
HyHOPE : A Fast Fault Simulator with Efficient Simulation of
Hypertrophic Faultsy

Chen-Pin Kung & Chen-Shang Lin

Department of Electrical Engineering
National Taiwan University

Taipei, Taiwan, R.O.C.

Abstract
In sequential circuit fault simulation, thehypertrophicfaults,

which result from lengthened initialization sequence in the fault-
y circuits, usually produce a large number of fault events during
simulation and require excessive gate evaluations. These faults
degrade the performance of fault simulators attempting to sim-
ulate them exactly. In this paper, an exact simulation algorith-
m is developed to identify the hypertropic faults and to min-
imize their effects during the fault simulation. The simulator
HyHOPE based on this algorithm shows that the average speedup
ratio over HOPE 1.1 is 1.57 for ISCAS89 benchmark circuits.
Furthermore, the result indicates the performance of HyHOPE is
close to the approximate simulator in which faults are simply
dropped when they become potentially detected.

1 Introduction
Fault simulation has been playing a major role in VLSI test-

ing. Its applications range from grading the quality of test sets to
incorporating with ATPG in test generation. As the size of VLSI
circuits grow increasingly larger, efficient fault simulation algo-
rithms have been developed to meet the challenge[1-12]. These
algorithms are highly refined for their domains of applications. In
this paper, we mainly concern with the fault simulation algorithms
for single stuck-at faults of synchronous sequential circuits.

Most recently developed fault simulation algorithms are based
on ROOFS [2]. ROOFS improves the performance of single fault
propagation[1] by using an efficient circuit status restoration tech-
nique. Based on ROOFS , various parallelization techniqueshave
been proposed to speed up the performance. Two fault simulators
endeavor to parallelize the test vectors: PSF[6] and PARIS[7].
The major difference between PSF and PARIS is their ways of
grouping test vectors into a packet, a computer word. In PSF,
the test sequence is partitioned into consecutive subsequences,
while a packet in PARIS represents consecutive test vectors. Both
PSFand PARIScan achievesignificantspeedupover ROOFS , al-
though their performance is somewhat correlated with the circuit
types.

PROOFS[2-3] is the parallel-fault enhancement of ROOFS .
In PROOFS, a packet of 32 active faults are injected and simu-
lated parallelly. And its performance is further speeded up with
fault ordering and efficient fault injection. A more efficient par-
allel fault simulator, HOPE is proposed in [4]. In HOPE, a single
event fault in a fanout free region is simulated to stem with sin-
gle fault propagation. And the stem fault is further examined by
candidacy test. The results in [4] show that on the average, 67%
of faults are screened out comparing with PROOFS. A new ver-
sionof HOPE, HOPE 1.1[5] incorporates additional heuristics for
further improvement.

Despite the above sophisticated techniques, the efficiency of
the above fault simulation algorithms all depend on the degree
of difference between the good circuit and the fault circuit. For

yThis work was supported in part by the National Science Council
under Contract NO. NSC-83-0404-E-002-055.

most faults, the fault effects are small in number and these sim-
ulators attain high efficiency by evaluating only a small number
of gates for each fault. However, there are usually some hyper-
trophic faults in a circuit. These faulty circuits take longer se-
quences and are difficult to initialize. Hence, while good circuit
is initialized, these faults produce a great number of unknown
values (X’s). As a result, a simulator taking advantage of such
difference winds up heavily loaded with a large number of gate
evaluations for the hypertrophic faults. In HOPE 1.1, almost half
of fault events are from such hypertrophic faults using STG3[13]
sequences on ISCAS’89 benchmarks and its performance greatly
suffers from these faults. This phenomenonhas long been known
and the traditional way of dealing with hypertrophic faults is to
drop a fault when it is potentially detected. Accuracy is thus sac-
rificed for higher simulation speed.

In this paper, we propose a novel and exact fault simulation al-
gorithm to identify the hypertrophic faults during fault simulation
and to efficiently simulate hypertrophic faults for sequential cir-
cuits such that their adverse effect on performance is minimized.
Basedon the proposedsimulation algorithm, the reduction of gate
evaluations resulting from hypertrophic faults is three folds:
(1) The algorithm performs gate evaluation only when there

is difference from their previous time frame rather than
from the good circuit.

