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Abstract
This paper describesa new CAD algorithm which performs au-

tomatic test pattern generation (ATPG) for a general class of ana-
log systems, namely those circuits which can be efficiently modeled
as an additive combination of user-defined basis functions. The
algorithm is based on the statistical technique of I-optimal exper-
imental design, in which test vectors are chosen to be maximally
independent so that circuit performance will be characterized as
accurately as possible in the presence of measurement noise and
model inaccuracies. This technique allows analog systems to be
characterized more accurately and more efficiently, thereby signif-
icantly reducing system test time and hence total manufacturing
cost.

1 Introduction
The complexity of electronic systems being designed today

is increasing in many dimensions: on one hand, the number of
components is growing constantly; on the other, several radically
different functions must be integrated. For example, in the explod-
ing personal communications market, a device is the combination
of wireless transmission, analog and digital signal processing, and
digital computing. In this device, antennas, radio-frequency com-
ponents, and analog and digital subsystemshave to be designed in a
unified way to meet the performance, power, and size requirements
of the application.

The presence of analog components in these systems compli-
cates their testing significantly. Analog circuits, in general, require
much longer testing times than digital circuits because second-
order effects must be considered and because few CAD tools are
available to aid in the design of the test vectors. Analog testing is
currently performed on a relatively ad-hoc basis; a design or test
engineer relies primarily upon intuition about a circuit’s internal
functionality to derive the circuit’s test suite. This test suite fre-
quently defaults to the complete set of circuit specifications. This
approach is becoming increasingly expensive in both test develop-
ment and test execution times. The specificationsof mixed analog-
digital circuits are usually very large (e.g. see [1]), which not only
results in long manual test development, but also in prohibitive
testing times on very expensive automated test equipment (ATE)
with mixed-signal capabilities; it is estimated that testing currently
accounts for 30% of total manufacturing cost [2]. Furthermore,
the use of sophisticated CAD tools has reduced the design cycle so
that the influence of testing on time-to-market and final cost of the
circuit is increasingly significant. For these reasons, analog testing
is considered to be one of the most important problems in analog
and mixed-signal design.

In this paper we present an algorithm for deriving a minimal set
of test vectors for fully testing the performance specifications of a
general class of analog systems. The class of systems to which the
algorithm can be applied are those systems which can be modeled
in a linear function space, i.e. the system output must be an additive
combination of user-specified basis functions. Note that the basis
functions themselves do not have to be linear. Mathematically the
model is formulated as

Y = �0g0 + �1g1 + �2g2 + �3g3 + : : :+ �ngn (1)

x4 x3 x2 x1x5 x0

output

Figure 1: Six switchable current sources connected in parallel.

whereY is the system output, fgig is a set of arbitrary basis vectors
(user-specified), and �i is the coefficient of the ith basis vector.
Many analog systems can be accurately modeled in this fashion.

The algorithm is based upon the statistical theory of optimal ex-
perimental design, in which test vectors are chosen to be maximally
independent so that the system performance Y will be character-
ized as accurately as possible in the presence of measurementnoise
and model inaccuracies. More specifically, we wish to choose the
test vectors to minimize the average standard error of the predicted
output, thereby maximizing the likelihood that we will be able
to conclusively verify that the performance specifications have or
have not been met after a minimum number of test vectors. If the
minimum number of test vectors is not sufficient to conclusively
verify the performance specifications, then additional test vectors
are selected and applied, one at a time, until the standard error
of the predicted output is low enough to verify the performance
specifications. Linear regression is used to analyze the results of
the tests and compute the required standard errors.

2 Motivation
Consider a simple system of six current sources connected in

parallel, as shown in Figure 1. Each of the current sources can
be turned on or off by the controlling inputs x5; x4; : : : ; x0. The
sources were designed to each output one unit of current when
on, but may actually output slightly more or slightly less than that
amount because of manufacturing nonidealities.

Suppose that one wishes to test this system to insure that the
amount of current each sources outputs is within 1% of its nominal
value. There are six independent current sources which must be
measured, so at least six test vectors must be applied. Furthermore,
suppose that the ammeter used to measure the current at the output
is known to be accurate to within 0.005 units of current.

The simplest set of test vectors that can be imagined is probably
Test Set 1 in Table 1, which tests each current element in turn by
setting one of the xi’s to 1 while leaving the others at 0.

