-return-to-zero) signaling and do
not apply to the pulse-mode time-of-
ight circuits we
have implemented.

While our experience in time-of-
ight design is lim-
ited to use of the 2x2 coupler switches described be-
low, implementation with conventional logic gates is
also being studied. The progress in controlling CMOS
delays [5] makes this prospect especially interesting.
The following features characterize the time-of-
ight
circuits we discuss in this paper:

� Switches are logically complete 2x2 optical direc-
tional couplers. Figure 1.a shows a schematic
illustration. The devices are electro-optically

∆

rδ

. . .

= major cycle

= pulse width

δ = minor cycle

 N independent
 clocks for each
 computational
 stream

0 1 2 N-1 0. . . time-multiplexed
 clock

Figure 2: Timing model for time-of-
ight design

switched from the \cross" to the \bar" state by
converting the optical pulse entering the C ter-
minal to an electrical pulse which drives an elec-
trode. The electric �eld created by the pulse gen-
erates a birefringence [12] and thereby alters the
coupling of power between the two waveguides.

� Every circuit connection is point-to-point with
uni-directional signal
ow. A connection begins
at a node output or primary input and ends at
a node input or primary output. Fanout is done
using optical �ber splitters; �ber combiners im-
plement a wired-OR function (see Figure 1).

� Return-to-zero (RZ or pulse mode) signaling is
used throughout. A logic 1 is encoded as a
pulse rather than simply as a level. Every sig-
nal's pulse width falls within a known range,
with nominal width equal to the master clock sig-
nal width. This mode allows the major cycle �
(lower-bounded by irreducible delays around feed-
back loops) to be sub-divided into N minor cy-
cles (lower bounded by switching bandwidth and
delay uncertainty) [13]. Refer to Figure 2. N

clocks with period � are time-multiplexed, o�set
by integral multiples of the minor cycle �. Each
controls an independent computational stream.
Time-multiplexing increases peak computational
throughput by a factor of N . Guard bands are
inserted between pulses to provide for timing un-
certainty. The multiplexed clock duty cycle is r,
0 < r < 1.

� Timing restoration is accomplished using clock
gating. See Figure 3. The data pulse to be re-
stored is \stretched" by the amount Ts at the C
terminal. Laboratory circuits have used a series
of cascaded electronic OR gates for this purpose.
The connection leading up to the C terminal is
adjusted so that the ideal stretched pulse is cen-
tered around the optical clock pulse arriving at
A. The stretched pulse must completely overlap
the clock, over all possible arrival time variations
[6]. The clock's arrival is relatively precise; it is
directed through the coupler to the D output.

� A global optical clock signal generated by a laser
is distributed to \clock gate" switches con�gured
as described above for clock gating.

� Any pair of optical pulses entering a switch or
combiner must at least partially overlap over

stretch Ts

clock

data

timing-
restored
data

iAB C
D
E Ts

2
Ts
2

clock

data

timing-restored
data

Figure 3: Clock gating and stretch

all manufacturing and operating condition vari-
ations.

A time-of-
ight circuit is represented by a directed
multigraph G = (V;E) which may contain self-loops
[14]. Vertices represent devices that combine or fan
out signals. More speci�cally, a vertex represents an
interaction point, an abstraction of the exact phys-
ical center of the corresponding device [15], so that
parameters of speci�c input and output ports can be
associated with the edges connected to them. Edges
represent connections such as optical �bers. A set of
timing parameters is associated with every edge. One
parameter gives nominal propagation delay, specify-
ing the delay from the edge's initial vertex to its �nal
vertex; this delay is the sum of the source device out-
put port delay, the connection delay, and the destina-
tion device input port delay. Other edge parameters
describe the worst-case arrival time uncertainty and
pulse width for a pulse entering the destination node
device. Stretch is employed at every switch C ter-
minal, so that (1) C terminal arrival uncertainty and
edge-rate asymmetry produced by the drive electron-
ics do not propagate beyond this point, and (2) output
glitches are not generated.

Figure 4 shows a time-of-
ight circuit schematic
and graph. It is a 4-bit counter whose increment sig-
nal, occurring once every 4 major cycles, is generated
by switches S4 and S5. The number of major cycles
of delay which XHatch is called upon to distribute
around each loop is provided by the designer, who
speci�es \lumped delays" for connections in multiples
of the major cycle (these connections are drawn with
\bubbles"). Lumped delays give the circuit its desired
sequential behavior [15].

