
Optimization of Hierarchical Designs Using Partitioning and Resynthesis

✝University of Paderborn
Warburger Str. 100

33 095 Paderborn, Germany

✝✝Synopsys, Inc.
700 E. Middlefield Road

Mountain View, California 94 043, USA

Heinz-Josef Eikerling✝, Ralf Hunstock✝, Raul Camposano✝✝

 Abstract

This paper explores the influence of optimization along the
boundary between hierarchically described components. A
novel technique called repartitioning combines partition-
ing and sequential resynthesis of the design under various
quality measures. It is applied to various digital circuits
which consist of a controller and a datapath. The outcome
of this effort is a versatile, parametrizable resynthesis tool
which preserves this hierarchy. Due to the cost measures,
an average improvement ranging between 5% and 15%
was obtained.

1 Introduction

High-level synthesis turns a behavioral description into a
hierarchical, structural description at the RT-level. Passing
through other design steps (logic and layout synthesis,
simulation, verification) the initial design becomes manu-
facturable.

A hierarchical RTL description can be divided into two
parts: the controller which is the result of scheduling oper-
ations to time-steps and the datapath which is the result of
allocating modules which have to execute the specified
operations. This partitioning is also used by designers most
often. Both parts are connected by status and command
lines; therefore, this target architecture is calledFinite
State Machine with Datapath (FSMD) [5]. In further
design steps both parts are handled separately: the control-
ler is synthesized using sequential logic synthesis and for
the datapath module generators are sometimes used. A full
optimization of the whole design by means of sequential
logic synthesis is not possible at present.

On the logic or gate level the control/data partitioning
seems to be arbitrary since it could be possible to obtain a
superior circuit by incrementally moving components from
one portion to another and by then applying combinational
and sequential optimization to the new partitions. A simple
example describing a transformation at the controller/data-
path interface is shown on Figure 1. Generally, improve-
ments can be achieved by applying state count
minimization, state re-encoding, repartitioning of the

automaton and Boolean optimization of the state-transition
and the output logic to the selected parts.

Figure 1. (a) Controller and datapath (partial
implementation). (b) Reduced machine
representing the product of both automata. (c)
Optimized and mapped logic for (b).

Very little is known about optimization at the boundary of
the datapath and the controller. Tradeoffs on behavioral
level are studied by Mlinar [11]. Camposano et al. [2]
combined Boolean logic synthesis of controller and datap-
ath which is limited to rather small designs. Some logic
synthesis tools perform propagation of constants (e.g., [1])
to subsequent modules in order to optimize them more effi-
ciently. Recently, Huang and Wolf made some progress in
predicting and optimizing the performance (i.e. the delay
in the overall system) of control/datapath systems [8].

If the final design still does not meet the constraints speci-
fied by the designer, adjustment on lower levels must be
made; this is frequently referred to asresynthesis.

Reg.

s0

0/0

1/1

1/0

0/1

s1

s0

0/0

1/0

1/1
s1

controller portion datapath portion

Reg.

(a)

(b) (c)

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0707 $3.50

This work introduces an optimization method for the con-
troller / datapath repartitioning at logic level considering
different aspects. We extend the previous attempts by
introducing a technique for optimizing designs at the con-
troller/datapath interface for various quality measures by
combiningpartitioning with local sequential resynthesis.
The hierarchy in the structural description is preserved; no
additional information about the previous synthesis pro-
cess is required.

The remainder of this paper is organized as follows: sec-
tion 2 discusses cost measures and introduces the generic
repartitioning framework. A new partitioning algorithm is
introduced and compared to classical Mincut heuristics. In
section 3 the evaluation of the cost function and the resyn-
thesis aspects are examined. Section 4 gives some results
for benchmark examples. Finally, we give conclusions and
an outlook on future work.

2 Approach

As detailed below, only the problem of optimizing biparti-
tions is considered. The extension to the general case in
which the design consists out of hierarchical blocks
(multiway partitioning) is straight-forward by decomposi-
tion into a set of bipartitioning problems. Distinguishing
control- and data-dominated components, an initial parti-
tioning is assumed to be given.

