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Abstract
In this paper, we present a layer assignment method

for high-performance multi-chip module environments.  In
contrast with treating global routing and layer
assignment separately, our method assigns nets to layers
while considering preferable global routing topologies
simultaneously.  We take transmission line effects into
account to avoid noise in high-speed circuit packages.
The problem is formulated as a quadratic Boolean
programming problem and an algorithm is presented to
solve the problem after linearization.  Our method is
applied to a set of benchmark circuits to demonstrate the
effectiveness.

1 Introduction

With the rapid increase in IC performance and
system complexity, the packaging delay is becoming a
dominant part of total system delay and is expected to
be 80% by the year of 2000 [1].  The Multi-chip Module
(MCM), which has been developed to eliminate one
level of interconnection, places chips on a high density
substrate, and therefore decreases the packaging delay
drastically.  In order to connect a large number of chips
(e.g. 131 chips on the IBM3081 TCM) on one carrier,
the substrate density for routing may be high (e.g. 8-25
um pitch on MCM-Ds) and the number of wiring layers
may be numerous (e.g. 63 layers on the IBM ES9000
TCM).  Due to the high wiring density and very fast
components contained in high-performance MCM
designs, transmission line phenomena which affect
circuit performance and signal integrity are getting
more attention.  Accordingly, it is essential to consider
routability, performance, and electrical noise for MCM
designs during layer assignment and global routing
stages.

In general, two approaches, constrained and
unconstrained layer assignments, are used as one phase
of the multilayer substrate routing.  In constrained layer
assignment, the global routing paths are given so the
remaining task is to assign wire segments to different
layers and to minimize the desired cost such as the
number of vias.  The second approach assigns nets to
different layers first and then routes the nets on each
plane.  Both problems are NP-complete and have been

extensively studied for PCB and IC environments [7].
None of the PCB/IC layer assignment algorithms has
considered electrical interference (e.g. cross talk or
reflection) that is very likely encountered in MCM
designs.  A global routing algorithm is presented by [5]
to minimize the number of routing layers on MCMs.
Recently, [11] proposed a constrained detailed layer
assignment method to minimize number of layers and
vias.  In [4], an unconstrained layer assignment scheme
using a bounding box measure of electrical interference
and routability is presented for MCM routing.  However,
both of these approaches consider global routing
topologies and layer assignment separately while
neglecting the interaction between the two issues.
Moreover, no experimental results regarding electrical
interference have been reported in previous MCM layer
assignment studies.  In this paper, we present an
unconstrained layer assignment method that considers
electrical interference, performance, routability, and
global routing topologies for MCM multilayer routing.
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Fig. 1 Interaction between Layer Assignment and Net Topologies
(the shaded part between nets is coupling area)

Fig. 1 illustrates the importance for considering
global routing topologies during layer assignment stage,
where the cost is a function of cross talk noise and
number of intersections.  Fig. 1(a) shows a solution of
layer assignment using the given global routing net
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topologies.  The solution in Fig. 1(a) is better (actually,
optimal) than the solution in Fig. 1(b) if only original
topologies are considered.  However, the same solution
in Fig. 1(b) can be better than the one in Fig. 1(a) if
other net topologies are considered (shown in Fig.
1(c)).

For high-performance MCM routing, intersections of
wires can cause the use of detour and vias which in turn
require more routing resources, lower manufacturing
yield, and cause noise problem.  Excessive local
congestion not only gives rise to future routing difficulty
but also increases the potential cross talk noise for
high-speed signal lines.  Transmission line effects
become significant in high-speed electronics if the
signal rise time is less than 2.5 times of the propagation
time on wire [1].  In MCMs, the average wire length is
much longer than the average on-chip wire length.
Moreover, to achieve the fastest performance, nearly
all contemporary supercomputers and mainframes use
high speed bipolar chips on MCMs [6].  For bipolar
circuits with an off-chip rise time of 200-400ps on an
MCM (with 10cm dimension), it is necessary to
consider the transmission line phenomena during global
routing and layer assignment.