2.1 Relationship to Wave Pipelining
Since the time-of-
ight methodology is related to

wave pipelining, it is instructive to point out their
similarities and di�erences. The two techniques are
similar in that: (1) they both create e�ective pipeline
stages by allowing multiple coherent waves of data
to propagate over a combinational block, and have
mechanisms for periodically restoring timing (registers
for wave pipelining, clock gates for time-of-
ight), (2)
they both require path delays to be balanced to pre-
vent wave interference, (3) they both allow multistage
systems (systems with feedback [5]), meaning di�er-
ent numbers of clock cycles of delay between succes-
sive registers in wave pipelining or between successive
clock gates in time-of-
ight, and (4) they both have
a global clock whose arrival times at registers [5] or
clock gates may be deliberately skewed to optimize the
clock period. Signi�cant di�erences between the two

approaches are: (1) in wave pipelining, registers bound
wave-pipelined combinational blocks whereas in time-
of-
ight systems clock gates without static storage ca-
pability surround the blocks, (2) wave-pipelined cir-
cuit delays can be adjusted by either adding bu�ers
or adjusting drive currents, whereas time-of-
ight ad-
justments are done by altering connection delays only,
and (3) wave-pipelined circuits use non-return-to-zero
(NRZ) signaling, whereas time-of-
ight requires pulse-
mode (RZ) signaling due to clock gating, creating tim-
ing constraints explicitly involving duty cycle.

The distinction between what Gray et al. [5]

call the \overall system speedup factor" �k and our
time-multiplexing factor N is more subtle. In both
methodologies, the speedup gained by adding e�ective
pipeline stages must be the same for all loops. While
all loops in their wave-pipelined system have the same
ratio of e�ective pipeline stages to physical registers,
the analogous ratio of minor cycles to clock gates is not
�xed for all loops in a time-of-
ight system. Time-of-

ight loops can contain arbitrarily many major cycles
of delay. A pair of clock gates can span any num-
ber of major cycles, limited only by delay uncertainty
accumulated between the gates.

3 Optimal Clock Gate Placement
To prevent cumulative timing drift from destroying

synchronization, we require that every feedback loop
in a time-of-
ight circuit contain at least one clock
gate in its path. This is a necessary but not su�cient
condition for a functional circuit. We start with an
idealized circuit having no clock gates, so the problem
is to identify a minimum set of edges in G into which
clock gates should be placed, formally stated as:

Problem statement: Given a time-of-
ight circuit
graph G = (V;E) for an ideal circuit, �nd a minimum
cardinality edge set Ef � E, such that the spanning

subgraph G0 = (V;E � Ef) is acyclic.

This problem is equivalent to the Minimum Feed-
back Edge Set (MFES) problem, in the class NP-
complete. It was solved by Lempel and Cederbaum
[16], and we adapt their method as follows. The time-
of-
ight circuit graph G is represented using an ad-
jacency matrix containing edge labels and augmented
with 1's on the diagonal. The permanent expansion
for this matrix is computed, giving a sum of products
with addition interpreted as OR and multiplication as
AND. The permanent is computed as the determinant
but with all signs positive. The Boolean absorption
law A + AB = A is applied to decrease the number
of product terms. Each product of edges in this ex-
pression represents a feedback loop. OR and AND are
then interchanged to give the dual expression, a prod-
uct of sums, which is reduced, again with Boolean ab-
sorption, to produce a minimal sum-of-products form.
Each product in this expression is a set of edges which,
if removed, will break all feedback loops. The mini-
mum cardinality product term identi�es the MFES.
With a few modi�cations, this technique can han-
dle self-loops and parallel edges. The edges making
up an MFES for the counter graph in Figure 4b are

a.

1
2

3

4

5

6

7

8

9

10 11

1
2

15

16

19 18

17

7
6

5

3

10

14

11

13

12

8

4

(CNT)

(CNT*)

(BCLK)
9

b.

Figure 4: (a) XHatch schematic of 4-bit counter, and (b) its circuit graph

fe6; e9; e18; e19g.