2.1 Definitions

The circuit is represented by a hierarchicalnetlist
. On the top level, denotes the set of compo-

nents which can be either of combinational or sequential
nature. denotes the set of connections running between
these components. These components are referred to as
instances of cells having a certain behavior.

 and depict the con-
troller and datapath, respectively.

 is apartitioning of the circuit, i.e., a
decomposition of the set of nodes in the flat netlist into
disjoint sets such that and

 holds. Thecostof an implementation of a
design (i.e., a circuit) under a partition is described by a
vector with the following components:

• characterizes the area of the design.

• The communication between the controller and datap-
ath is measured by . A certain weight
proportional to the bitwidth of the wires connecting the
subcircuits is also considered.

• denotes the (average) dynamic power
dissipation of the circuit. Since this measure is highly
data dependent, it is only estimated.

m

N V E,() V

E

Ncp Vcp E, cp()= Ndp Vdp E, dp()=

P N() Vcp V, dp()=
N

v V∈ v Vcp∈ v Vdp∈∨()∀
Vcp Vdp∩ ∅=

c P N()()

Area P N()()

Comm P N()()

Power P N()()

• is theslack, i.e., the maximal difference
between the expected and the actual arrival of a signal
at sequential elements or primary outputs. The overall
performance of the system is related to this value.

In the following sections it is assumed that the above men-
tioned measures are additive: if and

 denote the area of the controller and datapath,
respectively,
is the calculated area of the entire circuit which is the result
of combining both subcircuits1.

The introduction of ascalar cost function for a circuit with
respect to a given cost vector and a partition
allows to distinguish better designs from worse ones by
considering multiple cost metrics simultaneously, i.e.,
tradeoffs concerning the metrics can easily be expressed.
This assessment of a partition is done by applying a real
weighting vector to the compo-
nents of the cost vector

, where for the weights holds and
.

We also define the weighted cost with respect to an initial
partition for one part of the bipartition
by .

2.2 Starting Point

Basically, we have basically 3 possible choices to start a
repartitioning a system: A0-Partitioning denotes a entire
design to be treated as the datapath ().
On the other hand, starting from a 1-Partition means the
whole design is to be treated as a controller
(). More generally speaking, a so called
p-Partitioning can be defined; describes the participation
of the controller in the overall cost regarding a particular
weighting and ; more precisely:

The goal of the optimization is to find a partitioning
 starting from an initial partition

 for which the cost function is minimized.

1. The area for the wiring of the interface between both partitions
is neglected. If the system is pipelined the additional circuitry (i.e.
latches) is regarded to be accumulated in one partition.

Time P N()()

Area Ncp()
Area Ndp()

Area P N()() Area Ncp() Area Ndp()+=

Pref N()

α〈 〉 α1 α2 α3 α4, , ,〈 〉=

ĉ P N()() = α 1

C1 P N()()

C1 Pr e f N()()
⋅ + α 2

C2 P N()()

C2 Pr e f N()()
⋅ +

α 3

C3 P N()()

C3 Pr e f N()()
⋅ + α 4

C4 P N()()

C4 Pr e f N()()
⋅

αi 0 1,[] αi
i

∑,∈ 1=
Ci Area Comm Time Power, , ,{ }=

Pref N() Npart N⊆
ĉ Npart()

Vcp ∅ Vdp, V= =

Vcp V Vdp, ∅= =
p

α〈 〉 Pref

p ĉ Ncp() ĉ P N()()⁄ 1 ĉ Ndp() ĉ P N()()⁄−= =

Popt N() Vcp
opt Vdp

opt,()=
P N() ĉ

2.3 Generic Partitioning Algorithm

We will consider a class of partitioning algorithms for
which during one pass cell instances (representing combi-
national or sequential behavior) are moved or swapped
over the initial or prescribed cutline. A log which proto-
cols each change of the configuration (i.e., moves of cell
instances over the cutline) is kept.

Figure 2. The Generic Partitioning Algorithm.

Figure 2 shows the approach: Starting from an initial par-
tition which is determined bygetIn-
itialPartition (N), iteratively a number of candidates (cell
instances) to be considered for moving is determined by
getPromisingNodes (P(N)). The selected components are
moved and the cost of the new design is calculated. This
step is repeated until a stopping criterion is fulfilled. By
analyzing the log via the functionbestPrefix(P(N),Log))
the best intermediate configuration is recovered.

2.4 Resolving the Non-determinism

Some classical approaches appear as special cases of this
generic algorithm. Depending on the functiongetPromis-
ingNodes (P(N)) andabort(N, Log, cost) that comprises
the stopping criterion several resolutions can be consid-
ered.