D

D

D

D

D

R

R

R

R

R

RR

R

RRR

(a)

(b)

(c)

(d)

(e)

  

RU RD DR URRU

(f)

Fig. 2 (a) single-load point to point; (b) multiple-load near-end
cluster; (c) far-end cluster; (d) discretely loaded; (e) distributed

(same as (d) but with length between receivers ≤0.5T r); (f)
geometrical patterns for two-terminal nets

Due to the discontinuities on transmission lines such
as vias and receivers, reflections of signals can occur
and increase delay in synchronous signal lines (because
of the longer settling time) as well as cause logic
failures (because of over/undershoots) [1].  In order to
avoid reflections, the line length between each output
and input gates should not exceed the critical length
which is determined by different device technologies
[12].  A multi-terminal net may have many possible
routing topologies.  However, only several net
topologies such as distributed and clustering
configurations (see Fig. 2(a)-(e) for an example) are
allowable while considering transmission effects [6].
Consequently, the simple bounding box measure used
in [4] for layer assignment without taking net topologies
into account is not sufficient.

Cross talk is a result of mutual capacitance and
inductance coupling between signal lines in close
proximity.  Cross talk becomes more severe when the
lines are closer, the distance from grounding plane is

larger, the coupling length is longer, and the rise time
is faster [1].  Cross talk not only increases delay
(because of the larger effective line capacitance) but
also degrades signal integrity and causes logic faults.
Reduction of cross talk should be considered for high-
performance MCM multilayer routing since the wiring
density is high and coupling length between lines may
be long.
2 Problem Formulation

A multi-terminal net can be routed in several
preferable topologies for avoiding transmission line
effects.  Instead of impractically processing all
configurations of a large fan-out net, we only consider
topologies for limited number of nodes and cluster the
nearest neighboring nodes as a supernode by pre-
connecting them together.  A number of topologies are
considered among distant supernodes/nodes since the
long connecting wire segments contribute to the great
majority of coupling, reflection, and delay.  The net
topologies that have driver-receiver path length longer
than the maximum allowable transmission line
(reflection) length are not considered.  We also do not
consider net topologies that cause delay larger than the
performance requirement.  Each net topology has to be
mapped on the routing plane according to geometrical
constraints.  For traditional rectangular global routing
[5], each two-terminal connection of a multi-terminal
net can be mapped onto one of the L-shaped
configurations shown in Fig. 2(f).  Here, we only
consider R, U, RU, and RD patterns since only one
from {RU, UR} and one from {RD, DR} are sufficient
to map a two-terminal wire segment.  However, the
other three mapping combinations can be used in a
post-processing phase to further optimize the result from
layer assignment.  After geometrical mapping, for two
nets on the same layer, the number of wire intersections
which may use potential vias in future detailed routing
and the wire congestion (or wire density in the global
routing tile) can be measured.  In order to obtain good
routability, the nets should be assigned to appropriate
layers such that the number of intersections and local
congestion are minimized.

For every pair of nets on the same layer, the cross
talk between the nets can be defined by their coupling
area.  As in [12], we use the cross talk level to measure
the coupling noise (cross talk) using the following
equation.

Tx (k, i, p, j, q) =
lxi,t, j,s

lxmax,k f (dxi,t, j,s )t∈net i with topology p
s∈net j with topology q

∑

where Tx (k,i,p,j,q) is the x-direction cross talk level
between net i with topology p and net j with topology q
on layer k, lxmax,k  is the maximal admissible coupling
length for the minimum distance on layer k, lxi,t,j,s is the
coupling length between a horizontal wire segment s of
net j to a horizontal wire segment t of net i, dxi,t,j,s is



the corresponding coupling distance, and f  is a
technology-dependent function of distance.  The y-
direction cross talk level, T y(k , i ,p , j ,q ), can be
calculated in a similar way, and Tx+y(k,i,p,j,q) is the
total cross talk level.