(2) Each fault is simulated parallelly with logic simulation.
(3) And the faulty circuits of various hypertrophic faults are

simulated in parallel for even further reduction.
From this algorithm, a fault simulator, HyHOPE , is implement-
ed upon the framework of HOPE 1.1. The experimental result-
s show that HyHOPE reduces about40% fault gate evaluation-
s of HOPE 1.1 and the average speedup ratio over HOPE 1.1 is
1.57 for ISCAS89 benchmark circuits. Furthermore, the results
indicate that the performance of HyHOPE is close to an approxi-
mate version of HOPE 1.1 in which potentially detected faults are
dropped.

The organization of this paper is as follows. In section 2,
the characteristics of hypertrophic faults and the key observa-
tion for reducing hypertrophic fault effect will be discussed. In
section 3, the simulation algorithm for hypertrophic faults in
HyHOPE and its implementation will be described. A qualita-
tive analysis on gate evaluations to demonstrate the advantage of
HyHOPE will be given in section 4. In section 5, the performance
of HyHOPE will be compared with HOPE 1.1. Finally, the con-
clusions will be given in section 6.

2 Hypertrophic Faults
In this section, the behavior of hypertrophic faults and their

identification will be described. And the key observation for re-
ducing the hypertrophic fault effect will be discussed.

2.1 Hypertrophic Faults
The hypertrophic faults[9] are faults which lengthen the ini-

tialization of the faulty circuits and during this period, cause the
status of many gates in the faulty circuits to remain unknown, X’s,

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0714 $3.50

while good circuit has been initialized. In general, such hyper-
trophic faults of a circuit are small in number and are usually as-
sociated with control lines such as faults on reset lines. However,
their fault effects spread widely at each time-frame and generate
a great number of fault events. As a result, fault simulation for
these faults requires large number of gate evaluations such that
the performance of fault simulator is significantly degraded. The
degradation in performance stems from the fact that modern fault
simulators count precisely on the small difference between the
good circuit and its faulty versions. This difference is small for
non-hypertrophic faults which are the majority, and these fault
simulators achieve good efficiency. The opposite characteristic
of hypertrophic faults seriously affects the attainable efficiency
of these simulators.

To handle hypertrophic faults, two approaches have been tak-
en in the literatures. One approach is to handle these faults implic-
itly through either dynamic fault ordering [10] or dynamic fault
grouping [5]. Both manipulate the ordering or group of faults dur-
ing simulation in order to reduce the fault events. This approach
is intuitive but the improvement is not significant. The results
of [5] show that, the number of fault events can only be reduced
about 17% for two of benchmark circuits.

Another approach is to relax the detection condition from sure
detection to potential detection. A fault is surely detected if the
fault produce complementary value of the good circuit at a pri-
mary output. And a fault is potentially detected if there exists
a primary output whose faulty circuit value is unknown and the
goodcircuit value is known. Since most of the hypertrophic faults
are also potentially detectable. Hence, if a fault is dropped when
it is potentially detected, the simulation time will be significantly
reduced. Once dropped, a potentially detected fault remains un-
sure of its detectability even though some of them still have the
chance to be surely detected in the later time frames. Accuracy is
thus traded off for fewer simulation time. The simulation result
is only approximate rather than exact.

We will propose an exact fault simulator which minimizes the
simulation requirement for hypertrophic faults. First, the identi-
fication of hypertrophic faults will be described.

2.2 Identification of Hypertrophic Faults
The first step of handling hypertrophic faults is to identify

these faults during the simulation. There have been a few meth-
ods to identify a hypertrophic fault. It can be either simply a fault
hasbeen potentially detected or as in Mozart [9], a fault which has
the size of difference from the good circuit comparable to the log-
ic events. These methods are more suitable for the approximate
fault simulation in which these identified faults are dropped.

To simulate the hypertrophic faults exactly without incurring
much overhead, these faults should be identified based on the es-
timation of the number of X’s at the next time frame. The number
of flip-flops at which the faulty circuit values are unknown and d-
ifferent from the good circuit is a good estimate for such purpose.
Since with more X’s at FFs, it is more likely that the difference
from good circuit at the the next time frame will be larger. If such
count of a fault is large than a predetermined threshold value, the
fault is identified as hypertrophic. The lower the threshold val-
ue, the sooner a hypertrophic fault is identified. However, there
is a risk that some faults will be identified incorrectly as hyper-
trophic. Hence, the threshold value is a tradeoff between these
two extreme. We had made a lots of experiments to choose a
good threshold value. And in our implementation, the threshold
value is determined as 5% of the number of flip-flops in a circuit.
The overhead for identification is negligible comparing with the
entire simulation time.

