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Abstract

This paper describesa new CAD algorithmwhich performsau-
tomatic test pattern generation (ATPG) for a general class of ana-
log systems, namely those circuitswhich can beefficiently modeled
as an additive combination of user-defined basis functions. The
algorithmis based on the statistical technique of I-optimal exper-
imental design, in which test vectors are chosen to be maximally
independent so that circuit performance will be characterized as
accurately as possible in the presence of measurement noise and
model inaccuracies. This technique allows analog systems to be
characterized more accurately and moreefficiently, thereby signif-
icantly reducing system test time and hence total manufacturing
cost.

1 Introduction

The complexity of electronic systems being designed today
is increasing in many dimensions: on one hand, the number of
componentsis growing constantly; on the other, several radically
different functions must be integrated. For example, in the explod-
ing personal communications market, a device is the combination
of wireless transmission, analog and digital signal processing, and
digital computing. In this device, antennas, radio-frequency com-
ponents, and analog and digital subsystemshaveto bedesignedina
unified way to meet the performance, power, and size requirements
of the application.

The presence of analog components in these systems compli-
catestheir testing significantly. Analog circuits, in general, require
much longer testing times than digital circuits because second-
order effects must be considered and because few CAD tools are
available to aid in the design of the test vectors. Analog testing is
currently performed on a relatively ad-hoc basis; a design or test
engineer relies primarily upon intuition about a circuit’s internal
functionality to derive the circuit’s test suite. This test suite fre-
quently defaults to the complete set of circuit specifications. This
approachis becoming increasingly expensivein both test develop-
ment and test execution times. The specificationsof mixed analog-
digital circuitsare usually very large (e.g. see[1]), which not only
results in long manual test development, but also in prohibitive
testing times on very expensive automated test equipment (ATE)
with mixed-signal capabilities; it is estimated that testing currently
accounts for 30% of total manufacturing cost [2]. Furthermore,
the use of sophisticated CAD tools has reduced the design cycle so
that the influence of testing on time-to-market and final cost of the
circuit isincreasingly significant. For these reasons, analog testing
is considered to be one of the most important problems in analog
and mixed-signal design.

In this paper we present an algorithm for deriving aminimal set
of test vectors for fully testing the performance specifications of a
general classof analog systems. The class of systemsto whichthe
algorithm can be applied are those systemswhich can be modeled
inalinear function space, i.e. the system output must be an additive
combination of user-specified basis functions. Note that the basis
functions themselves do not have to be linear. Mathematically the
model is formulated as

Y = Bogo + B1g1 + B292+ B3gza + ... + Bngn 1)
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Figure 1: Six switchable current sources connected in parallel.

whereY” isthe systemoutput, {g; } isaset of arbitrary basisvectors

(user-specified), and 3; is the coefficient of the :** basis vector.
Many analog systems can be accurately modeled in this fashion.

Thealgorithm is based upon the statistical theory of optimal ex-
perimental design, in whichtest vectorsare chosento be maximally
independent so that the system performance Y will be character-
ized asaccurately aspossiblein the presence of measurement noise
and model inaccuracies. More specifically, we wish to choosethe
test vectorsto minimize the average standard error of the predicted
output, thereby maximizing the likelihood that we will be able
to conclusively verify that the performance specifications have or
have not been met after a minimum number of test vectors. If the
minimum number of test vectors is not sufficient to conclusively
verify the performance specifications, then additional test vectors
are selected and applied, one at a time, until the standard error
of the predicted output is low enough to verify the performance
specifications. Linear regression is used to analyze the results of
the tests and compute the required standard errors.

2 Motivation

Consider a simple system of six current sources connected in
parallel, as shown in Figure 1. Each of the current sources can
be turned on or off by the controlling inputs zs, x4, ..., zo. The
sources were designed to each output one unit of current when
on, but may actually output slightly more or slightly less than that
amount because of manufacturing nonidealities.

Suppose that one wishes to test this system to insure that the
amount of current each sourcesoutputsiswithin 1% of its nominal
value. There are six independent current sources which must be
measured, so at least six test vectors must be applied. Furthermore,
supposethat the ammeter used to measure the current at the output
is known to be accurate to within 0.005 units of current.