The interconnection delay of a net can be
approximated by the following equation:

dk,i,p = max
∀r,r∈net i

((lrrk + kd )(lr + Cr ))

where dk,i,p is the delay of net i with topology p on layer
k, kd is a coefficient depending on the technology of
driver d, lr  is the path length from the driver d  to a
receiver r, rk is the corresponding unit wire resistance
on layer k, ck is the unit wire capacitance on layer k,
and Cr  is the input capacitance of a receiver r.  For
high-speed transmission lines, regularly, a more
sophisticated model than the above equation is required
and hence cannot be calculated efficiently even for
mid-size circuits.  However, it is shown that the
performance driven routing prefers cluster topologies to
distributed topologies [9].  Hence, bias weights toward
different topologies can be added to compensate for the
error made from the lumped RC approximation.

We define the interference as the summation of the
cross talk level (for both x and y directions) and the
number of wire segment intersections.  Some group of
nets, such as signal wires in analog and digital mixed-
signal designs, need to be placed on different layers for
avoiding interaction [4].  It is also desired to route
clock, power and ground lines on dedicated layers.
Hence, as follows, we can formally define sets R1, R2,
and R3 to model the constraints mentioned above.

R1={(i ,j)|net i  and net j  cannot be assigned to the same layer}
R2={(i ,j)|net i  and net j  must be assigned to the same layer}
R3={(i ,k)|net i must be assigned to layer k  }

Note that R1 and R2 are mutually exclusive.  We define
the cost for net i with topology p on layer k and net j
with topology q on layer l to be

wkipljq = α1Akipljq + α2Tkipljq + α3 (dkip + dljq )

where Akipljq  is the total number of intersections
between these two nets, Tkipljq  =T x+y(k,i,p,j,q) if k= l
and Tkipljq  = 0 if k≠l, dkip and dljq   are the delays, and
α1, α2, together with α3 are constant weights assigned
by the designer.  Here, we restrict the cost to be zero if
k≠l  by assuming that there is no vertical intersection or
cross talk (grounding layer in-between).  Let Qi be the
number of preferable topologies of net i.  Given N nets
and K layers, the layer assignment problem (LAP) is to
assign each net i, 1≤i≤N, to its corresponding layer ki
and net topology pi, where 1≤ki≤K, 1≤pi≤Qi, such that
the total cost is minimized.  One special case of this
problem where each net has only one topology can be
formulated as a max-cut K-coloring problem in which
finding a max-cut is NP-complete [4].  In order to
consider several preferable topologies for every net, we

formulate LAP as a quadratic Boolean programming
problem (QBP).  We define xkip∈{0,1}, where xkip=1 if
net i with topology p is assigned to layer k, and xliq=0,
∀ l≠k , 1≤l≤K , ∀q≠p, 1≤q≤Qi.  Accordingly, we are
trying to find a 0-1 matrix X=[xkip] that minimizes

xk1i1p1
wk1i1p1k2i2 p2

xk2i2 p2
p2 =1

Qi2

∑
i2 =1

N

∑
k2 =1

K

∑
p1=1

Qi1

∑
i1=1

N

∑
k1=1

K

∑  (1)

subject to the following constraints:

C0 : xkip
p=1

Qi

∑ = 1
k=1

K

∑ , ∀ i, 1≤i≤N

C1 : xkip
p=1

Qi

∑ + xkjq
q=1

Qj

∑ < 2 , ∀ (i,j)∈R1, ∀k, 1≤k≤K

C2 : xkip
p=1

Qi

∑ = xkjq
q=1

Qj

∑ , ∀ (i,j)∈R2, ∀k, 1≤k≤K

C3 : xkip
p=1

Qi

∑ = 1, ∀ (i,k)∈R3

where C0 is the assignment constraint which states that
each net can only be assigned to one layer and to one
topology. The conflict constraint C1, common-layer
constraint C2, and pre-assignment constraint C3 are
specified by R 1, R 2, and R 3, respectively.  We will
address constraints C2 and C3  in the Section 3.3 and
will consider constraints C0 and C1 hereafter.