An alternative set of possible test vectors, which also happens
to be a provably optimal set of test vectors for this circuit, is shown
as Test Set 2 in Table 1. Both sets of test vectors can be used to
estimate the actual current that each source outputs. The two test
sets differ, however, in the accuracy with which they can make this
measurement. Figure 2 shows the 99% confidence intervals which
could be constructed after applying each set of test vectors to a
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Test Set 1 Test Set 2
x5 x4 x3 x2 x1 x0 x5 x4 x3 x2 x1 x0

1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 1
0 0 0 1 0 0 0 1 1 1 0 0
0 0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1 0 1 0

Table 1: Two sets of test vectors for testing current sources.
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Figure 2: (a) Confidence intervals from applying Test Set 1. (b)
Confidence intervals from applying Test Set 2.

simulated deterministic system. For Test Set 1 it can be concluded
(with > 99% confidence) that the x4 and x3 current sources fall
within their specifications,but it is not possible to draw any definite
conclusions about the other current sources. For Test Set 2, on the
other hand, the confidence intervals are much tighter and it can
be concluded (with > 99% confidence) that the x5 and x0 current
sources fall outside their specifications and that the x4, x3, and x2
current sources fall within their specifications. Thus the simple
test set leaves four estimates uncertain while the best test set leaves
only one estimate uncertain.

A common technique for tightening the confidence intervals is
to repeat each test vector several times and then average the results.
Each test vector would have to be applied five times, however, for
a total of 30 tests, to obtain the same confidence intervals that can
be found from one application of the six vectors in the best test set.

From this simple example it is clear that choosing a “good” set
of test vectors is desirable because it will lead to more accurate
characterizations of system output, and hence possibly smaller
test sets. Good test sets are not intuitively obvious, however,
even for very simple systems. In the remainder of this paper we
discuss some new CAD techniques which have been developed
and implemented for finding these good test sets.

3 Previous Work
Most of the previous work in ATPG for electrical systems has

been directed at digital circuits, and efficient techniques have been
developed for both combinational and sequential digital systems
[3, 4]. These test systems are based on the common single stuck-at-
0/stuck-at-1 fault model and the controllability and observability
of each fault.

Unfortunately most of these ideas cannot be directly applied to
analog systems. One of the major problems is that analog systems
are, in general, much more difficult to model because second- and
higher-order effects must be considered to accurately predict sys-
tem performance. Another major difference is that analog circuits
are less susceptible to catastrophic (e.g. stuck-at) faults, because of

the typically larger device and wire sizes, but much more suscep-
tible to parametric faults, which are small variations in component
values that cause the system performance to violate its specifica-
tions.

In the area of analog testing, work has been done in system
modeling and test ordering, both of which are useful toward the
goal of reducing testing time. In the area of system modeling,
Sounders and Stenbakken proposed using linear models, which
can be derived either from simulation [5] or from manufacturing
data [6] using QR decomposition. In the area of test ordering,
Milor has described an algorithm for minimizing average test time
by ordering tests in such a way that the tests which are most likely
to detect faults are performed first [7].

In this paper we assume that a suitable linear behavioral model
for the system exists (or can be easily derived from sensitivity anal-
ysis), and we focus on a new optimization algorithm for selecting
the best set of test vectors.

Furthermore, we propose the use of statistical confidence inter-
vals to verify system performance in the presence of measurement
noise and model inaccuracies. Test points are chosen to make these
confidence intervals as tight as possible.

4 Algorithm
Given an arbitrary basis consisting of n functions which span

an n-dimensional space, at least n test vectors must be applied to
the system in order to fully characterize the output function. If
fewer than n input vectors are applied, then at least one dimension
of the space remains unexplored and hence the output function
is unconstrained in that dimension. Furthermore, because of in-
evitable measurement noise, n test vectors may not be sufficient
to verify that the output function falls within the desired bounds.
Using additional test vectors will lower the standard error of the
estimates, thereby making it more likely that the system output can
be verified to fall within the desired limits.

With these factors in mind, the testing algorithm that we propose
is

1. Apply n “maximally orthogonal” vectors to the system,
where n is the dimensionality of the space to be character-
ized.

2. Generate the estimated response function and confidence
intervals for that response function.

3. If the confidence intervals for the response function fall
definitely within the system performance specifications at
all points, then accept the chip.