The simplest set of test vectorsthat can beimagined is probably
Test Set 1 in Table 1, which tests each current element in turn by
setting one of the ;’sto 1 while leaving the othersat 0.

An dternative set of possible test vectors, which also happens
to beaprovably optimal set of test vectorsfor this circuit, is shown
as Test Set 2 in Table 1. Both sets of test vectors can be used to
estimate the actual current that each source outputs. The two test
setsdiffer, however, in the accuracy with which they can makethis
measurement. Figure 2 showsthe 99% confidenceintervals which
could be constructed after applying each set of test vectors to a
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Table1: Two setsof test vectorsfor testing current sources.
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Figure 2: (a) Confidence intervals from applylng Test Set 1. (b)
Confidenceintervals from applying Test Set 2

simulated deterministic system. For Test Set 1 it can be concluded
(with > 99% confidence) that the =4 and «3 current sources fall
within their specifications, but it is not possibleto draw any definite
conclusionsabout the other current sources. For Test Set 2, on the
other hand, the confidence intervals are much tighter and it can
be concluded (with > 99% confidence) that the x5 and «o current
sourcesfall outside their specificationsand that the x4, 23, and z»
current sources fall within their specifications. Thus the simple
test set leavesfour estimatesuncertain whilethe best test set leaves
only one estimate uncertain.

A common technique for tightening the confidenceintervalsis
to repeat each test vector several times and then averagethe resullts.
Each test vector would have to be applied five times, however, for
atotal of 30 tests, to obtain the same confidenceintervals that can
befound from one application of the six vectorsin the best test set.

From this simple exampleit is clear that choosing a*“ good” set
of test vectors is desirable because it will lead to more accurate
characterizations of system output, and hence possibly smaller
test sets. Good test sets are not intuitively obvious, however,
even for very simple systems. In the remainder of this paper we
discuss some new CAD techniques which have been developed
and implemented for finding these good test sets.

3 Previous Work

Most of the previous work in ATPG for electrical systems has
beendirected at digital circuits, and efficient techniqueshave been
developed for both combinational and sequential digital systems
[3,4]. Thesetest systemsare based on the common single stuck-at-
O/stuck-at-1 fault model and the controllability and observability
of each fault.

Unfortunately most of theseideas cannot be directly applied to
analog systems. One of the major problemsisthat analog systems
are, in general, much more difficult to model because second- and
higher-order effects must be considered to accurately predict sys-
tem performance. Another major differenceis that analog circuits
arelesssusceptibleto catastrophic (e.g. stuck-at) faults, because of

the typically larger device and wire sizes, but much more suscep-
tible to parametric faults, which are small variationsin component
values that cause the system performance to violate its specifica-
tions.

In the area of analog testing, work has been done in system
modeling and test ordering, both of which are useful toward the
goa of reducing testing time. In the area of system modeling,
Sounders and Stenbakken proposed using linear models, which
can be derived either from simulation [5] or from manufacturing
data [6] using QR decomposition. In the area of test ordering,
Milor has described an algorithm for minimizing averagetest time
by ordering testsin such away that the tests which are most likely
to detect faults are performed first [7].

In this paper we assumethat a suitable linear behavioral model
for the system exists (or can beeasily derived from sensitivity anal-
ysis), and we focus on a new optimization algorithm for selecting
the best set of test vectors.

Furthermore, we proposethe use of statistical confidenceinter-
valsto verify system performance in the presence of measurement
noiseand model inaccuracies. Test points arechosento makethese
confidenceintervals astight as possible.

4 Algorithm

Given an arbitrary basis consisting of » functions which span
an n-dimensional space, at least » test vectors must be applied to
the system in order to fully characterize the output function. If
fewer than n input vectorsare applied, then at least one dimension
of the space remains unexplored and hence the output function
is unconstrained in that dimension. Furthermore, because of in-
evitable measurement noise, » test vectors may not be sufficient
to verify that the output function falls within the desired bounds.
Using additional test vectors will lower the standard error of the
estimates, thereby making it morelikely that the system output can
be verified to fall within the desired limits.