3 Layer Assignment Algorithm

We transform the three-dimensional matrix X=[xkip]
in (1) into a one-dimensional vector y=[yj] of size K P

by defining yj=xkip and j=kP+∆i+p, where P = Qi
i=1

N

∑  and

∆i= Qj
j=1

i−1

∑ .  This transformation is a one-to-one mapping

since it is the concatenation of elements in a three-
dimensional matrix.  Similarly, for each wk1i1p1k2i2 p2

, we

define its corresponding mj1 j2
, where j1=k1P+∆ i1 +p1,

j2=k2P+∆i2 +p2, and M=[ mj1 j2
] is a KPxKP non-negative

cost matrix.  The constraints are also transformed in the
same way.  Accordingly, the problem is rewritten as

minimize yTMy, subject to C0 and C1 (2)

3.1 Quadratic Boolean Programming

If we define the solution space to be S={u | u  is a
vector satisfying C 0  and C 1}, then we can find a
constant vector g=[gj] satisfying the following condition
since both N and each wk1i1p1k2i2 p2

 are bounded.

gj ≥ mji yi
i=1

KP

∑
, ∀y∈S, ∀1≤j≤KP (3)

Furthermore, a corresponding vector a( k)  =[aj]( k)  and a
number b(k ) for each feasible solution u ( k)  =[uj]( k)  (at
iteration k) are defined as follows.



aj
(k) = mijui

(k) + gjuj
(k)

i=1

KP

∑ ,    b(k) = giui
(k)

i=1

KP

∑ (4)

Proved in [2, 3], every optimal solution y* of expression
(2) corresponds uniquely to an optimal solution (z*, y*)
of

min
y∈S

z , such that z ≥ aj
(k)yj

j=1

KP

∑ − b(k) , or

min
y∈S

z , such that z ≥ max
1≤ j≤KP

aj
(k)yj − b(k) (5)

Since directly solving linearlized expression (5) would
require tremendous amount of storage and time, [3]
proposed the following heuristic.

Burkard's Heuristic
1. Initialize k=1, hj

(0)=0, ∀1≤ j≤KP
2. Compute bounds gj , ∀1≤ j≤KP , and start with a feasible 

u(1)∈S   with setting u*=u , z*=u*TMu*

3. Compute aj
(k) = mijui

(k) ,∀1 ≤ j ≤ KP,  and  
i=1

KP
∑ b(k) = giui

(k)

i=1

KP
∑

4. Solve z = min
u∈S

( aj
(k)uj

j=1

KP
∑ )  (here u  is a variable vector)

5. Compute hj
(k) = hj

(k−1) +
aj

(k)

max(1, z − b(k) )
,∀1 ≤ j ≤ KP

6. Solve min
u∈S

( hj
(k)uj

j=1

KP
∑ )  and let u (k+1) be the solution

7. I f  ( u(k +1))TMu(k +1)<z*  t h e n  u*=u (k+ 1 )  and
z*=(u(k +1))TMu(k +1)

8. if k  ≤ N iteration then k=k+1 and go to 3. Otherwise stop

The well known Burkard's heuristic has been applied to
solve large size quadratic assignment problems [3]
(special forms of QBPs) and VLSI system partition
problems [10].  This heuristic can find a good sub-
optimal solution and has relatively stable performance
with respect to the initial solution and bounding vector
g [3].  We use the parameter, Niteration, to control the
running time and the quality of final solution.
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Fig. 3 (a) GAP (shaded lines are conflict constraints); (b) WCP

(the conflict graph transformed from (a))

3.2 Maximum Penalty Coloring

In Burkard's heuristic, steps 4 and 6 are, in fact, two
special general assignment problems (GAP) which is to
assign a net i to the layer k with topology p, 1≤i≤N ,
such that the summation of corresponding coefficient fj
(which is one-to-one mapped to fkip while fj=aj at step 4
or fj= h j at step 6) is minimized.  In Fig. 3(a), the
example has 4 nets to be assigned to 3 layers and nets
1 and 3 have two topologies.  The GAP for this example
is to choose one fkip (and assign the corresponding
xkip=1) for each net i, 1≤i≤4.  If there is no constraint
C1, the problem becomes to find, for every net i, the
minimum coefficient fj from corresponding coefficients
of xkip, 1≤k≤K  and 1≤p≤Q i, which can be solved
efficiently.  For net 4 in Fig. 3(a) constrained by C0
only, we assign min{f141, f241, f341} to net 4.  The
assignment constraint C 0 forces each set of binary
variable Xi, where Xi={xkip|1≤k≤K, 1≤p≤Qi}, can only
have one element to be one.  Therefore, in the
corresponding coefficient set, Fi={fkip|1≤k≤K, 1≤p≤Qi},
equivalently, only one coefficient is chosen to
contribute to z, the inner product sum (a•u at step 4 and
h•u  at step 6).  In order to minimize z, we have to
choose the minimum coefficient in each F i.
Accordingly, we have the following theorem.

