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Abstract ‘

Ezact Factors as defined in [2], if present in an
FSM can result in most effective way of factorization.
However, it has been found that most of the FSM’s
are not ezact factorizable. In this paper, we have sug-

ested a method of making FSM’s ezact factorizable
gy minor changes in the next state space while main-
taining the functionality of the FSM. We have also
developed a new combined state assignment algorithm
for state encoding of Factored and Factoring FSM’s.
Ezperimental resulls on MCNC benchmark ezamples,
afler running MISII on the Original FSM, Factored
FSM and Factoring FSM have shown a reduction of
40% in the worst case signal delay through the cir-
cuil in ¢ multilevel implementation. The total number
of literals, on an average is the same afier factoriza-
tion as that obtained by running MISII on the original
FSM. For two-level implementation, our method has
been able to factorize Benchmark FSM’s with a 14%
average increase in overall areas, while the areas of
combinational components of Faclored and Factoring
FSM'’s have been found to be significantly less than the
‘Il"’.;;l of the combinational component of the original

1 Introduction

Decomposition of a large FSM into smaller inter-
acting submachines often leads to improvement in the
erformance of the circuit. Pranav Ashar et.al. [1]
ave suggested the use of the sum total of the num-
ber of product terms in the one-hot coded and logic
minimized submachines, as a cost function for opti-
mum two-way decomposition. Effective Factorization
of an FSM results in smaller interacting subma-
chines. The factoring submachine has a state corre-
sponding to each state in the factor, and the factored
submachine has a state corresponding to each factor
occurrence. The factored and factoring submachines
interact as shown in ﬁfure 1. The realization of such
interacting FSM’s, will be cost-effective, if the flow of
state information between the factored and factoring
submachines is minimal. Exact factoring as defined in
(2], leads to maximally reducing the number of states
and transition edges in the original machine, and thus
results in a cost-effective decomposition. Often exact
factors do not exist in a given machine. In such cases,
inexact factors are found. However, this does not yield
as good a decomposition as the one with exact fac-
tors. Thus it is worthwhile to consider the possibility
of making an FSM, exact factorizable. In this work,
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we have attempted to extract maximal number of ex-
act factors out of an FSM, irrespective of its original
factorizability, by suitable modifications in the STT of
the FSM and addition of extra hardware to retain the
functionality. We have also evolved a method of com-
bined state assignment for the resultant Factored and
Factoring FSM’s, so as to reduce the area overhead.
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Figure 1: Interacting FSM’s

A factor is sets of states and all fanout edges from
these sets of states in the given machine. Each set of
states is called an Occurence of the factor. A tran-
sition edge in the occurence of a factor is an Inter-
nal edge if it fans into and fans out of states within
its factor. A state in a factor occurence is an Inter-
nal state, if all edges from the states fan into states
within its occurence alone. An Exit state in the
occurence of a factor, is a state that has no fanout
edges within its occurence. A E-reachable factor is
a factor where, in each occurence, at least one state
exists from which all other states in that occurence
can be reached. Given two occurences of a factor o,
and o3, a state correspondence pair (s;,s3) is a
pair in which s; € o), and 83 € 03, and neither s,
nor sz, are present in any other correspondence pair.
A factor is Exact if, (1) State correspondence pairs
for all states in 0, and o7 can be found (2) For each
internal edge with identical input labels, such that
ey € 0; and ey € 09, (¢; — fanin,e3 — fanin) and
(ey — fanout,eq — fanout? are state correspondence
pairs, (3) The factor has only internal and exit states.
Consider the STT of an FSM as given in figure 2.

In the corresponding STG for figure 1, the I/O
of edge < stl,st4 > matches with the I/O of edge
< 8tH,st6 >. Similarly, [/O of edge < st4,st2 >
matches with the I/O of edge < st6,5t3 >. Now,
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0 st0 st70 1 st4 st60
1 st0 st40 0 st5 st6l
0 stl st4l 1 sth st61l
1 st2 st50 0 st st30
0 st3 stll 1 st stb0
0 std4 st20 0 st7 st3l
1 st7 st71
Figure 2: STT of an FSM
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Figure 3: MAR model of implementation

let us explore the possibility of making {st1, st4, st2}
and {st5, st6,st3} as two occurences of of an exact
factor. Since states st2 and st3 have no fanout edges
to states within their factor occurences, the possibiltiy
of {st1,st5} and {st4,st6)} being internal states and
st2, st3 being exit states in their respective factor oc-
curences can be considered. All fanout edges from
st1,st4 have corresponding fanout edges from st5, st6
with identical I/O labels except the following pair.