4. If the confidence intervals for the response function fall
definitely outside the system performance specifications at
any point, then reject the chip.

5. Otherwise apply additional test vectors which are “maxi-
mally orthogonal” to those already applied, one at a time,
until the confidence intervals are small enough to determine
whether or not the chip meets its specifications.

The choice of test vectors is a difficult optimization problem.
The objective is to minimize the standard error of the estimated
response function, which is a function of the choice of test vectors.
Intuitively, the orthogonality of the test vectors is measured by the
degree to which each test vector maximizes the contribution of one
basis function while minimizing the contribution of the others.

The algorithm used to derive the maximally orthogonal test
vectors is

1. Eliminate any redundant basis vectors.
2. Run the I-optimality algorithm to select bestn tests,wheren

is the dimensionality of the function space after eliminating
redundant basis vectors.

3. Run the I-optimality algorithm to select best additional vec-
tors, one at a time, for use if the prior tests are not conclusive.

4.1 Optimality Criteria
There are several different optimality criteria (A-, D-, E-, G-,

and I-), the relative merits of which have been debated extensively



in the relevant literature [8, 9]. D-optimality, which is generally
considered to be the simplest type of optimality, minimizes the
average prediction variance of the model coefficients. This type
of optimality would be very suitable for fault diagnosis, in which
we wish to estimate the actual values of each circuit component as
accurately as possible. D-optimality claims nothing about the the
average prediction variance of the system output, however, so it is
not the best choice for verifying that the system output meets its
specifications.

The two types of optimality which do consider the prediction
variance of the system output are G- and I-optimality. G-optimality
minimizes the maximum prediction variance over the response sur-
face of interest. It would probably be the most suitable for verifying
that a circuit meets its specifications, since specifications are fre-
quently stated as worst-case bounds. G-optimality is difficult to
optimize upon, however, because it is not continuously differen-
tiable. Hence I-optimality, which is continuously differentiable,
was chosen for this research. I-optimality minimizes the aver-
age prediction variance over the response surface of interest. To
formulate these ideas mathematically, let

y = f(g1; g2; : : : ; gp) + � (2)
where y is the response variable, gi are the independent basis
vectors, and � represents the measurement and modeling errors,
which are assumedto be independentwith mean 0 and variance�2.

Let X be the design matrix, which contains one row for each
of the n test vectors.

X =

2
64

g1(x1) g2(x1) g3(x1) : : : gp(x1)
g1(x2) g2(x2) g3(x2) : : : gp(x2)

...
g1(xn) g2(xn) g3(xn) : : : gp(xn)

3
75 (3)

The design moment matrix MX can be calculated as

MX =
1
n
X
T
X (4)

and the prediction variance at an arbitrary point x on the response
surface is

var ŷ(x) =
�2

n
f(x)M

�1
X f(x)

T
: (5)

An I-optimal design is one which minimizes the average of this
variance over the response surface R

I =
n

�2

Z
R

var ŷ(x)d�(x): (6)

This integral simplifies [9] to give

I = tracefMM
�1
x g (7)

where M is the moment matrix of the region of interest R.

M =

Z
R

f(x)
T
f(x)d�(x) (8)

4.2 Optimization
Finding an exactly I-optimal design is believed to be NP-

complete [10] and hence only feasible for very small problems.
For larger problems, several heuristic algorithms have been suc-
cessfully used to find “good” solutions to this and other related
problems in the area of optimal experimental design. These heuris-
tic algorithms include simulated annealing [10], greedy swap tech-
niques [11], and gradient descent techniques. For this research we
used the gradient descent techniques implemented in the software
package gosset, which was recently developed by Hardin and
Sloane at AT&T Bell Laboratories [12]. The primary focus of
gosset is low-order polynomial models, which are of only lim-
ited use in characterizing typical analog circuits. For this research,
therefore,gosset was extended to utilize arbitrary Lipschitz con-
tinuous functions, such as the piecewise linear output of common
behavioral simulators [13] and SPICE [14].