Complexity is a concern, but can be minimized by
considering the special structure of time-of-
ight cir-
cuits. Let FImax be the maximum fanin of any ver-
tex and FOmax be the maximum fanout of any ver-
tex. Then if we expand the permanent by minors, at
each stage expanding along the row or column with
fewest non-zeros, the worst-case number of operations

grows as (min[FImax; FOmax]+1)
jV j. For our circuits,

FImax = 3 and FOmax = 2. The XHatch implemen-
tation �rst eliminates from consideration edges inci-
dent with zero-fanin or zero-fanout vertices, then does
a depth-�rst permanent expansion and calls Boolean
minimization routines in the SIS-1.1 package [17] for
the two absorption steps. In practice, the number of

expansions is far below the upper bound of 3jV j, as
seen in column 4 of Table 1. Column 5 gives total sec-
onds of run time (recorded on a SPARCStation IPX)
to compute the MFES from the adjacency matrix, in-
cluding permanent expansion time and SIS time.

The exponential complexity of the permanent ex-
pansion becomes problematic at around j V j= 150.
Expansion did not complete for the largest circuits due
to insu�cient memory. Since proposed integrated op-
tics time-of-
ight circuit graphs will exceed this size,
alternative MFES solution methods are needed. One
alternative we have implemented is to break the circuit
graph into its strongly connected components (SCC's)
[14], and then apply the technique above to each SCC
individually. The last two columns of Table 1 show
the number of vertices in the largest SCC, and the
total execution time using this method. An optimal
solution is obtained with large savings in computa-
tional e�ort for large circuits having relatively small
SCC's, such as the Optical computer and Packet syn-
chronizer. For less modular circuits such as the mul-

tiplier, we are considering use of an approximation al-
gorithm. For example, the O(jV j + jE j) randomized
algorithm proposed by Berger and Shor [18] �nds an

acyclic subgraph containing at least 2
3 jE j edges.

There are typically multiple minimum feedback
edge sets, in which case we are interested in the one
set yielding minimum minor cycle, �min. To compute
the minimum feasible � for a selected MFES solution,
we need to determine (1) worst-case cumulative un-
certainty for each signal path, and (2) a set of con-
straints that relate these cumulative uncertainties to
�. We discuss these issues in Section 4.2.

4 Clock Period Optimization
Previous time-of-
ight work [15] dealt with the �rst

step in timing analysis, computing the minimum ma-
jor cycle �min. The second step is to compute �min.
In the �rst step, we ignore delay uncertainty and use
nominal delays rather than solving a stochastic pro-
gram with delays modeled as random variables [19].
Delay uncertainty is addressed in the second step,
where we also compute a value for Ts ensuring that
�min is feasible under all static delay variations. We
assume uncertainty limits � before switching band-
width does. Our research is motivated by the use of
components for which this assumption is true.

4.1 Minimizing The Major Cycle
The minimum major cycle for a practical time-of-

ight circuit is constrained by the device latencies
and physically irreducible interconnect delays around
feedback loops. We refer to the problem of where
to increase connection delays beyond their designer-
speci�ed minimums in order to synchronize node in-
put arrival times as delay distribution. This problem
can be formulated as a linear program minimizing the
feasible major cycle and the sum of added delays, sub-

Circuit jV j jE j Expansions Run time (exp. + SIS) Largest SCC Run time using SCCs

4-bit serial counter 14 21 55 2 7 3

Serial sorter 32 47 84 7 12 7
Optical computer [7] subsystem 1 115 142 1206 326 10 24

Optical computer subsystem 2 130 162 3863 15691 14 35
Packet synchronizer 140 188 out of mem. - 14 55

Entire optical computer 238 331 out of mem. - 10 252

Floating-point multiplier 507 648 out of mem. - 249 -

Table 1: Performance of MFES solver in XHatch

ject to a set of loop constraints for each of a set of
j E j � j V j +1 basis loops [14]. A loop constraint
equates actual loop delay (loop sum of minimum de-
lays plus added connection delays) to the loop sum of
designer-speci�ed lumped delays [15].