In order to avoid oscillations (i.e., a set of instances is
repeatedly moved over the cutline) previously moved
nodes are locked in their partition. If only the cost mea-
sureComm(P(N))in getPromisingNodes (P(N)) is consid-
ered and |nodelist | = 1, the algorithm is identical to the
Fiduccia-Mattheyses (FM) Mincut heuristics [4] which is
an improvement of theKernighan-Lin algorithm(KL) [9]
due to the minor number of iterations. For the KL parti-

Pinit(N)=(Ncp,Ndp) = getInitialPartition (N);

Log .init(); cost = calculateCost(P(N));

P(N) = Pinit(N); optcost = cost ;

while (!abort(N,Log , cost)) {
nodelist = getPromisingNodes (P(N)) ;

forall (v ∈ nodelist) {
if (v ∈ Ncp) P(N) = (Ncp \ {v}, Ndp ∪ {v});
elseP(N) = (Ncp \ {v}, Ndp ∪ {v});

Log .append(v);

}
cost = calculateCost(P(N));

if (cost < optcost)
optcost = cost ;

}
Popt(N) = bestPrefix(P(N),Log));

P N() Vcp Vdp,()=

tioning scheme |nodelist | = 2 counts; furthermore it is
assumed that the instances to be swapped belong to differ-
ent partitions. The efficiency especially of the FM algorithm
is based on a sophisticated data structure that permits one
pass to be carried out in linear time.

The disadvantage of these heuristics is that they are not
capable of treating more complex cost measures (area, time,
power). Therefore one can make the algorithm terminate if
a certain upper boundTHRESHOLD on the cost cannot be
improved; for instance, if partition results from

 by moving the instances stored innodelist , it is
possible to apply the different strategies for the selection of
the nodesnodelist .

In a Greedy approachnodelist is composed of the most
promising nodes which are expected to achieve the maxi-
mal reduction of the cost of the new configura-
tion. The process is aborted when no further optimization is
possible. The probability to end up in high local minimum
is considerable. Significant improvement in the final cost
can be achieved by applying a new optimization procedure
called the Great Deluge Algorithm1 (GDA) [3] which
appears to be superior to Simulated Annealing for the Trav-
elling Salesman and other intractable problems. This
method is particularly well-suited for problems which have
a fairly small number of local minima.

The Deluge algorithm overcomes the disadvantage of the
Greedy approach that deteriorations of the cost function are
not allowed during one pass by permitting deteriorations up
to a certain limit with respect to the cost of the con-
figuration:

GDA chooses ingetPromisingNodes (P(N)) an arbitrary
component for which the inequality above holds; this means
that

is satisfied. TheTHRESHOLD variable is updated and
refers to the newly found optimum. For practical instances
it is recommended to choose in the range .
Now, the algorithm will be modified to avoid evaluating the
complete design; instead of a global evaluation only a local
gain analysis is performed.

2.5 Local Gain Analysis for GDA

The computation of the set of candidates is performed by
estimating the success of a transformation for the given cost

1. “Deluge” refers to an illustration for maximization problems: a
lower bound (water level) for the cost of the actual configuration is
increased steadily. The speed of this rise is determined byε.

P′ N()
P N()

ĉ P′ N()()

1 ε+()

ĉ P′ N()() 1 ε+() ĉ Popt N()()⋅≤

1 ε+() ĉ Popt N()() THRESHOLD≤⋅

ε 0.05…0.10≈

function. Because each move of a set of nodes can be sim-

ulated by a move of a hierarchical module that contains all

nodes of the set, the task can be reduced to the selection of

one single candidate at a time.

To decide whether to accept or to dismiss a candidate

, the region around is analyzed.

By the actual partitioning , a local partitioning

 on the set of nodes in this

part of the netlist is induced with

If is the result of moving , theabsolute gain

(or global gain) is defined as:

The procedure is explained in Figure 3.

Figure 3. Illustration of the Great Deluge Algorithm;
a configuration corresponds to a partition
which is compared to the actual optimal partition

. The forbidden zone is shaded.