Gosset uses an optimization algorithm known as Hooke and
Jeeves pattern search [15], which is based on the idea of finding a
“valley” and following it downward until reaching the lowest point
on the response surface, similar to the manner in which a stream
flows down a mountain. The optimization begins by selecting
a random point on the response surface, calculating the gradient
at that point, and proposing a set of small perturbations in the
direction of the gradient. If this set of perturbations causes the
objective function to improve, then this “move” is accepted and
the step size is increased by a constant factor. Otherwise the set of
perturbations is rejected and a smaller move is attempted.

The initial point in the search space, x(0), is chosen randomly.
The initial velocity vector v(0) is set to 0, where the velocity vi
of input i is defined as being the amount by which that input is
perturbed in a given move. The step size s is set to a small value.
The search then proceeds as

x
(i+1)

= x
(i)

+ v
(i+1) (9)

v
(i+1)

= v
(i)

+ sg(x
(i)
) (10)

where g(x(i)) is the gradient evaluated at the point x(i). If

F (x
(i+1)

) < F (x
(i)
); (11)

where F is the objective function, then the value for x(i+1) is
accepted, s is multiplied by 1.04, and the iteration is repeated. If
F (x(i+1)) 6< F (x(i)) then v(i) is set to 0 and (9) and (10) are
tried again. If there is still no reduction in F , then s is divided
by 2 and (9) and (10) are tried again. The algorithm terminates
when the step size is less than some small accuracy limit. Then, if
desired, a new random starting point can be chosen and the entire
minimization algorithm repeated, successively, until a specified
number of random starts have been investigated. At that point the
algorithm terminates, returning the best design found.

If x(i) moves outside the feasibility region, which is defined by
the limited range of values that each input can assume, then it is
moved to the closest feasible point.

Note that the optimization assumes that all of the inputs to the
system are continuous. If the inputs are discrete, as frequently
occurs when analog systems are connected to digital systems, then
a post-processing step is performed which is similar to integer
programming. Each of the test vectors is sequentially considered,
and discrete inputs with illegal values are converted to whichever
of the two closest discrete values gives the smallest value of F .
The technique is essentially greedy integer programming, since the
order in which the inputs are considered could cause the algorithm
to become stuck in a local minimum. We have empirically observed
that the algorithm works well because

1. The optimization pushesmany variables to their boundaries,
which are usually legal discrete values, and

2. The [usually slight] non-optimality introduced by the round-
ing off of one test vector can frequently be partially com-
pensated for by the rounding off of a similar test vector in
the opposite direction.

Hooke and Jeeves found empirically, in a curve-fitting problem
involving a neutron reactor, that the computation time for their
pattern searchalgorithm increased only linearly with the number of
variables, which makes it especially suitable for the analog testing
problem because analog systems may require large numbers of
parameters to accurately characterize them.

5 Model Derivation
The statistical design and analysis techniques which we use

for system testing require a homoskedastic, linear function space.
The linearity requirement means that any system output can be
expressed as an additive combination of a set of basis vectors, as
shown in Equation 1. Homoskedastic refers to a requirement that
the measurement error �, which is a combination of model inaccu-
racies and noise, is not a function of the input; this assumption is
reasonable for many typical analog testing situations.



There are several simple methods which can be used to choose
the fgig basis vectors. For extremely simple systems the basis
functions may be obvious from a simple description of the expected
output. Consider, for example, the current sources discussed in
Section 2; the output is modeled as

Y = �5x5 + �4x4 + �3x3 + �2x2 + �1x1 + �0x0 (12)

where the � coefficients are the unknown model parameters we
wish to characterize. The basis functions for this system are simply
fx5,x4,x3,x2,x1,x0g, the set of contributions from each current
source, which are added together to form the output.

For more complicated systems, the Taylor expansion can be
used to derive a very useful additive model

f(a+ x) = f(a) + xf
0

(a) +
x2f 00(a)

2!
+ : : :+

xn�1f (n�1)
(a)

(n� 1)!
(13)

where a represents the nominal value of a model parameter, f(a)
represents the value of the output when that model parameter is
at its nominal value, and x represents the amount by which that
model parameter deviates from its nominal value because of man-
ufacturing nonidealities. We wish to estimate f(a+ x).