sts 0
st6 0

If the next state in e; would have been stl, instead
of st6, {stl1, st4, st2} and {st5,st6,st3; would become
two occurences of an exact factor. In that case, in
the factored FSM fsml, a state s| corresponds to the
factor occurence {stl, st4, st2} and a state s, cor-
responds to the occurence {st5, st6, st3}. Thus we
obtain two FSM’s, of four states each, from the given
FSM, by extracting exact factors of size 3. By chang-
ing edge ez to ej, the functionality of original FSM
is obviously changed. To ensure that the tunctional-
ity remains the same, we have used the model shown
in figure 3, for the implementation of the FSM. As
shown in the figure 3, the next state lines nsy; to ns,

are fedback through the flip-flops to FSM M’, while

st6
std

€1: 1
ey 1
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ns. to ng. are fed to the inputs of exclusive-OR
141 »

ates, whose outputs are given to flip-flops. While the

SM M’ is obtained by changing the next states and
outputs of some of the rows in the original FSM M, so
that M’ is factorizable, the function of the restoring
PLA C’ is to maintain the functionality of the original
circuit, by generating the next state codes at the input
of M’ and the outputs o,, to o, same as intended in
the transitions of FSM M. In the above example, for
changing edge e, to e3’ , st6 has to be changed to stl
in the next state space. Suppose the codes for states
st6 and st1 differ in d places. The restoring PLA C’in
that case, has a row, which generates ’1’ at d output
lines, in positions r;’ to r4' for input ’1’ and present
state st4. These are the d positions where the codes
of states st@ and stl differ. At these positions in the
next state lines, the exclusive-OR output is the com-
plement of ns, to ns,, , generated at the output of
M’. Thus the functionality of M is maintained by this
circuit.

2 Extraction of exact factors

Due to constraints of space, we will give a brief
summary of the method followed by us for extracting
exact factors, and state the results. The subproblems
asgociated with the extraction of exact factors out of
an FSM, by modifying the output space in the STT
of the FSM, are,

1. To modify the next state and output of a given
FSM, such that maximal number of exact factors can
be extracted.

2. To extract exact factors from the given FSM, by
the addition of minimal size restoring PLA.

3. To perform combined state assignment for the Fac-
tored and Factoring FSM’s together. '

The problem of achieving maximum factorization out
of an FSM, by the addition of minimal overhead com-
binational circuit, is a trade-off between the three
problems stated above.

Exact factors as defined in £2] lead to most cost-
effective decomposition of FSM after factorization.
Often exact factors does not exist in a given machine,
in which case, inexact factors are foun«f that does not
yield as good a decomposition as the one with exact
factors. Thus it is worthwhile to consider the possi-
bility of making an FSM, exact factorizable by usinj
Modify-Restore technique. The problems associate
with the above mentioned technique of extracting ex-
act factors out of an FSM, by modifying the output
space in the STT of the FSM, are,

1. To modify the next state and output of a given
FSM, such that maximal number of exact factors can
be extracted.

2. To extract exact factors from the given FSM, by
the addition of minimal size restoring PLA.

The problem of achieving maximum factorization out
of an FSM, by the addition of minimal overhead com-
binational circuit, is a trade-off between the two prob-
lems stated above. Let us simplify the task, by ex-
tracting only E-reachable exact factors, with {wo oc-
currences. For this purpose, we have to find two




paths, in the STG of the given FSM, such that the
states in the two paths, form correspondence pairs,
and the transitions are labelled with identical in-
put/output. Such paths are called isomorphic paths.
In our method, first we find the longest pair of all
isomorphic paths starting from the pair of states
(Xm;,Ym,), in the STG of a given FSM. The max-
imum length pair T,,4, is made as an exact factor,
by suitable modifications in the next states and out-
puts of some transitions in the STT. Each such mod-
ification will introduce a row in the restoring PLA.
The overall problem is to extract those isomorphic
paths, whose corresponding exact factors will lead to
Factored and Factoring FSM’s(fsml and fsm2), with
minimal number of states and edges, and minimal size
restoring PLA.

Note that the number of columns in the PLA of the
FSM will depend on the state encoding length for fsm1
and fsm2, which in turn depends on the constraints ob-
tained by the symbolic minimization of these FSM’s.
The restoring PLA, necessary to preserve the function-
ality of the original FSM, in which the next states and
outputs of some transitions are modified, is also gen-
erated. The output state space for those rows in the
restoring PLA, which are present to maintain func-
tionality of the original FSM, due to output state
change, is determined only after state assignment is
done, as the positions where state codes for two dif-
ferent states does not match, is determined by state
encoding. Once the FSM M’ and the restoring PLA
C’ are generated, exact factors are extracted from M’,
Factored and Factoring FSM’s are generated and in-
dividually minimized.