The global gain estimation is performed by alocal gain

analysis:

This is a lower bound on the overall gain because

 always holds. describes the

distance of the cost of the actual partition from the optimal

cost. For the local gain analysis the following rules are

established:

• A node is appended tonodelist if

holds. So, a negative gain denotes a deterioration of the

cost (which is allowed within certain bounds).

v V∈ Nlocal N⊆ v V∈
P N()

P Nlocal() Vcp
local Vdp

local,()=

∅ Vcp
local Vcp⊆⊂ ∅ Vdp

local Vdp⊆⊂,

P′ N() v V∈

gain v() ĉ P N()() ĉ P' N()()−=

Cost

Configuration

Dropping
Speed

THRESHOLD

∆
gain(v)

Popt(N)

P’(N) P(N)

gainε

P N()

Po p t N()

gainlocal v() ĉ P Nlocal()() ĉ P' Nlocal()()−=

gain v() gainlocal v()≥ ∆

v V∈

gainlocal v() ∆ gainε−>

• If holds a new optimum configuration is
obtained which is derived out of by swapping
into the other partition, resetting

and setting .

• If no new optimum is reached
is set. The process is aborted if during the last trials
no change to occurred. In this application,
depends on the cutsize because we do not want to con-
sider members of the cutline twice.

The algorithm can be carried out without evaluating the
cost of the entire design successively if

 is initialized with the cost of the
initial partition . Note, that holds if

. The decision if a move should be
done or not for a certain candidate is made upon the result
of the local gain analysis.

3 Resynthesis

Two policies are viable for resynthesis. First, it is possible
to resynthesize after the partitioning algorithm has termi-
nated. Since each move depends heavily on all other previ-
ous and influences all successive moves we favor
resynthesis during the partitioningprocess.

In order to get an accurate estimation of the global gain the
local gain of a move is determined by a fast synthesis1 of
the region around the candidate. Now, we will explain
how this region is determined.

3.1 Extracting a Subcircuit for Examination

The above mentioned heuristics are established in order to
evaluate the cost of a configuration rapidly. Hence, similar
to the Mincut heuristics, the instances at the border of the
partitions are analyzed for their expected gains. Further
constraints are implied by the size of the extracted state
transition graphs: If a circuit considered for resynthesis
contains inputs, outputs and latches, the correspond-
ing STG representing the behavior of the circuit is of size

, i.e., the STG grows exponentially with
the number of latches and inputs. The problem can be
stated as follows:

Find a subcircuit for a
candidate of maximal size (number of internal
nodes) with at most latches and inputs, for which

 holds.

Because this is a NP-hard optimization problem, we pro-
pose anbreadth-first search (BFS) clustering process start-

1. Not all options of sequential logic synthesis are exploited.

gain v() ∆>
P N() v

gainε gainε ε ∆ gainlocal v()−()⋅+=

∆ 0=
∆ ∆ gainlocal v()−=

k
∆ k

gainε ε ĉ P N()()⋅=
Pinit N() gainε ε=

Pinit N() Pref N()=

i o l

Gst o 2i 2l⋅ ⋅=

N′ V′ E′,() N V E,()⊆
v V∈

l i
v V′∈

ing from a node (adjacent to the cutline) that obeys
the parameters . On each level of the BFS tree built
during the clustering the size and the number of inputs of
the cluster is analyzed. If the size of the actual cluster
reaches the penalty implied by these restrictions the clus-
tering process terminates; if not, the traced instances are
added to the cluster. The algorithm can be parametrized
over these two parameters.

Now, the cost of the previously determined region will be
computed. This is done by simply doing Boolean optimi-
zation and mapping the region to gates separately for all
four induced partitions (), so
that the local (estimated) gain is

Since we only want an estimation representing a lower
bound on the overall gain, this is sufficient.

After the gain has been determined and if the considered
component is accepted for moving, the STG for the subcir-
cuit is extracted and state-minimization and state-assign-
ment, Boolean optimization and mapping is performed.
Finally, the subcircuit is replaced by the optimized design.

3.2 Ordering the Set of Candidates

By influencing the order in which the candidates are
examined the algorithm for the local gain estimation can
be accelerated. Ranking the most prospective ones first
leads to an improved runtime. For this ranking we only
consider topological aspects which can be analyzed rather
fast. We give two heuristics:

• If Area, Power and Comm(unication) is the main
objective we find it suitable to order the set of candi-
dates for their expected hypergain, i.e., the reduction in
connection cost between the hierarchical entities.