Withthesefactorsin mind, thetesting algorithm that we propose
is

1. Apply » “maximally orthogonal” vectors to the system,
where n isthe dimensionality of the spaceto be character-
ized.

2. Generate the estimated response function and confidence
intervals for that response function.

3. If the confidence intervals for the response function fall
definitely within the system performance specifications at
all points, then accept the chip.

4. If the confidence intervals for the response function fall
definitely outside the system performance specifications at
any point, then reject the chip.

5. Otherwise apply additional test vectors which are “maxi-
mally orthogonal” to those already applied, one at a time,
until the confidenceintervals are small enough to determine
whether or not the chip meets its specifications.

The choice of test vectors is a difficult optimization problem.
The objective is to minimize the standard error of the estimated
responsefunction, which is afunction of the choice of test vectors.
Intuitively, the orthogonality of the test vectors is measured by the
degreeto which each test vector maximizesthe contribution of one
basis function while minimizing the contribution of the others.

The algorithm used to derive the maximally orthogonal test
vectorsis

1. Eliminate any redundant basis vectors.

2. Runthel-optimality algorithmto select best » tests, wheren
isthe dimensionality of the function space after eliminating
redundant basis vectors.

3. Runthel-optimality algorithm to select best additional vec-
tors, oneat atime, for useif the prior testsare not conclusive.

4.1 Optimality Criteria

There are several different optimality criteria (A-, D-, E-, G-,
and |-), the relative merits of which have been debated extensively



in the relevant literature [8, 9]. D-optimality, which is generally
considered to be the simplest type of optimality, minimizes the
average prediction variance of the model coefficients. This type
of optimality would be very suitable for fault diagnosis, in which
we wish to estimate the actual values of each circuit component as
accurately as possible. D-optimality claims nothing about the the
average prediction variance of the system output, however, so it is
not the best choice for verifying that the system output meets its
specifications.

The two types of optimality which do consider the prediction
varianceof the system output are G- and | -optimality. G-optimality
minimizes the maximum prediction variance over the responsesur-
faceof interest. Itwould probably bethe most suitablefor verifying
that a circuit meets its specifications, since specifications are fre-
quently stated as worst-case bounds. G-optimality is difficult to
optimize upon, however, because it is not continuously differen-
tiable. Hence I-optimality, which is continuously differentiable,
was chosen for this research. |-optimality minimizes the aver-
age prediction variance over the response surface of interest. To
formulate these ideas mathematically, let

y=1f(g91,92,...,9p) +¢ (2
where y is the response variable, g; are the independent basis
vectors, and e represents the measurement and modeling errors,

which are assumedto beindependentwith mean 0 and variance o2.
Let X be the design matrix, which contains one row for each
of the n test vectors.

gi(z1)  ga2(z1)  g3(z1) gp(r1)
gi(z2) ga2(z2) g3(z2) gp(22)
- : ©
gi(zn)  g2(zn)  g3(zn) 9p(zn)
The design moment matrix M x can be calculated as
Mx=1xTx @
n

and the prediction variance at an arbitrary point z on the response
surfaceis

2
var §(z) = C%f(ac)M)zlf(ac)T (5)

An |-optimal design is one which minimizes the average of this
variance over the response surface R

n ~
1= ;/Rvar g(z)dp(z). (6)
Thisintegral simplifies[9] to give
I =trace{ MM} )
where M is the moment matrix of the region of interest R.
W= [ @ i@t @
R

4.2 Optimization

Finding an exactly I-optimal design is believed to be NP-
complete [10] and hence only feasible for very small problems.
For larger problems, several heuristic algorithms have been suc-
cessfully used to find “good” solutions to this and other related
problemsin the areaof optimal experimental design. Theseheuris-
tic algorithmsinclude simulated annealing [10], greedy swap tech-
niques[11], and gradient descent techniques. For this research we
used the gradient descent techniquesimplemented in the software
package gosset , which was recently developed by Hardin and
Sloane at AT&T Bell Laboratories [12]. The primary focus of
gosset islow-order polynomial models, which are of only lim-
ited usein characterizing typical analog circuits. For thisresearch,
therefore, gosset wasextended to utilize arbitrary Lipschitz con-
tinuous functions, such as the piecewise linear output of common
behavioral simulators [13] and SpicE [14].