Theorem If there is no conflict constraint C1,  two
GAPs in step 4 and step 6 can be solved optimally in

O(KP) time, where P = Qi
i=1

N

∑ .  However, to solve the two

GAPs in step 4 and step 6 under constraint C1 is NP-hard.

We define I to be a set of N nets.  Let Ic be the set
of nets constrained by conflict constraint C1 and let Inc
be the set of nets without restriction from C1.  Note that
I = Inc ∪ Ic , Inc ∩ Ic = ∅ .  Since the nets in In c  can be
solved efficiently and independently in both GAPs (but
neither in the original LAP nor QBP), the remaining
task is to solve the constrained nets in Ic.  However, due
to the constraint C1, it is more difficult to solve both
GAPs.  First, to determine if there is a
feasible solution under conflict constraint is difficult,
which can be proved by transforming both GAPs to the
well known graph K-colorability problem.  Moreover,
finding the solution to minimize the GAP in step 4 or
step 6 is also NP-hard even feasible solutions are
available.  In real applications, there should be enough
layers to accommodate those conflicting nets in R1
(otherwise, layer number should be increased).
Henceforth, we restrict the maximum number of
conflicts each net can have in R1 is less than K  such
that a feasible solution is guaranteed.  In order to solve
the problems, both GAPs under C1 is transformed to the
weighted vertex coloring problem (WCP and see Fig.
3(b) for an example) which is to minimize the coloring
cost of a K-colorable graph and, there is a weight for
each vertex to be assigned to a certain color.  More
precisely, we construct a conflict graph G =(V ,E ) .
∀ (i,j)∈R2 ⇔ ∃(v i,v j) ∈ E  , |V |=|Ic |, |E |=|R 1 |, and let



c(vi,k) be the coloring cost of vertex vi assigned to
color k, ∀vi∈V, 1≤k≤K, where c(vi,k)=fki,min=min{fkip,
1≤p≤Q i}.  The objective is to find an assignment
f:V → {1, 2,..., K } such that f(v i)≠ f(v j) whenever

(vi,vj)∈E and minimize c(vi , f (vi ))
i=1

V

∑ .  In Fig. 3(b), the

conflict graph is constructed from net 1, net 2, and net
3 constrained by C 1 of the GAP in Fig. 3(a).  For
example, c(1,k)=min{fk11, fk12}, 1≤k≤3, for net 1 in Fig.
7(a).  The minimization of coloring cost in WCP is
equivalent to the minimization of summation in the
original GAP.  Accordingly, we propose a maximum
penalty coloring (MPC) algorithm to solve WCP
transformed from the GAP under conflict constraint C1.
Here, the penalty for each vertex is the difference of its
secondary minimum coloring cost (a large constant if
only one color is allowable) and its minimum coloring
cost.
Algorithm MPC
1. sort coloring costs and calculate penalty for every v ∈V,
2. choose a vertex v with maximum penalty.  if more than 

one vertex have the same penalty, choose the one with 
least neighboring vertices (vertices that connects v) that
are not colored yet.

3. color v with its current minimum-cost color c .
4. delete c  from the allowable colors of all the neighboring

vertices  of v and update their penalties.
5. V=V\v and go to Step 2 if |V| > 0.

This O(K |V|logK+|V|2) MPC algorithm first colors the
node with maximum penalty (if it does not get the
assigned color at this iteration) and with the least
degree of freedom in choosing colors.  The original
GAP in step 4 or step 6 under constraint C 1  can
therefore  f ind  a  su i tab le  so lu t ion  in
O ( K N c ( l o g K + Q ) + N c

2 ) time (including the
transformation to WCP) where Q  is the maximum
topology a net can have and Nc=|Ic|.