2.3 Key Observation
Once the hypertrophic faults are identified, an effective simu-

lation algorithm will be developed to simulate them exactly. The
simulation algorithm is based on the following observation.

In event driven simulation algorithms, logic or fault simula-
tion, gate evaluation is required for a gate if there is any event oc-
curs in the gate inputs. In other words, gate evaluation is required

if the gate input status is different from the reference circuit sta-
tus. The reference circuit can be the same circuit in the previous
time frame as in logic simulation, or the good circuit in the same
time frame as in ROOFS . Hence, a fault simulation algorithms
is more efficient if it has fewer fault events.

The following observation shows that the hypertrophic fault
events can be reduced if a proper reference circuit is chosen.

Key Observation: A hypertrophic fault tends to have less events
with respect to the same faulty circuit in the previous time
frame than to the good circuit. Furthermore these events
are highly correlated with logic events of good circuit. In
other words,

jEf�gj >> jEf �Eg j;
whereEf�g are the events corresponding to the difference
between the faulty circuit and good circuit of current time
frame,Ef are the events corresponding to the difference of
faulty circuit between current time frame and the previous
time frame,Eg are the logic events corresponding to the
difference of good circuit between current time frame and
the previous time frame, and the minus sign inEf � Eg is
the set difference.

The validity of the observation can be demonstrated in Table
1 and will be further discussed in the gate evaluation analysis in
section 4. In this table, 5 circuits with only hypertrophic fault-
s are simulated with STG3 sequences. The hypertrophic faults
are identified as described previously. For each circuit,jEf�gj
andjEf � Eg j of all identified hypertrophic faults are listed in
columns 4 and 5, and their ratio in the last column. The ratio
clearly shows thatjEf � Eg j is far less thanjEf�gj, less than
15% for all listed circuits.

Table 1. Hypertrophic fault events

circuit #hyper. jEgj jEf�gj jEf � Egj
jEf�Eg j

jEf�g j

s382 22 73459 3757416 75813 0.02
s444 21 73349 3264580 71831 0.02
s526 27 36177 1519978 88769 0.06
s1488 7 255948 1393074 121877 0.09
s35932 10 751122 2970780 458875 0.15

From this key observation, an efficient simulation algorithm
targeted for hypertrophic faults will be proposed in the next sec-
tion.

3 HyHOPE
3.1 HyHOPE Algorithm

The above observation suggests that the hypertrophic faults
should be simulated parallelly with logic simulation. Based on
the key observation, the reduction of gate evaluations for hyper-
trophic faults is achieved by three ways:
(1) Reduce the simulation loads of hypertrophic faults by

simulating only the differences between two consecu-
tive time frames of a faulty circuit instead of simulating
its huge differences from the good circuit.

(2) Combine the simulation of hypertrophic faults with log-
ic simulation.

(3) In addition, simulate the hypertrophic faults in parallel.
For non-hypertrophic faults, algorithms such as ROOFS -based
algorithms are preferred, since these faults have only small dif-
ference from the good circuit. Therefore the HyHOPE algorithm
is as Fig. 1.

The proposed algorithm is essentially to simulate the hyper-
trophic faults as in the classical parallel fault simulation[12] in
which all faults are grouped into packets and each packet of fault-
s are simulated parallelly with good circuit. The classical paral-
lel fault simulation is not efficient because most faults are non-
hypertrophic and produce less difference from good circuit than
from the faulty circuits at previous time frame.By identifying the
hypertrophic faults, we are able to simulate both kind of faults,
hypertrophic and non-hypertrophic, in their most efficient ways.

All faults are in the regular fault list FL;
For each test vector f

simulate good circuit and hypertrophic faults parallelly;
drop detected hypertrophic faults;
while(there are faults 2 FL not simulated for this vector) f

simulate fault(s) with the ROOFS -based algorithm;
identify hypertrophic faults;
for each identified hypertrophic f

mark the fault as hypertrophic fault;
remove it from FL;

g

g

g

Figure 1. The HyHOPE Algorithm

3.2 Implementation of HyHOPE
Theproposed algorithm for simulating hypertrophic faults can

be incorporatedwith existent fault simulators suchas ROOFS and
its parallel fault versions, PROOFS and HOPE1.X. We develop
our simulator HyHOPE upon HOPE 1.1 because it has the best
performanceand its source codehas been made publicly available
by its authors.