An alternative delay distribution algorithm [15] dis-
tributes delays locally, shifting delays from vertex in-
put edges to output edges to satisfy minimum delay
constraints on output edges. This is essentially re-
timing [20], except that what is redistributed is con-
tinuously adjustable delay rather than discrete regis-
ters or latches. Wong's \coarse tuning" phase of wave
pipeline optimization [2] is similar, though it combines
the loop basis formulation with a retiming algorithm.
In the time-of-
ight case, a local delay distribution
trial can be done only with a known major cycle, but
by embedding the local algorithm in a binary search,
it is possible to obtain the minimum feasible major
cycle in a logarithmic number of trials [21].

4.2 Minimizing the Minor Cycle
Given �min and one or more MFES solutions, we

would like to �nd �min. Since delay uncertainty limits
�min and clock gates reduce uncertainty, it may be
necessary to add additional clock gates to achieve a
performance goal expressed as a target minor cycle.
Thus we have two problems:

Problem 1: Given a set of k minimum feedback edge
sets EF = fEf1; Ef2; :::; Efkg, select the one set Ef� 2
EF minimizing �.
Problem 2: Given target minor cycle �T < �min,
where �min is for set Ef�, �nd a minimum cardinality
edge set Et � E � Ef� into which clock gates can be
placed so that the minimum minor cycle for the new
circuit, �0min, satis�es �

0
min � �T .

Lee and Reddy [22] study a generalization of the
minimum feedback vertex set problem, in the con-
text of locating scan
ip-
ops. Their objective is to
�nd minimum set of vertices whose removal gives an
acyclic graph with maximum distance between any
pair of vertices satisfying an upper bound. Similarly,
in Problem 2, the \longest path," i.e. the path be-
tween clock gates having highest cumulative uncer-
tainty, constrains �min. However, since there are many
other constraints, satisfying �0min � �T cannot be eas-
ily formulated as a generalization of the MFES graph
problem. Due to limited space we discuss only Prob-
lem 1, solved as follows.

1) Select a minimum feedback edge set Efj 2
EF .

viS ei
viF

a. b.

clock
ei2

iA C
D

ei1
vi1

vi2
viS

viF

ei1

ei2

Figure 5: Circuit graph before (a) and after (b) clock
gate is placed into edge ei

2) Augment the acyclic network G
0 = (V;E �

Efj) by adding a pair of edges fei1; ei2g and a
pair of vertices fvi1; vi2g representing a clock
gate, for each ei 2 Efj , connected as follows
(see Figure 5). Let viS and viF be the ini-
tial and �nal vertices, respectively, for ei. vi1
represents the \stretch terminal" and vi2 rep-
resents the clock input and restored output
terminals. The initial and �nal vertices for
ei1 are viS and vi1, respectively. The initial
vertex for ei2 is vi2; the �nal vertex is viF .
The augmented network G00 is still acyclic,
since there is no edge connecting vi1 and vi2.
Clock gate outputs are source nodes of G00

and stretch terminals are sink nodes.

3) Using a series of O(jE j) depth-�rst searches
on G00 beginning at each of the j Efj j
clock gate output vertices and extending to
the clock gates' stretch vertices, compute
the worst-case arrival time uncertainties and
pulse widths at each node along every path
in G00.

4) Solve a mixed integer program to minimize
� subject to a set of pulse overlap and pulse
width constraints using arrival time uncer-
tainties computed in Step 3.

5) Repeat Steps 1-4 for each remaining set in
EF . Record � for each set.

6) Select the set Ef� in EF yielding minimum �;
�min is set to this value of �.

Our simplifying assumptions regarding device delay
uncertainties are that they are bounded, uncorrelated,
and additive. Thus, we can associate a bounded un-
certainty interval u(ei) with each edge ei giving worst-
case arrival time variation for a pulse entering the �nal
vertex of ei. See Figure 6. We assume that delay un-
certainty distorts leading and trailing edges of pulses
uniformly, so a single uncertainty interval su�ces for
each edge. The nominal pulse center is used as a �xed

u(e)

W(e)

δ δ

B
A D

E

Figure 6: Pulse uncertainty model

reference point from which deviations from nominal
arrival are analyzed. The center coincides with the
midpoint of the pulse's minor cycle window. Due to
uncertainty, the output pulse from a combiner can be
wider than its input pulses, so we need also to asso-
ciate a pulse width, W (ei), with each edge ei 2 E,
where W (ei) � r� .