Gosset usesan optimization algorithm known as Hooke and
Jeeves pattern search[15], which is based on the idea of finding a
“valley” and following it downward until reaching the lowest point
on the response surface, similar to the manner in which a stream
flows down a mountain. The optimization begins by selecting
a random point on the response surface, calculating the gradient
at that point, and proposing a set of small perturbations in the
direction of the gradient. If this set of perturbations causes the
objective function to improve, then this “move” is accepted and
the step sizeis increased by a constant factor. Otherwise the set of
perturbations is rejected and a smaller move is attempted.

Theinitial point in the search space, (%, is chosen randomly.
The initial velocity vector v(? is set to 0, where the velocity v;
of input : is defined as being the amount by which that input is
perturbed in a given move. The step size s is set to asmall value.
The search then proceeds as

D () | (4D ©
HUTY — () 4 sg(x(i)) (10)

where g(z(") is the gradient evaluated at the point ("), If
Py < F(29), (11)

where F is the objective function, then the value for z(*t is
accepted, s is multiplied by 1.04, and the iteration is repeated. If
P24y 2 F(29) then o'V is set to 0 and (9) and (10) are
tried again. If there is still no reduction in F, then s is divided
by 2 and (9) and (10) are tried again. The algorithm terminates
when the step sizeis lessthan some small accuracy limit. Then, if
desired, anew random starting point can be chosen and the entire
minimization algorithm repeated, successively, until a specified
number of random starts have been investigated. At that point the
algorithm terminates, returning the best design found.

If (*) moves outside the feasibility region, which is defined by
the limited range of values that each input can assume, then it is
moved to the closest feasible point.

Note that the optimization assumesthat all of the inputs to the
system are continuous. If the inputs are discrete, as frequently
occurswhen analog systemsare connected to digital systems, then
a post-processing step is performed which is similar to integer
programming. Each of the test vectors is sequentially considered,
and discrete inputs with illegal values are converted to whichever
of the two closest discrete values gives the smallest value of F'.
Thetechniqueis essentially greedyinteger programming, sincethe
order in which the inputs are considered could cause the algorithm
to becomestuck inalocal minimum. Wehave empirically observed
that the algorithm works well because

1. Theoptimization pushesmany variablesto their boundaries,

which are usually legal discrete values, and

2. The[usually slight] non-optimality introduced by theround-

ing off of one test vector can frequently be partially com-
pensated for by the rounding off of a similar test vector in
the opposite direction.

Hooke and Jeevesfound empirically, in a curve-fitting problem
involving a neutron reactor, that the computation time for their
pattern searchalgorithm increased only linearly with the number of
variables, which makesit especially suitable for the analog testing
problem because analog systems may require large numbers of
parameters to accurately characterize them.

5 Modd Derivation

The statistical design and analysis techniques which we use
for system testing require a homoskedastic, linear function space.
The linearity requirement means that any system output can be
expressed as an additive combination of a set of basis vectors, as
shown in Equation 1. Homoskedastic refers to a requirement that
the measurement error ¢, which is a combination of model inaccu-
racies and noise, is not a function of the input; this assumption is
reasonable for many typical analog testing situations.



There are several simple methods which can be used to choose
the {g;} basis vectors. For extremely simple systems the basis
functionsmay beobviousfrom asimpledescription of the expected
output. Consider, for example, the current sources discussed in
Section 2; the output is modeled as

Y = Bsws+ faxa+ B3z + faz2 + Biz1 + Foro (12)

where the 3 coefficients are the unknown model parameters we
wishto characterize. Thebasisfunctionsfor this systemaresimply
{zs,z4,73,72,71,50}, the set of contributions from each current
source, which are added together to form the output.

For more complicated systems, the Taylor expansion can be
used to derive a very useful additive model

2 01t n—1g(n—1)
i) )
2! (n —1)!

(13)
where a represents the nominal value of a model parameter, f(a)
represents the value of the output when that model parameter is
at its nominal value, and = represents the amount by which that
model parameter deviatesfrom its nominal value because of man-
ufacturing nonidealities. We wish to estimate f(a + ).