In HyHOPE , procedures for hypertrophic fault identification
and processing are built upon the original simulation mechanism
of HOPE 1.1. Therefore, the proven techniquesof HOPE and new
methods incorporated in HOPE 1.1 are retained in HyHOPE for
non-hypertrophic faults. All faults in the regular fault list are ini-
tially classified as non-hypertrophic. After having simulated a
packet of faults, the hypertrophic-fault-identification procedure is
invoked to identify hypertrophic faults. The identified faults are
then removed from the regular fault list into a hypertrophic fault
list. At the next time frame, faults in the hypertrophic fault list
are simulated parallelly with the logic simulation. The original
procedure for logic simulation is enhanced such that good circuit
and faulty circuits of hypertrophic faults can be simulated simul-
taneously. A fault in hypertrophic fault list remains in the list till
the fault is detected and dropped.

Accordingly, some data structures in HOPE 1.1 are also mod-
ified. In HyHOPE , an extra word pair for each gate is added to
parallelly record the good circuit status and hypertrophic fault-
y circuit status. This word pair is evaluated during the parallel
simulation of good and hypertrophic faulty circuits. The first bit
of word pair is used to represent the good circuit status. And af-
ter the parallel simulation, its value is copied to original com-
puter words representing good circuit status. The original good-
circuit words are used for both parallel fault simulation and sin-
gle fault propagation of non-hypertrophic faults as in HOPE 1.1.
It is possible to remove the original good-circuit words since in
HyHOPE there is already a bit pair representing the good circuit
status. However, the good circuit status then has to be retrieved
during non-hypertrophic fault simulation and more overhead will
be introduced in each gate evaluation. Since the number of logic
events is generally less than the number of fault events in sequen-
tial circuit fault simulation, we eliminate this overhead with small
increase in memory space. For experimented circuits, the mem-
ory requirement of HyHOPE is larger than HOPE1.1 by only 6%
on average.

In the present implementation of HyHOPE , the maximum
number of hypertrophic faults to be simulated parallelly with log-
ic simulation is limited by the given computer word length, 32
minus one for good circuit simulation. The number limitation
does not affect the performance of HyHOPE in the evaluation. S-
ince the number of hypertrophic faults is small in general and the
space is reused when some identified hypertrophic faults are de-
tected. We would also like to point out that the hypertrophic fault
packet size can be extended to more than one word, and more
hypertrophic faults can be simulated simultaneously.

4 Gate Evaluation Analysis
In this section, the efficiency of various fault simulation algo-

rithms will be discussed based on the analysis of the the cases for
which gate evaluation must be performed.

In simulation, a gate evaluation may occur when a value tran-
sition of a gate input between two consecutive time frames or a
value difference between good and faulty circuits takes place. Ta-
ble 2 shows all the cases for the changing status at a gate input be-
tween consecutive two time frameTi�1 andTi for a faultF. These
cases are enumerated according to four following conditions:

1. the faulty circuit statusFi�1 is different from the good
circuit statusGi�1 atTi�1,

2. the good circuit status is changed fromTi�1 to Ti,
3. the faulty circuit status is changed fromTi�1 to Ti and
4. the faulty circuit statusFi is different from the good cir-

cuit statusGi atTi.
A datum of value 1 in Table 2 indicates that a gate input meets
the condition, otherwise, the value 0 is given. It is easy to see that
four of the cases are not possible and C0, C6 and C9 result in no
gate evaluation in a worthy fault simulator.

For a given simulation algorithm, a case may or may not re-
sult in gate evaluation and these characteristics determine the ef-
ficiency of the simulator. The simulation algorithms of ROOFS ,
concurrent fault simulation[11] and HyHOPE for hypertrophic
faults are considered in this section. Note that the discussion on
ROOFS can also be applicable to its various parallelized version-
s: PROOFS and HOPE1.X because the parallelization of faults
can only reduce but not completely eliminate the gate evaluations
in cases of Table 2.