Arrival time uncertainty increases monotonically as
a pulse propagates along a path in G00 having un-
certain delays. Assume that connection delay uncer-
tainty is linearly related to nominal connection delay
through a constant scaling factor Kf . We take the ar-
rival time uncertainty at the output of a 2x2 switch as
the larger of the two (A or B port) input uncertainty
intervals plus the uncertainty over the corresponding
path through the switch. Because the actual map-
ping of input to output uncertainty depends on the
switch state, a more accurate analysis requires sim-
ulation. The uncertainty at the output of a splitter
is simply the uncertainty interval of the input plus
the uncertainty through the splitter. Connections and
splitters do not distort pulse width. The same is true
for switches, assuming the stretched pulse at C en-
tirely overlaps pulses on A and B. The uncertainty
and pulse width assigned to a combiner's output edge
are:

u(ej) =
1

2
f max
ei2I(v)

[W (ei) + u(ei)]

� max
ei2I(v)

[W (ei)� u(ei)]g+ uCB +Kfd(ej) + uIN ;

W (ej) =
1

2
f max
ei2I(v)

[W (ei) + u(ei)]

+ max
ei2I(v)

[W (ei)� u(ei)])g;

where I(v) is the set of input edges to combiner vertex
v, ej is its output edge with delay d(ej), uCB is the
combiner output port uncertainty, and uIN generically
signi�es input port uncertainty for ej 's �nal vertex.

Using these device models, we can compute the un-
certainty interval for each edge in G00 by traversing
the network in a depth-�rst fashion, beginning at a
clock gate output. We extend a search when all input
edges for the current vertex have known uncertainty
intervals, and backtrack when we reach a stretch ter-
minal or a vertex having at least one input edge with
unknown uncertainty. When we have backtracked all
the way to the last visited clock gate output, a new
search begins at the next unvisited clock gate output.
A search can extend from a switch input to output as
long as both input A and B uncertainties are known,
because with adequate stretch, C terminal uncertainty
does not a�ect output uncertainties.

We now explain the constraints which bound the
minor cycle; their mathematical presentation follows.
The �rst three constraints deal with uncertainty; the
rest concern other timing issues. Uncertainty related
constraints use the uncertainty intervals and pulse
widths computed as described above, and restrict tim-
ing relationships at vertices; in all cases, u(ei) is the
uncertainty interval for ei at its �nal vertex. The �rst
constraint is that for every pulse, its width must ex-
ceed its uncertainty interval so that the pulse over-
laps its nominal center; this ensures that two inter-
acting pulses will not miss each other. Second, every
pulse must with certainty be less than a minor cycle in
width to maintain pulse-mode operation and prevent
interference between multiplexed streams (see Figure
6, showing two pulses entering a switch). This applies
to both non-stretched and stretched pulses. Third, at
each switch (including clock gates), the stretched C
terminal electrical pulse must completely overlap the
A and B input pulses to prevent glitches. Fourth, the
major cycle �min must be a positive integral mul-
tiple N of the minor cycle. Fifth, the pulse width
emitted by the laser must be greater than a speci�ed
minimum detectable width Wmin; it is unnecessary
to lower-bound downstream pulse widths, since we do
not use devices which can shorten pulses. Finally, re-
ferring to Figure 5, for every edge ei in Efj , the MFES
under consideration, the sum of delays over the new
edges ei1 and ei2 incident on the clock gate, plus half
of the stretch must equal the delay over the original
edge ei. Satisfying this condition preserves synchro-
nization at viF and centers the ideal stretched pulse
around the clock entering vi2. Delays for ei1 and ei2
are left unknown, and must be at least as large as their
speci�ed minimums m(ei1) and m(ei2).