3.3 Extensions

Other Constraints: The common-layer constraint
C2 can be added by assigning nets i and j, ∀ (i,j)∈R2,
to the same color in the MPC algorithm.  While
processing Inc  or I c , we treat (i ,j) as a combined
supernode i + j  and use the corresponding
fk,i+j,(p,q)= fkip+ fkjq as the new coefficient.  If the total
number of combined topologies of the supernode is
large, we only consider limited number of most
preferable combined topologies and then post process
nets in the supernode (for choosing best topologies on
the same layer) after k is determined.  For constraint
C3, we pre-assign net i to layer k, ∀ (i,k)∈R3, and only
process coefficient fkip, 1≤p≤Qi.

Vertical Cross Talk: If there is a ground routing
plane in-between each pair of signal routing plane (or x-
y  plane pair), then the vertical cross talk noise is
negligible.  For MCM designs without grounding planes
in-between signal planes either because of technical or
economical reasons, we have to consider vertical cross

talk between planes.  Hence, we re-define the cost
matrix: ∀k1≠k2, wk1i1p1k2i2 p2

= 0 if vertical interference is

n o t  c o n s i d e r e d ,  o r
wk1i1p1k2i2 p2

=F(k1,k2)(Tx+y(k1,i1,p1,i2,p2)+Tx+y(k2,i1,p1,i2,p2

)) if vertical interference is considered, where F(k1,k2)
is the a constant coefficient depending on technologies
and vertical distance between layer k1 and layer k2 in
MCM.  In contrast to [4], our method can optimize
intra-plane and inter-plane interference at the same
time without permutating layers after layer assignment.

Circuit Partitioning: Large MCMs may have more
than thousands of nets.  The storage used for cost matrix
M  may be large.  Note that the storage requirement of
M  is O(P ) in our method and independent of the
number of layers since each cost in M  is derived from
the single plane cost, where P depends on the number
of nets, N , and the maximum preferable topologies
each net can have.  Therefore, we propose a method to
partition large circuits such that the problem can be
handled under allowable resource requirements.  In Fig.
4, we process the center part (shaded area) first, and
then deal the corner parts later by fixing the partial
solution we derived from the previous process.
Similarly, with increasing the number of overlapping
center regions, we can partition the problem into more
than 5 smaller subproblems for even huge circuits.
Experimental results in the following section show that
this partitioning method can achieve comparable
solutions and save both storage and computation
resources.

2 3

45

1

Fig. 4 Partitioning of Circuits

4 Experimental Results and Conclusions

The C programs are tested on a Sun IPX with 32MB
memory.  We apply our method on five benchmark
circuits in Table 1 where we assume MCM-C and
MCM-D technologies are used.  The mcm213 and
mcm848 are from [11].  The mcc1, mcc2-75, and mcc2-
45 circuits are from MCNC.  The large mcc2 circuit
with 7118 nets is actually a supercomputer core using
37 VHSIC gate arrays.  Without loss of generality, we
assume that drivers and receivers use BCT technology
[12] and derive the corresponding factors from dielectric
constants of MCM-C (5.5) and MCM-D (4.0).
Unfortunately, there is no driver/receiver specification
in these benchmark circuits.  Therefore, we use
wirelength to measure the performance and spanning
tree configurations for simplicity.  In this experiment,
we assign that α1=0.05, α2=4.0, and α3=0.4, and let the
maximum number of topologies per net be 16.