Table 2. Cases of gate evaluation
Gate input status

CaseFi�1 6= Gi�1 Gi�1 6= Gi Fi�1 6= Fi Fi 6= Gi Examples

C0 0 0 0 0 0, x
C1 0 0 0 1 impossible
C2 0 0 1 0 impossible
C3 0 0 1 1 1! 1/0, x! x/0
C4 0 1 0 0 impossible
C5 0 1 0 1 1! 0/1, x! 0/x
C6 0 1 1 0 0! 1, 1! 0
C7 0 1 1 1 x! 1/0, 0! 1/x
C8 1 0 0 0 impossible
C9 1 0 0 1 1/0, 1/x
C10 1 0 1 0 1/0! 1, 1/x! 1
C11 1 0 1 1 1/x! 1/0, 1/0! 1/x
C12 1 1 0 0 1/0! 0, 1/x! x
C13 1 1 0 1 1/x! 0/x, x/0! 1/0
C14 1 1 1 0 1/0! x, 1/x ! 0
C15 1 1 1 1 1/0! 0/1, 1/x! 0/1

In Fig. 2, the cases for which a simulation algorithm must
perform gate evaluation are shown in the shaded area of the gate
evaluation map. For example, a gate is evaluated in ROOFS for a
fault if the gate has a gate input falls into any of the cases C3, C5,
C7, C9, C11, C13, and C15. And in concurrent fault simulation,
gate evaluation is performed for a fault if any of the cases C3, C5,
C7, C10, C11, C12, C13, C14, C15, and C6-9 occurs, where C6-9
is the case that a gate has inputs satisfying both conditions of C6
and C9. This is the case that a fault is in the fault list of the gate
and there are also logic events at gate inputs.

For both ROOFS and concurrent fault simulation, the cases
indicated in their respective maps are associated with gate evalu-
ations independent of those of logic simulation i.e., the gate eval-
uations of faults resulting from these cases must be performed
in addition to those of Fig.2a. On the other hand, for the hy-
pertropic faults in HyHOPE , they are simulated parallelly with
logic simulation and hence, part of their gate evaluation cases
coincide with those of logic simulation, as indicated in Fig.2d.
Therefore, only the non-coincident cases, C3, C10, and C11, re-
sult in additional gate evaluations. As a result, it can be concluded

that HyHOPE is superior to concurrent fault simulation in deal-
ing with hypertrophic faults because the shaded area of the latter
covers more than C3, C10, and C11, and thus needs more gate
evaluations than HyHOPE .

The gate evaluation maps of ROOFS and HyHOPE show that
for hypertrophic faults, ROOFS have additional gate evaluation-
s for C5, C7, C9, C13 and C15 comparing with HyHOPE ,
while HyHOPE hasadditional evaluation for C10 comparingwith
ROOFS . From Table2, it can be seen that C10 occurswhen fault-
y circuit changesstatus while good circuit remain unchanged. For
hypertrophic faults, such occurrence is likely to be far less than
cases like C5, C9 and C13 for which faulty circuit is plagued by
X’s and good circuit has known status. As a result, HyHOPE can
achieve better efficiency than ROOFS for hypertrophic faults.
And since HyHOPE adopts same algorithm as ROOFS for non-
hypertrophic faults, the overall performance of HyHOPE is sig-
nificant better than ROOFS -based simulators as will be demon-
strated experimentally in the next section.

The darkly shaded area indicates the cases for which
a simulation algorithm must perform gate evaluations.
For concurrent fault simulation, in addition to the darkly
shaded area, gate evaluation is required for the case C6-9
as indicated by the lightly shaded area in (c).
The simulation for hypertrophic faults in HyHOPE is combined
with the logic simulation as indicated by the dotted area in (d).

C1 C2

C8

C4

C1 C2

C8

C4

C1 C2

C8

C4

C1 C2

C8

C4

(a) Logic simulation (b) ROOFS (all faults)

(hypertrophic faults)
(d) HyHOPE(c) Concurrent fault simulation

(all faults)

C0

C9 C11 C10

C3 C0

C6

C14

C10

C12

C0

C6

C14

C9 C9 C11 C10

C5

C0

C12 C13 C15 C14

C7 C6C7

C3

C5

C12 C13 C15

C11 C10

C12 C13

C5 C7

C15 C14

C6

C9

C13

C5 C7

C3

C15

C11

C3

Figure 2. Gate evaluation maps

The above analysis indicates that the simulation algorithm for
hypertrophic faults in HyHOPE is superior to the concurrent fault
simulation and ROOFS . In the next section, the experimental
result will be given to show HyHOPE indeed has better perfor-
mance than HOPE 1.1, a ROOFS -based simulator.