We assume stretch is done electronically and that
it is added in discrete increments, with increment size
dS and uncertainty uS . (Separate leading and trail-
ing edge uncertainties are needed if low-to-high and
high-to-low delays di�er signi�cantly.) We make a
variable substitution Ts = pdS, where p is a positive
integer. If an alternative implementation permits con-
tinuous stretch, then the optimization takes the form
of a linear program instead of the mixed integer pro-
gram (MIP) presented as follows. E and V refer to the
graph G00. I(v) is the set of input edges for vertex v,
ES is the set of edges entering stretch terminals, VS
is the set of switch vertices, d(ei) is the nominal delay
for edge ei, and Efj is the MFES under consideration.
The MIP is:

minimize �

subject to:
(1) W (ei) � u(ei); 8ei 2 E;

(2a) W (ei) + u(ei) � �; 8ei 2 E �ES ;

(2b) W (ei) + pdS � �; 8ei 2 ES;

(3) pdS �W (ei) + u(ei)�W (ek) + u(ek) + puS ;

8ei; ek 2 I(v); ek 2 ES ; v 2 VS ;

(4) N� = �min;

(5) r� � Wmin; where r is a constant, 0 < r < 1;

(6) d(ei1) + d(ei2) +
pdS
2

= d(ei);
d(ei1) � m(ei1); d(ei2) � m(ei2); 8ei 2 Efj ;

(7) p;N 2 f1; 2; 3; :::g; � > 0:

δ

p

0
feasible solution space

constraint 3
co

nstr
aint 2

b (s
lope 1-r)

constraint 6

δ = ∆min
constraints 1,2a,5

constraint 4

Figure 7: Timing constraint space

The role of � is mademore explicit by replacing each
W (ei) with r�+x(ei), where x(ei) is non-negative and
depends only on uncertainty. The constraint space is
shown qualitatively in Figure 7. The feasible region is
de�ned by lower and upper bounds on � and p, and
by the diagonal line with slope 1� r. The latter arises
from the stretched pulse width constraint (2b): as � in-
creases, for �xed duty cycle r, spacing between pulses
increases in absolute terms, creating proportionately
more \room" for stretch. Relative magnitudes of the
bounds depend on circuit parameters. If constraint
6 is not satis�ed for some edge ei 2 Efj , delay dis-
tribution must be re-run on the new circuit graph,
with the minimum delay constraints for ei1 and ei2
included. In the current formulation of the problem,
this re-distribution must be done as a separate step. If
ei is part of the feedback loop that limits major cycle
�min, then �min will increase over its previous value
as a result of the re-distribution.

5 Conclusions and Future Work
Time-of-
ight circuits are unique in that they use

no registers, relying instead on the relatively high con-
trollability of optical delays for synchronization and
storage. Clock gates must be placed in a circuit
to increase its tolerance to static and dynamic delay
variations. We have presented an algorithm to place
clock gates using Lempel and Cederbaum's method to
solve the minimum feedback edge set problem. SIS
performs the Boolean optimizations in this solution
procedure. Computation time is reduced for mod-
ular circuits by �rst breaking the circuit graph into
its strongly connected components. While our imple-
mentation in XHatch has reasonable execution time
for smaller designs, approximation algorithms will be
needed for large non-modular circuits or for SCC's
with over 150 edges. Routines to propagate delay un-
certainty through the circuit graph using depth-�rst
search have also been implemented; implementation of
the mixed integer program solver to compute �min is
in progress. More work must be done to demonstrate
the viability of time-of-
ight design. A thorough ex-
ploration of the parameter space is needed. When the
duty cycle is allowed to vary, for example, the mixed
integer programbecomes nonlinear. By variable trans-
formation, we can replace nonlinear constraints with

those having separable nonlinear functions, permitting
use of nonlinear programmingmethods [19]. Other fu-
ture projects are incorporation of dynamic delay vari-
ations (due to laser jitter and operating condition
uc-
tuations) into the timing constraints, use of stochastic
models for delay uncertainty to compute error proba-
bilities, and investigation of the tradeo�s of applying
the same stretch at all switches versus having switch-
dependent stretch. Finally, we should seek an answer
to the question of whether time-of-
ight principles can
allow faster clock rates in VLSI technologies such as
CMOS.

Acknowledgements
This work received funding through the Optoelec-

tronic Computing Systems Center at the University
of Colorado, sponsored by NSF ERC grant number
ECD 9015128, by the Colorado Advanced Technology
Institute, and by NSF grant MIP-9322241. Thanks to
Professors Fabio Somenzi and Michael Lightner from
Boulder's VLSI CAD group for helpful input, and to
Professor Hal Gabow of the Computer Science Dept.
for a discussion about minimum feedback edge sets.

References
[1] P. C. McGeer and R. K. Brayton, Integrating

Functional and Temporal Domains in Logic De-
sign. Kluwer Academic Publishers, 1991.