A first-order Taylor series approximation is a reasonably ac-
curate model for many common analog systems with parameters
that do not deviate significantly from their nominal values. This is
the model used by Stenbakken and Sounders [16], and our discus-
sion of it here will be brief. Dropping the higher-order terms and
generalizing to multiple dimensions, the expansion becomes

f(a+ x) = f(a) +5f(a)x (14)

= f(a) +
@f

@a1
x1 +

@f

@a2
x2 + : : : (15)

where ai is the nominal value of the ith model parameter and
xi is the deviation in that parameter. The basis functions for this
system are thus ff(a), @f

@a1
, @f

@a2
, : : : g. f(a) is the nominal system

performance, and each of the partial derivatives represents an error
signature for a particular type of manufacturing defect which can
occur. The error signatures are computed by finding the sensitivity
of the output to the parameters of interest at each point on the
response surface. Note that these error signatures could represent
either catastrophic faults, such as shorts and disconnections, or
parametric faults, such as small deviations in capacitance values
or process parameters.

Once the basis vectors fg1, g2, : : : , gng are identified, we
compute their null space to verify that they are all independent.
The parameters associated with error signatures that are linearly
dependent are said to belong to the same ambiguity group, since
variations in those parameters are indistinguishable at the system
output. Ambiguity groups reduce the number of basis vectors
needed to model the response surface and hence the number of test
vectors which must be applied to fully characterize a system.

Let U be the matrix formed from these basis vectors, where gi
is the ith column of U. Suppose U has dependent columns, then
its null space is non-empty such that

UN = 0 (16)

where N 2 Rm�r is a matrix with r independent column vectors
that spans the null space of U . Non-zero entries in N indicate
that the corresponding components are in ambiguity groups. A
component i belongs to an ambiguity group if and only if row i of
N has a non-zero entry. Furthermore, components i and j are in
the same ambiguity group if rows i and j of N are non-zero and
not orthogonal to each other [17]. It follows that the components
fall into the same group if their corresponding row vectors of N
are non-zero and not orthogonal.

The null space of U can be computed using singular value
decomposition (SVD) or Gaussian elimination. In the case of
SVD, we first compute UTU , followed by SVD

U
T
U = X1X2N

T (17)

where N spans the null space of UTU . Since UTUN = 0,
UN = 0, soN is the null space ofU also. The reason for comput-
ingUTU in (17) is thatU often has many more rows than columns,
so computing N for a smaller matrix UTU is more efficient. Fur-
thermore, note that computing N and checking the rows of N for
pairwise orthogonality can be performed in polynomial time.

The final set of basis vectors which will be used to characterize
the system, then, is

1. all of the basis vectors which are not in any ambiguity group,
combined with

2. one vector from each ambiguity group.
Once this set is formed, the I-optimality routines, as described

in Section 4, are executed to find a good set of test vectors.
Once the test vectors have been applied, the measured responses

are used to estimate �̂, the vector of coefficients for each of the
basis vectors. For the special case when the number of test points
is equal to the number of basis functions, �̂ is found by solving

X�̂ = Y (18)

for �̂, where X is the design matrix as output by the I-optimality
routine and Y is the vector of measured responses. When the
number of test points is greater than the number of basis functions,
�̂ is found by solving

X
T
X�̂ = X

T
Y (19)

for �̂, which is a linear regression.
A 99% confidence interval for the �̂ estimates over the entire

response surface is computed by applying Equations 4 and 5 from
Section 4.1, followed by

CI(�̂) =

�
�̂ � 2:576

q
var(�̂); �̂ + 2:576

q
var(�̂)

�
; (20)

where the factor 2.576 is used because it is the 99.5% quantile of
a normal distribution, which leaves only a 1% probability that the
actual value of the response at that function falls outside of the
confidence interval.

Note that we have assumed that the variance �2 of the error
term � is known by the designer. If this is not the case, then S2, an
estimator of �2, can be derived from the observations Y as

S
2
=

Pn

i=1[Yi � �̂(xi)]
2

(n� d)
(21)

where Yi is the ith observation, �̂(xi) is the predicted value of
Yi , based on the model, n is the number of measurements, and
d is the dimensionality of the model (the number of independent
basis vectors). When S2 is used instead of �2 then the confidence
intervals are constructed by using the t-distribution quantiles with
n � d degrees of freedom instead of the normal quantiles. Note
that the t-distribution approaches the normal distribution for large
n (e.g. n > 30 � 40), so the normal distribution can often be
used as an approximation to the appropriate t-distribution when
generating the confidence intervals from S2 instead of from �2.