• For speeding up the circuit (regardingTime) and if
only pure combinational modules lying at the bound-
ary are considered it is useful to choose that entity
which balances thesequential depth(i.e. minimal dis-
tance over both partitions to a latch) because this
increases the optimization potential concerningTime.

4 Experimental Results

The proposed methods have been implemented in C++
(5780 lines of code). The repartitioning toolcdpart reads
in a configuration file in which the parameters (such as the
number of passes, parameters for GDA, options for resyn-
thesis etc.) can be specified.

v V∈
i l,

N′cp
local N′dp

local Ncp
local Ndp

local, , ,

gainlocal v() = ĉ Ncp
local() + ĉ Ndp

local() +

ĉ N′cp
local() + ĉ N′dp

local()

In order to determine the relevance of the approach, sev-
eral of the bigger sequential logic synthesis examples (vit-
erbi processor, sbc, s344, mult16, mult32) were examined.
Because no structural hierarchy on the top level was given,
a 0.5-partition for each circuit was determined and the cost
was computed by running it through SIS [12] using mcnc.-
genlib for mapping (was used throughout all experiments).
For the estimation of power consumption which depends
heavily on the input patterns the tool described in [7] was
used. The development of local criteria is rather difficult
because the local gain analysis technique is not capable of
propagating these patterns to the local partitions. We con-
ducted experiments for which the combined synthesis
leads to only slight differences due to the measures. The
initial partition then was optimized by passing it to the FM
Mincut heuristics.

For further optimization the designs were passed tocdpart
(using GDA, a 100% weight was given to each cost mea-
sure under consideration) and the partitions were synthe-
sized again. Table 1 shows that an average reduction for

MULT16 MULT32 S344 SBC VITERBI

Area 285.00 /
200.00

617.00 /
349.00

293.00 /
68.00

1357.00 /
224.00

1541.00 /
184.00

(opt.) 218.00 /
239.00

631.00 /
277.00

291.00 /
62.00

1271.00 /
232.00

1501.00 /
112.00

Comm. 18 / 8 31 / 11 16 / 20 66 / 105 10 / 38

(opt.) 18 / 8 27 / 11 18 / 17 59 / 111 10 / 23

Slack -390.6 /
-176.80

-628.30 /
-444.50

-286.30 /
-42.80

-1740.6 /
-184.5

-928.70 /
-99.80

(opt.) -235.40 /
-239.30

-637.00 /
-381.50

-286.30 /
-42.80

-1408.00 /
-206.40

-905.60 /
-104.20

Power 50.32 /
66.13µW

 95.54 /
109.72µW

 67.35 /
35.07µW

673.34 /
110.74µW

476.80 /
11.70µW

(opt.) 64.13 /
59.72µW

89.64 /
111.38µW

118.68 /
3.93µW

501.44 /
118.05µW

416.60 /
23.28µW

Table 1. Examples for which initial partition is not
known.

GCD DIFFEQ ELLIP ATOI FIBON

Area 142.00 /
495.00

284.00 /
1398.00

954.00 /
2833.00

114.00 /
1269.00

94.00 /
463.00

(opt.) 149.00 /
484.00

401.00 /
1218.00

1874.0/
1938.0

162.00 /
952.0

233.00 /
300.00

Comm. 3 / 10 2 / 24 2 / 46 2 / 20 2 / 10

(opt.) 3 / 10 2 / 23 2 / 43 2 / 20 2 / 10

Slack -142.90 /
-299.70

-487.00 /
-752.40

-1687.00 /
-2425.70

-127.20 /
-681.90

-116.10 /
-259.50

(opt.) -146.60 /
-299.70

-761.60 /
 -454.00

-2294.2 /
-1599.9

- 156.90 /
-526.10

-231.20 /
-214.60

Power - /- 40.96 /
412.25µW

42.47 /
71.41µW

13.93 /
76.71µW

- /-

(opt.) - /- 66.18 /
308.49µW

40.96 /
30.89µW

11.33 /
82.47µW

- /-

Table 2. Examples from high-level synthesis.

comm. (-10.13%), area (-6.62%), slack (-7.89%) and
power (-11.16%) can be obtained.