5 Experimental Results
Our fault simulator HyHOPE is evaluated on ISCAS89 bench-

mark circuits[14] with test vectors generated by STG3. Through-
out all the experiments, the initial states of all the flip-flops are
assumed to be unknown, X’s. Table 3 shows a summary of these
circuits and test vectors. The performance of HyHOPE will be
compared with those of HOPE 1.1 and PTD which is a modified
version of HOPE 1.1 to drop potentially detected faults.

Table3 also shows the fault coveragesof exact fault simulation
such as HyHOPE and HOPE 1.1 and the approximate fault simu-
lation by PTD. As expected, PTD always gives an optimistic re-
sult. The number of hypertrophic faults identified and processed
by HyHOPE is also given. For some circuits, this number is larger
than 31, which means that during the simulation, some identified
hypertrophic faults are detected and their bit spaces are reused
in the following time frames. It can also be seen that the hyper-
trophic faults are generally less than 5% of the total faults. In

particular, the identified hypertrophic faults in s35932 are only
0.03%, yet a large number of gate evaluations are due to these
small number of faults.

The run times of HyHOPE and HOPE 1.1 on a SUN4 Sparc2
workstation are reported in Table 4. The performance of
HyHOPE can be clearly seen in this table. The average speedup
ratio of HyHOPE over HOPE 1.1 is 1.57. As shown in the table,
HyHOPE is faster than HOPE 1.1 for all but two circuits. For cir-
cuit s1238 and s953, HyHOPE is slightly slower than HOPE 1.1
becausethere are very few serious hypertrophic faults in these two
circuits. The circuit s1238 hasno feedback loop and it is very easy
to be initialized. The circuit s953 is hard to be completely initial-
ized, more than half of the flip-flops are not initialized during the
simulation. Both these cases will not activate the hypertrophic
fault effects and the overhead for hypertrophic fault identification
and processing makes performance of HyHOPE be slightly slow-
er than HOPE 1.1. It is also interesting to note that for circuits
s382, s400 and s444, the speedup ratios over HOPE 1.1 are more
than 2 while their identified hypertrophic faults are less than 6%
of total faults. This indicates hypertrophic faults consume a large
portion of the entire simulation time in HOPE 1.1 and the efficient
algorithm of HyHOPE leads to a significant improvement.

For evaluation purpose, we also show the run time of the ap-
proximate fault simulator PTD in Table 4. Since PTD drops the
potentially detected faults which are mostly hypertrophic faults,
its performance can be served as a goal which an exact fault sim-
ulator of same basic simulation mechanism strives to achieve. As
expected, PTD outspeeds its exact version HOPE 1.1 by 83% on
average with some sacrifice in accuracy. When compared with
HyHOPE , PTD is only slightly faster than the exact simulator
HyHOPE . This indicates that HyHOPE not only preserves the
accuracy but also has the performance approaching that of the
approximate simulator.

To examine our proposed simulation algorithm for hyper-
trophic faults in detail, the numbers of gate evaluations for faulty
circuit simulation are listed in Table 5. For HOPE 1.1 and PTD,
the gate evaluations consist of evaluations for single fault prop-
agation, candidacy test and parallel fault simulation. The listed
gate evaluations of HyHOPE consist of two parts: the column
fault in HyHOPE is the number of gate evaluations for faulty
circuit generated by non-hypertrophic faults which are simulat-
ed as in HOPE 1.1; and the columnextra lists the extra evalua-
tions for simulating hypertrophic faults parallelly with logic sim-
ulation as proposed in our simulation algorithm. Therefore, the
number of total gate evaluations for faulty circuit simulation with
HyHOPE is the sum of these two numbers. From this table , it
can be seen that about 40% gate evaluations for faulty circuits in
HOPE 1.1 are reduced by HyHOPE on average. The reduction
ratio is approaching to the ratio by PTD. Furthermore, there are
many circuits such as s382, s444, s526, s832, s1488 and s35932,
the efficiency of HyHOPE is very close to PTD.

