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Abstract two-graphs which excludes many circuit elements that have little
effect on the network function and significantly reduces the com-
plexity of the two-graphs before tree enumeration. Our approach
has been implemented and it efficiently generates symbolic net-
work functions of reasonable size and accuracy in expanded for-
mat for integrated circuits with up to 39 transistors, using
tomplete small signal models for the devices. Such circuit exam-
ples are much larger than previously reported in the literature.
For even larger circuits, the limit is imposed mainly by the inter-
pretability of the generated symbolic expression.

The rest of the paper is organized as follows: Section 2
. . describes symbolic analysis background. Section 3 is dedicated
approac_h IS therefor_e aple to symbo!lcally analyze mu_ch larger to the two-graph tree-enumeration method. Section 4 shows how
analog |ntegr§ted circuits than previous reported, using com- ., generate only the important product terms in the expanded for-
plete small signal models for the semiconductor devices. We

. . .~ “mat and Section 5 introduces the second approximation strate
show accurate yet reasonably sized symbolic network functions PP 9y

for intearated circuits with up 1o 39 transistors when rovi of sensitivity-based two-graph simplification. Section 6 presents
or integrated circuits with up to ansistors whereas previous e error control mechanism for tree generation and Section 7
approaches were limited to less than 15.

gives experimental results obtained from our symbolic analysis
1. Introduction program. Section 8 is the conclusion.

Symbolic analysis provides insight into circuit behavior that 2. Symbolic Circuit Analysis Background
numerical simulation does not. Symbolic analysis as an impor- Symbolic analysis produces various network functions in

ta_nt tool for t_h_e design .Of analog integrated circuits is gaining symbolic form such that circuit element parameters are kept as
W'd.er _recognltlon, as evidenced by the success of _several Syméymbols. It is usually done in the complex frequency domain for
bolic simulators [9][20][16][6][12]. Such success is driven by the linearized analog circuits. For continuous-time circuits, an arbi-
strong need to reduce the long design time and high design Coﬁﬁary network function can be expressed ingkpanded f’ormat

of analog IC’s as compared to their digital counterparts of the618 the ratio of two polynomials in the Laplace variable

same area and is based on the increasing power of computers an

This paper describes a unified approach to the approximate
symbolic analysis of large linearized analog circuits. It combines
two new approximation-during-computation strategies with a
variation of the classical two-graph tree enumeration method.
The first strategy is to generate common trees of the two-graphs
and therefore the product terms in the symbolic network function,
in the decreasing order of magnitude. The second approximation
strategy is the sensitivity-based simplification of two-graphs,
which excludes from the two-graphs many circuit elements that
have little effect on the network function being derived. Our

symbolic analysis algorithms [10]. However, the size of circuits N(9) ijsl by + bls1 +...+ bns”
that can be symbolically analyzed is still small by industrial stan- T(9= D (s =4 T 1 g’ (1
dards. The difficulty, which is imposed by the exponential Izais tays *...+a,s

growth of product terms in an expanded symbolic network func-
tion with respect to the circuit size [17], is only partially over-
come by various approximation strategies [9][7][2][20][1] and " rpe main difficulty of symbolic analysis is the exponential
decomposition strategies [21][12]_[13] _employed up to now. growth of product terms with the number of nodes and elements
Our new approach pres_ent_ed in this paper efflc?lently analyze§n a circuit. As a result, exact symbolic expressions can only be
larger analog integrated circuits than those previously handledyyaineq for small circuits. Two strategies, approximation and
Our approach combines two new approximation-during-COmpu- 4o mposition, have been adopted to tackle this problem.
tation strategies with a variation of the classical two-graph tree We can approximate an exact symbolic expression by remov-
enumeration method. The first strategy generates common treeﬁg unimportant symbols or terms. For an expanded format,

(tree admittance products) of the_two-graphs in decreasmg Orde[)roduct terms with small magnitudes are deleted or not generated
of magnitude. This approach avoids the burden of computing all

the product terms only to find most of them numerically negligi-
ble, and is accomplished by our algorithm for generating color-
constrained spanning trees in the order of weight. The secon
approximation strategy is the sensitivity-based simplification of

wherea, ancbj are sum-of-product expressions in terms of cir-
cuit element parameters.