Then another examination was done on a number of
designs coming from the behavioral synthesis system
PMOSS [6] (gcd, elliptic, diffeq, atoi, fibonacci). Each
controller (mostly counters) was synthesized and opti-
mized using JEDI. Once again, only slight differences to
the results for the 0-partition can be reported. Table 2
shows the results for the optimized partitions (carrying out
one pass of GDA). For each cost measure the above men-
tioned heuristics to speed-up the candidate selection have
been employed. Regarding the initial partition, an average
improvement for area (-5.12%), slack (-4.43%) and power
(-17.96%) can be achieved when compared to the cost of
the entire design. If the improvement is related to the actu-
ally resynthesized region the effects become more remark-
able. Note, that this also holds when compared to the
flattened design. The optimization for communication
between controller and datapath is difficult for these exam-
ples because the controller was already mapped and rather
little can be gained by moving single-output gates/latches
from the controller over the cutline if there is no compen-
sation by a controller input representing a feedback from
the datapath. For none of the examples, a reduction by
applying FM to the initial partition was possible.

5 Conclusion and Future Work

In this paper the optimization of hierarchical designs of
digital systems across the boundary of controller and data-
path was studied. An algorithm that is capable of optimiz-
ing a design under various cost measures was introduced
and analyzed. The presented algorithms detect control-
dominated parts in an initial design for which efficient
redesign by means of sequential logic synthesis can be
done. Based on the cost measures, an average improve-
ment ranging from 5% to 15% was obtained. The pre-
sented methods can be applied to designs which have been
automatically synthesized in order to have a optimization
methods which preserves hierarchy and resynthesizes
incrementally.

For huge clusters the sizes of the extracted STGs during
local resynthesis increase enormously. We are working on
BDD based techniques similar to those described in [10]
to carry out sequential resynthesis (state count minimiza-
tion, state assignment, boolean synthesis) fully implicit,
i.e., without extracting the STG.

Acknowledgments

This work was supported by the DFG under grant SFB
358, projectAutomated System Design. We thank S. Deva-
das of MIT for supplying us with the power estimation

tool and A. Hoffmann of Paderborn University for giving
us helpful comments.

References

[1] Design compiler (tm) reference manual. Technical
Report 3.0, Synopsys, inc., December 1992.

[2] R. Camposano and J.T.J. van Eijndhoven.
Combined synthesis of control logic and datapath.
In Proc. of the ICCAD, pages 327–329, Santa Clara,
CA, 1987. ACM/IEEE.

[3] G. Dueck. New optimization heuristics: The great
deluge algorithm and the record-to-record-travel.
Journal of Computational Physics, 104(1):86–92,
1993.

[4] C.M. Fiduccia and R.M. Mattheyses. A linear-time
heuristics for improving network partitions. In
Proc. of the 19th DAC, pages 175–181, Miami, FL,
1982. ACM/IEEE.

[5] D.D. Gaijski, N. Dutt, A. Wu, and S. Lin.High-
Level Synthesis. Kluwer Academic Publishers,
Boston/Dordrecht/London, 1992.

[6] R. Genevriere and A. Hoffmann. PMOSS - a
modular synthesis and HW/SW-codesign system.
Technical Report SFB - 358 - B2 - 2/94, Universität
Paderborn, Fachbereich 17, Germany, March 1994.

[7] A. Ghosh, S. Devadas, K. Keutzer, and J. White.
Estimation of average switching activity in
combinational and sequential circuits. InProc. of
the 29th DAC, pages 153–159. ACM/IEEE, 1992.

[8] S. C.-Y. Huang and Wayne Wolf. How datapath
allocation influences controller delay. InSeventh
ACM / IEEE Int. WS on High-Level Synthesis,
Niagara Falls, Canada, May 18 - 20 1994.

[9] B.W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. InBell Systems
Technical Report, volume 49, pages 291–307,
1970.

[10] B. Lin and A.R. Newton. Implicit manipulation of
equivalence classes using binary decision diagrams.
In Proc. of the ICCD, pages 81 – 85, Cambridge,
MA, 1991. IEEE.

[11] M.J. Mlinar. Control path/data path tradeoffs in
VLSI design. Technical Report CEng 91-16,
University of Southern California, May 1991.

[12] E.M. Sentovich, K.J. Singh, and L. et al. Lavagno.
SIS: A system for sequential circuit synthesis.
Technical Report Memorandum No. UCB/ERL
M92/41, University of California at Berkeley, May
1992.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