In summary, the HyHOPE improves the performance of
HOPE 1.1 by about 60%. Furthermore, the results show that with
our efficient algorithm for simulating hypertrophic faults,the ex-
act fault simulator can be almost as fast as the approximate one,
without any sacrifice in accuracy.

6 Conclusion
In this paper, we have proposed a novel and exact fault sim-

ulation algorithm to identify the hypertrophic faults during the
fault simulation and to efficiently simulate hypertrophic faults for
sequential circuits such that their effect on performance is min-
imized. The reduction of hypertrophic fault events by the pro-
posed simulation algorithm is three folds:

(1) The algorithm reduces the simulation loads of hyper-
trophic faults by simulating only the differences be-
tween two consecutive time frames of a faulty cir-
cuit instead of simulating its huge differences from the
good circuit.

(2) Each hypertrophic fault is simulated parallelly with
logic simulation. The events can be significantly re-

duced by (1) and (2) as stated in the key observation.
(3) In addition, these hypertrophic faults are simulated in

parallel for even further reduction.
Based on this algorithm, a fault simulator HyHOPE for effi-

cientand exact hypertrophic fault simulation hasbeen implement-
ed upon HOPE 1.1. The experimental results have shown that
HyHOPE reduces about40% gate evaluations of faulty circuit
simulation from HOPE 1.1 and the average speedup ratio over
HOPE 1.1 is1.57. Furthermore, the experiment results show that
the exact fault simulator basedon our efficientalgorithm for simu-
lating hypertrophic faults can be almost as fast as the approximate
one, without any sacrifice in accuracy.

Acknowledgement
We would like to thank Dr. Dong Sam Ha for providing the

source code of HOPE 1.1.

References
[1] F. Ozguner, et al., “On Fault Simulation Techniques,”Journal of

Design Automation and Fault Tolerant Computing,Vol. 3, No. 2,
pp. 83-92, 1979.

[2] W. T. Cheng and J. H. Patel, “PROOFS: A Super Fast Fault Sim-
ulator for Sequential Circuits,”Proc. The European Conference on
Design Automation, pp. 475-479, 1990

[3] T. M. Niermann, W. T. Cheng and J. H. Patel, “PROOFS: A Fast,
Memory Efficient Sequential Circuit Fault Simulator,”IEEE Trans.
on Computer Aided Design, Vol. 11, No 2. pp. 198-207, Feb. 1992.

[4] H. K. Lee and D. S. Ha, “HOPE: An Efficient Parallel Fault Simu-
lator for Synchronous Sequential Circuits,”Proc. 29th Design Au-
tomation Conference, pp. 336-340, June 1992.

[5] H. K. Lee and D. S. Ha, “New Methods of Improving Parallel Fault
Simulation in Synchronous Sequential Circuits,”Proc. Int. Conf. on
Computer-Aided Design, pp. 10-17, Oct. 1993.

[6] C. P. Kung and C. S. Lin, “Parallel Sequence Fault Simulation for
Synchronous Sequential Circuits,”Proc. The European Conference
on Design Automation, pp. 434-438, Mar. 1992.

[7] N. Gouders and R. Kaibel, “PARIS: A Parallel Pattern Fault Sim-
ulator for Synchronous Sequential Circuits,”Proc. Int. Conf. on
Computer-Aided Design, pp. 542-545, Nov. 1991.

[8] J. A. Waicukauski, E. B. Eichelberger,D. O. Forlenza, E. Lindbloom
and T. McCarthy, “Fault Simulation for StructuredVLSI,”VLSI Sys-
tem Design, pp. 20-32, December 1985.

[9] S. Gai, P. L. Montessoro and F. Somenzi, “The Performance of the
Concurrent Fault Simulation Algorithms in MOZART,”Proc. 25th
Design Automation Conference, pp. 682-697, June, 1988.

[10] G. Gabodi, S. Gai and M. Sonza Reorda, “Fast Differential Fault
Simulation by Dynamic Fault Ordering,”Proc. International Con-
ference on Computer Design, pp. 60-63, 1991.

[11] E. G. Ulrich and T. Baker, “The Concurrent Fault Simulation of N-
early Identical Digital Networks,”Proc. 10th Design Automation
Workshop, Vol. 6, pp. 145-150, June, 1973.

[12] S. Seshu, “On An Improved Diagnosis Program,”IEEE Trans. Elec-
tron. Comput., Vol. EC-16, pp. 76-79, Feb. 1965.