A first-order Taylor series approximation is a reasonably ac-
curate model for many common analog systems with parameters
that do not deviate significantly from their nominal values. Thisis
the model used by Stenbakken and Sounders [16], and our discus-
sion of it here will be brief. Dropping the higher-order terms and
generalizing to multiple dimensions, the expansion becomes

flat )= f(a)+zf'(a) +

flate) = fla)+vfla)e (14
= f(a)—l—j—fxl—l— g—fxz—l—... (15)
ai az

where «; is the nominal value of the i** model parameter and

z; isthe deviation in that parameter. The basis functions for this
systemarethus{f(a), &L, 5L, ...}. f(a)isthenominal system
performance, and each of the partial derivatives representsan error
signature for a particular type of manufacturing defect which can
occur. Theerror signatures are computed by finding the sensitivity
of the output to the parameters of interest at each point on the
response surface. Note that these error signatures could represent
either catastrophic faults, such as shorts and disconnections, or
parametric faults, such as small deviations in capacitance values
Or process parameters.

Once the basis vectors {g1, g2, ..., gn} are identified, we
compute their null space to verify that they are all independent.
The parameters associated with error signatures that are linearly
dependent are said to belong to the same ambiguity group, since
variations in those parameters are indistinguishable at the system
output. Ambiguity groups reduce the number of basis vectors
neededto model the response surface and hencethe number of test
vectors which must be applied to fully characterize a system.

Let U be the matrix formed from these basis vectors, where ¢;
is the ¢;, column of U. Suppose U has dependent columns, then
its null spaceis non-empty such that

UN=0 (16)

where N € R™*" isamatrix with r independent column vectors
that spans the null space of /. Non-zero entries in N indicate
that the corresponding components are in ambiguity groups. A
component ¢ belongsto an ambiguity group if and only if row ¢ of
N has a non-zero entry. Furthermore, components: and 5 are in
the same ambiguity group if rows: and j of N are non-zero and
not orthogonal to each other [17]. It follows that the components
fall into the same group if their corresponding row vectors of N
are non-zero and not orthogonal.

The null space of U can be computed using singular value
decomposition (SVD) or Gaussian elimination. In the case of

SVD, wefirst compute 7 7 7, followed by SVD
UTU = X1 XoNT (17)

where N spans the null space of UTU. Since UTUN = 0,
UN = 0,s0 N isthenull spaceof U aso. Thereasonfor comput-
ing T in(17) isthat I often hasmany more rowsthan columns,
so computing N for asmaller matrix U7 U is more efficient. Fur-
thermore, note that computing N' and checking the rows of N for
pairwise orthogonality can be performed in polynomial time.

Thefinal set of basisvectorswhich will be used to characterize
the system, then, is

1. al of thebasisvectorswhich arenotinany ambiguity group,

combined with

2. onevector from each ambiguity group.

Once this set is formed, the I-optimality routines, as described
in Section 4, are executed to find a good set of test vectors.

Oncethetest vectors have been applied, the measured responses

are used to estimate 3, the vector of coefficients for each of the
basis vectors. For the special case when the number of test points

is equal to the number of basisfunctions, 3 isfound by solving
Xg=Y (18)

for 3, where X isthe design matrix as output by the I-optimality
routine and Y is the vector of measured responses. When the
number of test pointsis greater than the number of basisfunctions,

A isfound by solving
XTxp=xTy (19)
forB,WhichisaIinear regression. A
A 99% confidenceinterval for the 8 estimates over the entire

response surface is computed by applying Equations4 and 5 from
Section 4.1, followed by

cI(f) = (3 — 2.576\/var(3), 3 + 2.576 var(é)) . (20)

where the factor 2.576 is used becauseit is the 99.5% quantile of
anormal distribution, which leaves only a 1% probability that the
actual value of the response at that function falls outside of the
confidenceinterval.

Note that we have assumed that the variance o2 of the error
term ¢ is known by the designer. If thisisnot the case, then S2, an

estimator of &2, can be derived from the observations Y as
o Dl AP
(n—d)

where Y; is the i** observation, ji(z;) is the predicted value of
Y, based on the model, » is the number of measurements, and
d is the dimensionality of the model (the number of independent
basis vectors). When 52 is used instead of o2 then the confidence
intervals are constructed by using the t-distribution quantileswith
n — d degrees of freedom instead of the normal quantiles. Note
that the t-distribution approachesthe normal distribution for large
n (eg. n > 30 — 40), so the normal distribution can often be
used as an approximation to the appropriate t-distribution when

generating the confidenceintervals from S2 instead of from o2,

6 Results

In this section we describe some practical examples of analog
systems on which our ATPG agorithms have beenrun. Thefirstis
abandpassfilter with center frequency of 24.5kHz[18], whichwas
analyzed using SPICE sensitivity analysis. The second is a single
MOS transistor, which was analyzed in SpicE with a level three
transistor model. The third is a 6-bit Nyquist-rate D/A converter
which was analyzed using explicit behavioral equations[13].