3 State Assignment for Factorization

model

Performing state assignment for factored and fac-
toring FSM’s , using techniques like KISS and NOVA
, does not yield overall minimal area implementation,
as increasing the encoding length of one FSM increases
the area of the other FSM. Hence a combined state as-
signment strategy that leads to overall area minimiza-
tion has to be developed for area-effective state assign-
ment of Factored and Factoring-FSM’s. In our new
algorithm for state assignment of interacting FSM’s,
a suitable cost is evaluated for each constraint in M,
and M, after symbolic merging. The constraint that
yields minimum value of the cost function, is chosen
and the corresponding incompatibility graph is con-
structed. In the next step, the cost is reevaluated, for
the unselected constraints. New constraints are se-
lected in the subsequent steps, such that the cost gets
minimized in a greedy manner.

Let n,, represent the number of transistors which
are connected to row r; and n,; represent the number
of transistors which are connected to column o;. Since
the time constant for the output signal to rise in re-
sponse to a signal at the input of the device depends
on the impedance of the device, the row and column
in the PLA corresponding to the maximum value of
(ny; + no,) slow down the signal propagation most.

Thus MAX(n,; + n,;) is a reasonably good measure
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of the performance of the FSM with PLA as a combi-
national component. While using MAR model for fac-
torization, this measure is calculated for the combina-
tional components of Factored and Factoring FSM’s,
and for Restoring PLA. The largest of these three val-
ues, is finally going to govern the duration of the sys-

tem clock. The values of this measure are given in
table 2.

4 Experimental Results

The algorithm has been written for extraction of
exact factors with two occurences. The implementa-
tion is done in C-Language. The following steps have
been performed-
1) Symbolic Two-level minimization has been per-
formed on the STT of the given FSM, 2) The best ex-
act factor has been extracted , the corresponding Fac-
tored FSM, Factoring FSM and Restoring PLA have
been generated using our method. The Factored and
Factoring FSM’s are optimized using symbolic Two-
level minimizer, 3) DIET L4], an input encoding al-
gorithm, has been run on the symboﬁcally minimized
Original FSM and the combined state assignment al-
gorithm mentioned earlier, has been run on Factored
and Factoring FSM’s to generate the final realization.
The areas and performance measures(as described in
previous section) of Factored FSM(fsm1), Factoring
FSM(fsm2) and the Restoring PLA(C), are calculated,
4) Individual state assignment has also been done for
fsml and fsm2, and the areas and their performance
measures are evaluated for comparision against the
combined state assignment strategy.
Table 1 gives the number of product terms and edges
in the Original FSM(M), Factored FSM(fsml) and
Factoring FSM(fsm2), and the number of product
terms in the restoring PLA(C), as obtained from the
experiments conducted. :

 In tablel, F denotes the exact factor, st = number of

.24 Jsm1 fsmZ TF] C

bM pr | sl | ed | st | ed]| st| n| rpg
bbara 44 [ 10| 21 6 [I1]4]|J3] 1o
bbase 23 116 20 [14) 9|3 (2] 9
bbtas 22 | 6|15 411013 |2 7
trainll | 11 |11 ]| 9 915132 2
dk27 10 | 8 5 3|54 (3] 4
dk512 | 23 (15} 16 | 9 {13 |5 {4 9
cse 38 | 16| 36 {14103 {2 7
dk16 80 {27]| 65 |23 123|413 17
ex2 38 119130 | 9 |15]7]6] 2
ex3 21 10 7 4 1915|415
ex4 18 |14 12 (10 7 143 | 2
exd 21 1 9| 14} 719132 4
shiftreg | 16 | 8 9 416 14|3] 17
sand 163 (3271151 | 18123 {9 |8 2
lion9 11 19112 | 7] 7(3}12] 6

Table 1: States and edges
states, ed = number of edges m%TG, and n = number

of 2 factor occurences. In table 2,

A= Area of Original FSM, after state assignment us-
ing DIET, A= Area of fsml4fsm2+Restoring PLA,
by running DIET individually on the FSM’s, and A;=