6 Results
In this section we describe some practical examples of analog

systems on which our ATPG algorithms have been run. The first is
a bandpassfilter with center frequency of 24.5 kHz [18], which was
analyzed using SPICE sensitivity analysis. The second is a single
MOS transistor, which was analyzed in SPICE with a level three
transistor model. The third is a 6-bit Nyquist-rate D/A converter
which was analyzed using explicit behavioral equations [13].

6.1 Bandpass Filter
Figure 3 shows a linear model for a bandpass filter. As basis

functions we select the constant function, the nominal frequency
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Figure 3: Bandpass filter with center frequency at 24.5 kHz.

response, and the sensitivities of the nominal response with respect
to R1, C1, R2, C2, R3, R4, and R5.

Running the ambiguity algorithm reveals that many of the com-
ponent sensitivities are linearly dependent; the constant function,
the nominal response, and the sensitivities with respect to C2, C1,
and R1 are sufficient to fully characterize the filter.

Since there are five basis functions in the model, at least five
test frequencies will be needed to estimate the system response.
We impose a constraint that the test frequencies lie between 15kHz
and 40kHz, since that is the region of the response in which we are
interested, and run the I-optimality algorithm. The five test fre-
quencies which the algorithm selects are shown in Table 2. Note
that the fifth test point is pushed to the user-imposed limit of 40kHz,
while the remaining test points sample the response at intervals of
approximately 3 kHz near the nominal center frequency. Further-
more, if the constant function is eliminated from the model, then
the test point at 40.00 kHz is no longer needed and disappears from
the test set.

Frequency j Output j

19.32 kHz 0.914
22.57 kHz 1.65
24.89 kHz 1.99
28.42 kHz 1.30
40.00 kHz 0.482

Table 2: Test frequencies chosen for bandpass filter.

Applying the five selected test frequencies to a simulated cir-
cuit produces the estimated output and 99% confidence intervals
shown in Figure 4. According to the testing algorithm outlined in
Section 4, these confidence intervals would be compared against
the filter specifications to determine whether the component should
be accepted or rejected, or whether additional test vectors should
be applied to tighten the confidence intervals.

6.2 MOS Transistor
Suppose we wish to test an MOS transistor to verify that its

drain current IDS falls within certain bounds over all values of
VGS and VDS . The manufacturer has provided a level 3 SPICE

model for the device with the parameter values shown in Figure 5.1

As basis functions, we select the constant function, the nominal
performance, and the sensitivities with respect to VT 0, k0, 
, tox,
and �. The normalized basis functions are shown graphically for
three values ofVGS in Figure 6. Although only three values ofVGS
are shown, both VDS and VGS are treated as continuous variables,
so the response surface is 2-dimensional and continuous.

Running the ambiguity group algorithm, we find that k0 and the
nominal performance are linearly dependenton the entire response
surface, which can be seen in Figure 6(a) and 6(c). So the k0 vector
is dropped from the model, and there are 6 remaining independent
basis functions. Therefore we will need at least 6 test points to
characterize the device.

1This model is based on the HP CMOS26B 0.8 �m process.
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Figure 4: Estimated output and 99% confidence intervals for band-
pass filter.

.MODEL nom NMOS LEVEL=3 PHI=0.600000 TOX=2.0300E-08 XJ=0.150000U
+ TPG=1 VTO=0.7333 DELTA=9.4450E-01 LD=1.0000E-09 KP=1.2964E-04
+ UO=762.1 THETA=5.2460E-02 RSH=2.3650E+00 GAMMA=0.4481
+ NSUB=1.7500E+16 NFS=2.3560E+12 VMAX=1.4870E+05 ETA=1.4850E-01
+ KAPPA=9.5100E-02 CGDO=2.5516E-12 CGSO=2.5516E-12
+ CGBO=3.0108E-10 CJ=1.1962E-04 MJ=0.4398 CJSW=4.6935E-10
+ MJSW=0.123994 PB=0.800000

Figure 5: SPICE model for MOS transistor.

To prevent the I-optimality algorithm from selecting unreason-
able test points, we impose constraints on the inputsVGS and VDS
such that 0:1V � VDS � 10:0V and 2:0V � VGS � 5:0V . We
then run the I-optimality algorithm; it selects the test points shown
in Table 3.