Table 2 shows the result for different number of
layers used for assignment where X Talk is total cross
talk level, and congestion is the exceeding number of
wire segments in global routing tile regarding to the
number of tracks.  The routability/planarity is increased,
and cross talk is decreased when more layers are used
for routing.   The solution quality and program running
time depends on the number of iteration.  We present
the total cost for different numbers of iterations in Table
3 where the number of assigned layers we use hereafter
is the lower bounds (in Table 4) from [11] and from a
detailed router of [8].  As shown in the table, the more
iterations it takes, the better solution it gets.  The
running time also includes the data I/O time, and
therefore, it takes longer to preprocess cost matrix for
larger input circuits.  Since the reduction rates of cost
for iterations after 20 are not high in our experiment, we
henceforth run 20 iterations for testing the benchmark
circuits.  For comparison, we also implement the max-
cut K-coloring algorithm (MC) [4] to assign layers (by
using the single topology weight which is derived from
the average weights for different topologies) and then
use our method (by letting K=1) to choose the best
global routing topologies for nets on each layer.  The
results for the large circuit mcc2 are derived by
partitioning into 5 subcircuits.  From the results shown
in Table 4 (where QBP* is the partitioning version of
QBP), our method perform better on average of  37.8%
of cost reduction, 29.6% of cross talk decrease, 43% of
intersection reduction, and 85.2% of less congestion at
the charge of longer computation time.  For circuits
with more multi-terminal nets (and thus more
topologies), our results are much better than those
achieved by using the MC method that considers layer
assignment and global routing topologies separately.
Even for the mcc2 circuit that contains 95% of 2-
terminal net which has one topology, our method still
shows better outcomes.  In Table 5, we show the results
with and without partitioning.  It is indicated that our
partitioning method can get comparable results (with
increasing average 10% in cost) while saving average
40% running time and 70% storage in our experiment.

We propose a method to optimize routability,
performance, and electrical noise interference for high-
performance MCM layer assignment.  Instead of
treating global routing and layer assignment separately,
our method considers different preferable global routing
topologies and layer assignment at the same time.
Experimental results show that our method achieves
lower level of cross talk, less local congestion than
processing layer assignment without considering global
routing topologies.
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Circuits # Nets # Pins Grid/Global Tile Pitch/Material
mcm213 213 694 80x80/10x10 200um/ceramic
mcm848 842 2751 150x150/10x10 200um/ceramic

mcc1 802 2043 600x600/10x10 75um/thin film
mcc2-75 7118 14661 2033x2033/40x40 75um/thin film
mcc2-45 7118 14661 3387x3387/60x60 45um/thin film

Table 1 Benchmark Circuits

Circuits mcm213 mcc1

# Layers K=4 K=7 K=4 K=7
Cost 661 286 18279 11704

X Talk 33 16 12807 1251
Intersection 1314 552 27559 16720
Congestion 284 26 0 0
CPU(min.) 2.69 3.60 20.58 26.93

Table 2 Results from Different Number of Layers

Niteration 0 10 20 30 40

mcm213 Cost 3616 297 286 280 278
CPU(min.

)
1.03 2.32 3.60 4.94 6.24

mcc1 cost 330560 23522 18279 17701 17428
CPU(min.

)
6.25 13.47 20.58 27.67 34.76

Table 3 Results from Different Number of Iterations

Circuits mcc1 mcc2-75 mcc2-45
Method QBP QBP* QBP QBP* QBP QBP*

Cost 18279 18880 225377 251575 395058 459202
X Talk 1807 1667 28425 29871 41955 40390

Intersect. 27559 30329 278447 328883 481392 530875
Congest. 0 0 531 408 566 554

CPU(min
)

20.58 15.93 415.13 181.72 420.35 189.28

Table 5 Results after Partitioning

Circuits mcm213 (K=7) mcm848 (K=10) mcc1 (K=4) mcc2-75 (K=6) mcc2-45 (K=4)

Method QBP MC QBP MC QBP MC QBP* MC QBP* MC

Cost 286
(-58%)

686 1225
(-74%)

4720 18279
(-30%)

26164 251575
(-15%)

296859 459202
(-12%)

521227

Wire 10516 10519 57510 57522 372538 372593 5411885 5411887 9018234 9018229

X Talk 16
(-40%)

27 54
(-67%)

165 1807
(-25%)

2381 29871
(-4%)

30990 40390
(-13%)

46446

Inter-
section

552
(-61%)

1430 2509
(-75%)

9952 27559
(-34%)

41620 328883
(-23%)

429574 530875
(-22%)

677219

Con-
gestion

26
(-85%)

179 0
(-100%)

57 0
(-100%)

10 408
(-62%)

1062 554
(-79%)

2597

CPU
(min.)

3.60 1.46 68.38 19.56 20.58 12.04 181.72 96.76 189.28 101.50

Table 4 Comparison of Different Methods
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