Dy | Dy | Dy BM L D

BT M P A T A T4 T T M MM, [RCT ™
tramnll | I3 12 112 | 12 ] 286 402 379 bbsse 198 | 154 6 38 | 0.6 | 13.1
bbara 35 19 1 13 | 8 | 1100 | 1347 | 1230 cse 345 | 296 | 8.3 49 | 291|175
bbsse 23 | 22 1 22 | 20 | 966 1696 | 1420 dk16 430 | 453 | 6.8 | 3.8 | 0.1 ]| 1.5
bbtas 13 9 10| 4 330 470 516 sla 201 | 404 | 6.4 01 |7.1]| 8.6
ex3 19 {14 1 12 | 6 | 504 698 545 ex2 141 1 213} 47 | 0.3 | 0.0 | 9.5
dk17 21 14 | 18 | 10 | 462 814 722 sand 570 | 629 7 18.2 ] 0.1 23
ex4 13 {10 | 10 | 8 | 558 812 728 ex3 87 (109105 ] 39 |12 ]| 9.1
exh 16 { 12 | 15 | 10 | 441 643 877 exd 133 | 107 5 6.7 | 0.0 | 5.7
ex2 30 | 20|17 |16} 1140 | 1795 | 1386 exd 118 | 114 | 2.7 | 40 | 0.2 | 10.8
dk27 11 8 7 4 160 239 205 trainil 109192 | 43 ) 04 | 0217108
shiftreg | 11 7 6 4 192 238 212 bbara 137 | 128 | 3.8 11 | 64| 64
sand 113 | 95 | 94 | 34 | 8965 | 12028 | 9355 dkl17 168 | 125 | 6.1 58 | 0.0 | 9.1
dk16 51 | 43 1 40 | 10 | 2720 | 2849 | 2799 bbtas 58 27 0.5 21 {011 2.7
dk27 51 40 2.8 6.1 {00} 4.3

Table 2: Slowest signal delay and PLA areas ex7 142 1 103 | 40 | 0.2 | 2.2 | 3.8
modulol2 | 44 30 0.2 08 | 02| 3.9

Area of fsm1+fsm2+Restoring PLA, by running our
combined state assignment algorithm.

Area of the EX-OR gates is not considered in area cal-
culations of tables 1 and 2.

Dy =Slowest signal delay measure(SSDM) in Original
FSM, Dy=Maximum of SSDM’s for fsml and fsm2,
after individual state assignment, and D3=Maximum
of SSDM’s for fsml and fsm2, after combined state
assignment.

P indicates SSDM in the restoring PLA. As evident
from the results, the Factored and Factoring FSM’s
have fewer number of states and edges than the origi-
nal FSM after symbolic minimization. The reduction
is more significant in cases where bigger factors could
be extracted. Except sand, in other exam-
ples, no exact factor could be obtained from
the Original FSM, without modification of out-
put space. After formation of Factored and Factoring
FSM’s, our state Assignment algorithm has been exe-
cuted on fsm1l and fsm2 , to estimate the areas . Some
further reduction in the areas of Restoring PLA can be
obtained by running a two-level minimizer on it. Re-
sults from table 2, show that the combined approach
for state assignment of interacting FSM’s, yields less
area implementations, for most of the cases.

To see the impact of Factorization using MAR

model on multilevel implementation of Factored and
Factoring FSM’s, MISII{3] has been run on the orig-
nal(M), Factored(M; ) and Factoring FSM’s(M,). The
reduced FSM’s M, M; and M, have been mapped to
nand-nor library and the Delays have been found.
The number of literals and delays computed by MISII
have been listed in table 3. The delays and number of
literals in table 3 are inclusive of the EX-OR gates
in the feedback path. In table 3, L is the number
of literals and D the delay, and T = Total number of
literals in My + M2 + Restoring PLA.
It can be seen from table 3 that the total number of
literals, on an average, remained same after factor-
ization using MAR model followed by combined state
assignment .

5 Conclusion

In this paper, we have presented a method of ex-
act factoring a given FSM, by manipulation of the
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Table 3: MiSII results on fsml and fsm2 versus M

output space of the State transition table, and imple-
menting it with a model, that retains the function-
ality of the original FSM. We have also developed a
combined state assignment algorithm for interactin
FSM’s, so that the combinational overhead require
for enhancing Factorizability is low. Our measure for
performance does not include interconnection delay,
as for a PLA, interconnection delay is proportional
to the area. From the tables 1, 2 and 3 it can be
found that for FSM’s which are well factorizable us-
ing MAR model, the total area as well as performance
have shown improvement, while area and performance
have degraded for FSM’s which are less Factorizable.
Since the primary motivation behind factorization, is
reduction of the delay through the critical path, it is
worthwhile to reduce the number of states and edges
by decomposing the given FSM into factored and fac-
toring submachines, at the cost of some increase in the
overall area of the decomposed circuit.
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