VGS VDS IDS

5.0 1.0 19.04910 x10�3

3.2 0.9 10.00540 x10�3

5.0 0.1 2.66950 x10�3

5.0 10.0 33.62560 x10�3

2.0 10.0 6.24432 x10�3

5.0 2.2 27.45550 x10�3

Table 3: Test points chosen for MOS transistor.

Figure 7(a) shows the estimated response curves for three values
of VGS after applying the indicated 6 test vectors to a device,
along with the 99% confidence intervals for those estimates. The
confidence intervals are based upon a measurement accuracy of
0.1%. The expected value of the model error at VGS = 3:5V is
shown in Figure 7(b), from which we conclude that our estimates
are least accurate near VGS = VT . This fact is not surprising,
since that region of transistor operation is difficult to model.

6.3 Nyquist-rate D/A Converter
A 6-bit Nyquist-rate D/A converter based on binary-weighted

current sources is shown in Figure 8, which is similar to the simple
example presented in Section 2 except that in this case the current
sources are binary-weighted instead of unit-weighted. The basis
vectors for the system are chosen to be f1, x5, x4, x3, x2, x1,
x0g, where the constant function 1 is used to model the converter
offset. Since there are seven independent basis functions in the
model, at least seven tests must be performed to fully characterize
the system. The I-optimal design is shown in Table 4, along with
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Figure 6: (a) Nominal IDS vs. VDS transistor curves. (b) Sensitivity w.r.t. VT 0. (c) Sensitivity w.r.t. k0. (d) Sensitivity w.r.t. 
. (e)
Sensitivity w.r.t. tox. (f) Sensitivity w.r.t. �.
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Figure 8: 6-Bit binary-weighted current source D/A converter.

the next seven extra points which would be chosen, in succession,
to tighten the confidence intervals on the estimated performance.

Application of the seven initial test vectors to a simulated DAC
produces the results shown in Figure 9. The upper and lower
confidence intervals illustrate how the entire performance of the
DAC can be modeled quite accurately after the application of only
seven well-chosen test vectors. Furthermore, we may be able to
draw some conclusions regarding the acceptability of this DAC,
depending upon the INL specification. If the INL specification
is greater than 0.2 LSB, then the DAC should be accepted with
no further tests. If the INL specification is less than 0.1 LSB,
then the DAC should be rejected with no further tests. If the
INL specification falls between these bounds, then additional test
vectors must be applied to tighten the confidence intervals.

Code Inputs I-Value
x5 x4 x3 x2 x1 x0

8 0 0 1 0 0 0
15 0 0 1 1 1 1
21 0 1 0 1 0 1
22 0 1 0 1 1 0
35 1 0 0 0 1 1
44 1 0 1 1 0 0
59 1 1 1 0 1 1 1.27778
61 1 1 1 1 0 1 1.12500
38 1 0 0 1 1 0 0.97619
1 0 0 0 0 0 1 0.83333

48 1 1 0 0 0 0 0.70000
48 1 1 0 0 0 0 0.58333
26 0 1 1 0 1 0 0.55263
10 0 0 1 0 1 0 0.52222

All 64 codes 0.10938

Table 4: Test vectors chosen for D/A converter.
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Figure 7: (a) Estimated response and confidence intervals for MOS transistor from seven test points. (b) Standard error of estimate.
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Figure 9: Upper and lower bounds on INL error from seven test
vectors.

7 Conclusions
We have presented a new CAD algorithm which automatically

generates a minimal set of test vectors for characterizing a gen-
eral class of analog circuits, namely those circuits which can be
efficiently modeled as an additive summation of user-defined basis
functions. The algorithm chooses the set of test vectors so as to
minimize the average prediction variance of the model. Applying
the minimal set of test vectors to a circuit produces an estimate
of the circuit’s performance for all possible input vectors and,
more importantly, confidence intervals on those estimates which
can be used to determine whether the component should be passed
or failed, or whether additional test vectors should be applied to
tighten the confidence intervals.

Because these techniques generate the tightest possible con-
fidence intervals after a minimum number of test vectors, they
represent the most efficient way of fully characterizing system per-
formance. Tight confidence intervals will lead to reduced testing
time for analog systems because more components will be fully
verifiable, to a desired confidence level, with the minimum number
of test vectors. We have applied the algorithm to several analog
systems and have shown it to be efficient and effective.
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