[2] D. C. Wong, G. D. Micheli, and M. J. Flynn,
\Designing high-performance digital circuits us-
ing wave pipelining: Algorithms and practical ex-
periences," IEEE Transactions on CAD, pp. 25{
46, January 1993.

[3] D. A. Joy andM. J. Ciesielski, \Clock period min-
imization with wave pipelining," IEEE Transac-
tions on CAD, vol. 12, pp. 461{472, April 1993.

[4] W. K. Lam, R. K. Brayton, and
A. L. Sangiovanni-Vincentelli, \Valid clocking in
wavepipelined circuits," Proceedings of ICCAD,
1992, pp. 518{525.

[5] C. T. Gray, W. Liu, and R. K. G. III, \Tim-
ing constraints for wave pipelined systems," Tech.
Report NCSU-VLSI-92-06, Dept. of Electrical
and Computer Engineering, North Carolina State
University, December 1992.

[6] T. Soukup, R. Feuerstein, and V. Heuring, \Im-
plementation of a �ber-optic delay-line memory,"
Applied Optics, vol. 31, pp. 3233{3240, June 10
1992.

[7] P. Main, R. Feuerstein, V. Heuring, H. Jor-
dan, J. Feehrer, and C. Love, \Implementation
of a general purpose stored-program digital opti-
cal computer," Applied Optics, vol. 33, p. 1619,
March 10 1994.

[8] D. Blumenthal et al., \First demonstration of
multihop all-optical packet switching," IEEE
Photonics Technology Letters, March 1994.

[9] J. Feehrer, L. Ramfelt, and J. Sauer, \Design
and implementation of a prototype optical de-

ection network," ACM SIGCOMM '94 Confer-
ence on Communications Architectures, Proto-
cols, and Applications, August 31 1994.

[10] H. F. Jordan, A. R. Mickelson, B. V. Zegh-
broeck, and I. Januar, \An integrated optics,
stored program computer," Topical Meeting in
Optical Computing, Optical Society of America,
March 1993, pp. 318{321.

[11] M. Salerno, \Xhatch user's manual," Tech. Re-
port 91-25, Optoelectronic Computing Systems
Center, University of Colorado Boulder, October
1991. ftp cs.colorado.edu:/pub/distribs/xhatch.

[12] A. Yariv, Optical Electronics. Saunders College
Publishing, 4th ed., 1991.

[13] H. F. Jordan and V. P. Heuring, \Time multi-
plexed optical computers," Supercomputing 91,
1991, pp. 370{378.

[14] J. A. McHugh, Algorithmic Graph Theory. Pren-
tic Hall, Inc., 1990.

[15] J. P. Pratt and V. P. Heuring, \Delay synchro-
nization in time-of-
ight optical systems," Ap-
plied Optics, vol. 31, pp. 2430{2437,May 10 1992.

[16] A. Lempel and I. Cederbaum, \Minimum feed-
back arc and vertex sets of a directed graph,"
IEEE Transactions on Circuit Theory, vol. CT-
13, pp. 399{403, December 1966.

[17] E. M. Sentovich et al., \SIS: A system for sequen-
tial circuit synthesis," Tech. Report UCB/ERL
M92/41, Electronics Research Lab., University of
California, Berkeley, May 4 1992.

[18] B. Berger and P. W. Shor, \Approximation algo-
rithms for the maximum acyclic subgraph prob-
lem," Proceedings of 1st Annual ACM-SIAM
Symposium on Discrete Algorithms, 1990, pp.
236{243.

[19] G. Hadley, Nonlinear and Dynamic Program-
ming. Addison-Wesley, 1964.

[20] C. E. Leiserson and J. B. Saxe, \Retiming syn-
chronous circuitry," Algorithmica, vol. 6, pp. 5{
35, 1991.

[21] J. R. Feehrer, \Minimizing the major clock cycle
in bit-serial time-of-
ight synchronized digital cir-
cuits," Tech. Report 93-03, Optoelectronic Com-
puting Systems Center, University of Colorado
Boulder, March 1993.

[22] D. Lee and S. Reddy, \On determining scan
ip-

ops in partial-scan design," Proceedings of IC-
CAD, 1990, pp. 322{325.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