[13] W-T. Cheng, “The BACK Algorithm for Sequential Test Genera-
tion,” Proc. International Conference on Computer Design, pp. 66-
69, Oct. 1988.

[14] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles of
Sequential Circuits,”Proc. International Symposium of Circuits and
System, pp. 1929-1934, May 1989.

Table 3: Circuit descriptions
No. Fault coverage (%)

Circuits No. No. hyp. sure potential
faults tests faults HOPE 1.1, PTD

HyHOPE
s208 215 111 28 63.72 72.09
s298 308 162 15 85.71 88.64
s344 342 91 30 96.20 97.95
s382 399 2463 22 90.98 94.74
s400 424 1282 21 82.78 86.56
s420 430 173 41 41.63 50.70
s444 474 1881 21 89.45 92.62
s526 555 754 27 75.32 78.38
s641 467 133 20 86.30 87.79
s713 581 107 43 80.90 83.13
s820 850 411 5 81.88 82.12
s832 870 377 5 81.38 81.49
s838 857 137 37 29.64 38.39
s953 1079 16 32 7.78 15.01
s1238 1355 349 10 94.69 94.69
s1423 1515 36 51 24.42 28.12
s1488 1486 590 7 92.60 92.80
s1494 1506 469 7 91.10 91.43
s5378 4603 408 45 74.02 75.32
s35932 39094 86 10 87.99 88.04

Table 4: CPU times for STG3’s test vectors
Circuits CPU time (sec.) Speedup over HOPE 1.1

HOPE 1.1 PTD HyHOPE PTD HyHOPE
s208 0.32 0.22 0.23 1.45 1.39
s298 0.43 0.23 0.28 1.87 1.54
s344 0.33 0.20 0.25 1.65 1.32
s382 8.17 1.87 2.08 4.37 3.93
s400 6.20 1.85 2.03 3.35 3.05
s420 1.12 0.63 0.83 1.78 1.35
s444 8.60 3.33 3.65 2.58 2.36
s526 5.50 2.87 3.07 1.92 1.79
s641 0.57 0.42 0.48 1.36 1.19
s713 0.57 0.42 0.52 1.36 1.10
s820 2.13 1.40 1.63 1.52 1.31
s832 2.02 1.37 1.53 1.47 1.32
s838 2.48 1.42 2.08 1.75 1.19
s953 0.70 0.67 0.73 1.04 0.96
s1238 1.87 1.83 1.97 1.02 0.95
s1423 1.67 1.50 1.60 1.11 1.04
s1488 5.83 3.03 3.68 1.92 1.58
s1494 4.92 2.65 3.23 1.86 1.52
s5378 21.12 12.27 15.62 1.72 1.35
s35932 64.00 44.30 50.92 1.44 1.26

Average speedup ratio 1.83 1.57

Table 5: Number of gate evaluations
Number of gate evaluations for faults Evaluation ratio

Circuits HOPE 1.1 PTD HyHOPE PTD HyHOPE
fault extra total

s208 21121 9147 9045 4587 13632 0.433 0.645
s298 29553 9389 9248 3625 12873 0.318 0.436
s344 22231 6118 5925 4676 10601 0.275 0.477
s382 552288 94242 91901 22768 114669 0.171 0.208
s400 453847 101766 100686 16637 117323 0.224 0.259
s420 103329 57497 72090 14796 86886 0.556 0.841
s444 568755 193389 187746 19584 207330 0.340 0.365
s526 358720 181472 178810 25679 204489 0.506 0.570
s641 35924 14296 14141 4827 18968 0.398 0.528
s713 36891 16565 16965 5539 22504 0.449 0.610
s820 184767 100149 100839 11843 112682 0.542 0.610
s832 173017 94971 95152 10420 105572 0.549 0.610
s838 290941 185214 237617 23966 261583 0.637 0.899
s953 49102 46648 47362 513 47875 0.950 0.975
s1238 112302 111389 111571 340 111911 0.992 0.997
s1423 110380 84700 92649 5186 97835 0.767 0.886
s1488 484760 149892 150044 41215 191259 0.309 0.395
s1494 402144 144538 144740 34205 178945 0.359 0.445
s5378 1622979 766477 937021 1106381047659 0.472 0.646
s35932 4627715 29971523193650 2241403417790 0.648 0.739

Average evaluation ratio 0.495 0.607

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