6.1 BandpassFilter

Figure 3 shows a linear model for a bandpassfilter. As basis
functions we select the constant function, the nominal frequency

(1)



Figure 3: Bandpassfilter with center frequency at 24.5 kHz.

response, and the sensitivities of the nominal responsewith respect
to Ry, C1, Ro, C2, R3, Ra, and Rs.

Running the ambiguity algorithm revealsthat many of the com-
ponent sensitivities are linearly dependent; the constant function,
the nominal response, and the sensitivities with respect to C, C1,
and R are sufficient to fully characterize the filter.

Since there are five basis functions in the model, at least five
test frequencies will be needed to estimate the system response.
Weimposea constraint that the test frequencieslie between 15kHz
and 40kHz, sincethat is the region of theresponsein which weare
interested, and run the |-optimality algorithm. The five test fre-
guencies which the algorithm selects are shown in Table 2. Note
that thefifth test point is pushed to the user-imposed limit of 40kHz,
while the remaining test points sample the response at intervals of
approximately 3 kHz near the nominal center frequency. Further-
more, if the constant function is eliminated from the model, then
thetest point at 40.00 kHzisno longer needed and disappearsfrom
the test set.

Frequency | | Output |
19.32kHz 0.914
22.57kHz 1.65
24.89kHz 1.99
28.42kHz 1.30
40.00 kHz 0.482

Table2: Test frequencies chosen for bandpassfilter.

Applying the five selected test frequencies to a simulated cir-
cuit produces the estimated output and 99% confidence intervals
shown in Figure 4. According to the testing algorithm outlined in
Section 4, these confidence intervals would be compared against
thefilter specificationsto determine whether the component should
be accepted or rejected, or whether additional test vectors should
be applied to tighten the confidenceintervals.

6.2 MOSTransistor

Suppose we wish to test an MOS transistor to verify that its
drain current /s falls within certain bounds over all values of
Ves and Vps. The manufacturer has provided a level 3 Spice
model for the devicewith the parameter valuesshownin Figure 5.
As basis functions, we select the constant function, the nominal
performance, and the sensitivities with respect to Viro, &', 7, tox,
and §. The normalized basis functions are shown graphically for
threevaluesof Viz s in Figure6. Although only threevaluesof Vi s
are shown, both Vi s and Vs 5 are treated as continuous variables,
so the response surface is 2-dimensional and continuous.

Running the ambiguity group algorithm, wefind that ¥’ and the
nominal performanceare linearly dependent onthe entire response
surface, which can be seenin Figure 6(a) and 6(c). Sothe &’ vector
is dropped from the model, and there are 6 remaining independent
basis functions. Therefore we will need at least 6 test points to
characterize the device.

1This model is based on the HP CMOS26B 0.8 ;:m process.
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Figure4: Estimated output and 99% confidenceintervalsfor band-
passfilter.
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+ OGBO=3. 0108E-10 CJ=1.1962E- 04 M=0. 4398 CJISW4. 6935E-10

+ MISW-0. 123994 PB=0. 800000

Figure 5: Spice model for MOS transistor.

To prevent the |-optimality algorithm from selecting unreason-
able test points, we impose constraintson the inputs Vs s and Vip s
suchthat 0.1V < Vps < 10.0V and 2.0V < Vgs < 5.0V. We
then run the I-optimality algorithm,; it selectsthe test points shown
in Table 3.

Vaos | Vbs Ips
5.0 1.0 | 19.04910x10~3
32 0.9 | 10.00540x10~3
5.0 01 | 2.66950x10~3
50 | 100 | 33.62560x10~°
2.0 10.0 6.24432x10~3
5.0 2.2 | 27.45550x10~3

Table3: Test points chosenfor MOS transistor.

Figure 7(a) showstheestimated response curvesfor threevalues
of Vs after applying the indicated 6 test vectors to a device,
along with the 99% confidenceintervals for those estimates. The
confidence intervals are based upon a measurement accuracy of
0.1%. The expected value of the model error at Vs = 3.5V is
shown in Figure 7(b), from which we conclude that our estimates
are least accurate near Vs = V. This fact is not surprising,
since that region of transistor operation is difficult to model.

6.3 Nyquist-rate D/A Converter

A 6-bit Nyquist-rate D/A converter based on binary-weighted
current sourcesis shownin Figure 8, which is similar to the simple
example presentedin Section 2 except that in this case the current
sources are binary-weighted instead of unit-weighted. The basis
vectors for the system are chosen to be {1, =5, x4, z3, =2, z1,
zo}, where the constant function 1 is used to model the converter
offset. Since there are seven independent basis functions in the
model, at least seven tests must be performed to fully characterize
the system. The |-optimal design is shown in Table 4, along with



x103 x103 x103

q
2
q
2
q
2

3400

5
8
T T T T T T T T T T T T T T T T T

Figure 6: (a) Nominal Ips vs. Vpg transistor curves. (b) Sensitivity w.rt. Vro. () Sensitivity w.rt. k’. (d) Sensitivity w.rt. v. (€)
Sensitivity w.r.t. ¢,,. (f) Sensitivity w.r.t. 6.

32 16 8 4 2 1

Xg— X4— X3— Xo— Xy — Xo— Code Inputs I-Value

j; j; ; j; l— l— T T4 z3 T2 1 zo

8/ 0 0 1 0 0 o0

output 5|0 0o 1 1 1 1

200 1 0 1 0 1

Figure 8: 6-Bit binary-weighted current source D/A converter. 2,0 1 0 1 1 0
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4|1 o0 1 1 0 O
50| 1 1 1 0 1 1| 127778
the next seven extra points which would be chosen, in succession, 61 1 1 1 1 0 1 | 112500
to tighten the confidenceintervals on the estimated performance. 33| 1 0 0 1 1 0 | 097619
Application of the seveninitial test vectorsto asimulated DAC 1]/ 0 0 0 ©O0 0 1 | 083333
produces the results shown in Figure 9. The upper and lower 481 1 0 0 0 0 | 070000
confidence intervals illustrate how the entire performance of the 481 1 0 0 0 0 | 058333
DAC can be modeled quite accurately after the application of only 26| 0 1 1 0 1 0 | 055263
seven well-chosen test vectors. Furthermore, we may be able to 10 | O 0 1 0 1 0 | 052222
draw some conclusions regarding the acceptability of this DAC, All 64 codes 0.10938

depending upon the INL specification. If the INL specification
is greater than 0.2 LSB, then the DAC should be accepted with
then the DAC should be rejected with no further tests. If the
INL specification falls between these bounds, then additional test
vectors must be applied to tighten the confidenceintervals.
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Figure 7: (a) Estimated response and confidenceintervals for MOS transistor from seven test points. (b) Standard error of estimate.
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Figure 9: Upper and lower bounds on INL error from seven test
vectors.

7 Conclusions

We have presented a new CAD algorithm which automatically
generates a minimal set of test vectors for characterizing a gen-
eral class of analog circuits, namely those circuits which can be
efficiently modeled as an additive summation of user-defined basis
functions. The algorithm chooses the set of test vectors so as to
minimize the average prediction variance of the model. Applying
the minimal set of test vectors to a circuit produces an estimate
of the circuit's performance for al possible input vectors and,
more importantly, confidence intervals on those estimates which
can be used to determine whether the component should be passed
or failed, or whether additional test vectors should be applied to
tighten the confidenceintervals.

Because these techniques generate the tightest possible con-
fidence intervals after a minimum number of test vectors, they
represent the most efficient way of fully characterizing system per-
formance. Tight confidenceintervals will lead to reduced testing
time for analog systems because more components will be fully
verifiable, to adesired confidencelevel, with the minimum number
of test vectors. We have applied the agorithm to several analog
systemsand have shown it to be efficient and effective.
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