in both the denominator and the numerator. Nominal values of
symbols must be known for this purpose. Decomposition carries
out symbolic expression generation in a divide-and-conquer
qashion. Either the circuit or the associated graphs can be decom-
posed into smaller blocks, and the analysis results of these blocks
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pieced together. In this manner, nested expressions or sequenc@sNullors (for ideal opamps operating in the linear mode);
of expressions can be produced for large circuits. Approximation® Opens and shorts;
is a must for symbolic analysis of even moderate-sized circuits,® Independent current and voltage sources.
and for still larger circuits, both approximation and decomposi- These elements share the property that the non-trivial part of
tion are necessary. their branch voltage-current relations (BVCRSs) can all be repre-
Even with approximation and decomposition, the limit to sented by admittances. For example, the BCVR for a CCVS can
symbolic analysis is twofold. They ageneratabilityandinter- be written as
pretability of symbolic network functions. When a circuit is too v, = 0andi; = g,v, )
large, generation of any reasonably accurate symbolic new"orlﬁnstead of
function is simply beyond the ability of currently available algo-
rithms. Furthermore, not all generated symbolic network func- ) o
tions are directly interpretable by a user because of their large! NS Property allows them to be treated uniformly and simplifies
size or complicated format. With the expansion in the power of the topological rules for tree enumeration. Voltage-controlled
algorithms, this limit of interpretability will outweigh generat- voltage sources (VCVSs) and current-controlled c_urren_t sources
ability and become the new bottleneck for symbolic analysis. ~ (CCCSS) can be modeled by VCCSs and CCVSs if desired.
Approximation strategies fall into two classegproxima- We represent' all r(_e5|stors, capacitors, VCCSs and CCVSs as
tion-during-computation(ADC) and approximation-after-com- admittances, Whlch WI||.be referred toeiementspredgeSNhen
putation (AAC) [2]. AAC generates the exact symbolic they appear in associated graphs. For resistors, VCCS§ and
expression and then operates on it to arrive at a compact approxFCVSSY = g, and for capacitors = sC . Then the following
mate expression, while ADC arrives at the approximate expres/€mma is in order [4][17]:
sion without explicit knowledge of the exact expression. As a Lemma 1. If every admittance type element of a circuit consist-
result, ADC expands generatability as well as interpretability ing of the above mentioned types of elements is given a distinct
while AAC only expands interpretability. Although ADC is symbol for its admittance (i.e., no matching conditions are con-
superior, it is also more difficult. One has to eliminate symbols orsidered) and if the unsimplified symbolic expressions of the
terms before they explicitly enter the symbolic expression. With numerator or denominator of an arbitrary network function are
such techniques, published circuit examples of generatability forexpressed in the irreducible expanded format of sum of element
integrated circuits are less than 15 transistors, aside from [14admittance products, then both expressions are polynomials of
and [15]. The approach in [14] and [15], however, has the follow- degree one in each element admittance and every product term
ing limitations: 1) The symbolic expressions produced are in a(with its distinct element admittance combination) has a numeric
nested format with embedded term cancellations; 2) If the nestedtoefficient of eitherl or1 . Here irreducible means no two
expression is translated into an irreducible expanded format, itproduct terms in the expression share the same element admit-
may include alien product terms created in the device eliminationtance combination.
process that have no origin in the exact unsimplified symbolic

v, = 0andv, = ri; . 3)

Such a network function can therefore also be written as:

expression. .
Decomposition may be the only hope for the symbolic analy- s Di ny; 0

sis of even larger circuits. The core of a decomposition strategy is N T05 I'o

how the partitioning is done. Typical transistor circuits unfortu- T= D 4 K ~ )

K
. . il g

nately do not possess the structural regularity or loose coupling > Ijt I yikD

characteristics that existing decomposition schemes require. k=1 ) .

Again, no circuit example of applying decomposition to a large where K andL are the numbers of admittances in the product

integrated circuit has been reported. terms of the denominator and the_ numerator, respectively.
. The two-graph tree enumeration method for the above men-
3. The Two-Graph Tree Enumeration Method tioned class of circuits can be described as follows: For either the

Our approach starts with the two-graph tree enumerationnumeratorN(s) —or the denominat@r(s)  of a network func-
method of symbolic analysis, which is mainly due to Mayeda andtion, which is generically denoted as
Seshu [18] and is so called because a voltage g&ph and a P B Npo
current graptG, are always used. The original results could only (9 = i Zopis ' ®)
handle one type of active element, the voltage controlled current . . y i .
source (VCCS), but the method was further developed by many\::tetr:r’\r:]r’s Isot:; il;li%gest f:g\fl;\ecritg:s amfcan fo;hs(etrzlé?qaoi/glr; (;]e
researchers for general linear networks to include virtually all ' . .

graphG,, ¢-graph) and a current grag, i-graph), which are

active elements. However, these results are generally too compll-Connecteol undirected graphs. They have the same number of ver-

szteﬁa?elmzlne;?aetr: d[lez]ésasfei Ogcti;g far:se ;:) r;dsgglsrt}gjggr?ceg;?ces and the same edge set, but the vertices each edge connects
9 P 9 0 may be different in one versus the other. Each edge corre-

using the tWO. graphs "OT" th_e tablegu approach 9f mrcw_t eq.ua_sponds to an admittance type element in the circuit and is labeled
tion formulation [4], which is applicable to a linear circuit

encompassing the following types of elements: with that admittance.
P 9 wing typ ’ The structures 0G,, an@, are such that the product terms
® Resistors and capacitors;

* \lltage controlled current sources and current controlled volt- in P () correspond one-to-one to the common spanning trees of
9 ) G,, andG, . Each product term equals the product of edge admit-
age sources (CCVSs);



tances in the common spanning tree and is termezkadmit- - lOglghl - Iog|g|2| S lleg'd-il

tance product A common spanning tree, aommon treefor (8)

short, is a set of edges that constitute a spanning tree ifGgoth —log|sG | -log|sG . |- —log|sqG

andG, . The structures @b, ar@®,  are based on the structureafter translation.

of the circuit and on the specific circuit variable whielgs) Using aK lowest weight spanning tree algorithm G,  , we
representsg(g, node voltage of node 1 or branch current of can generate its spanning trees in decreasing order of the magni-
resistorr, ). The combination o&,, an@, is calledwa- tude of their tree admittance product. One such algorithm by

graph The problem of finding all the product terms in the irre- Gabow [8] has a time complexity @ (Elog E+ KEx (E, V))
ducible expression is therefore converted to the problem of find-whereV is the number of verticeE, is the number of edges in
ing all the common spanning trees of the two-graph. Two-graphthe graph,K is the number of spanning trees generated and
tree enumeration has tbancellation fregroperty, aslongasno o (E, V) is the very slow growing inverse of Ackermann’s
matching conditions are considered. function [5].

Rules to construcG,, an®, are specified with respect to ~ Gabow’s algorithm achieves efficiency by making use of a
every type of circuit element and to the circuit variable associ- fundamental property of the spanning trees of an undirected
ated withP (s) . (The rules and their derivation are not included graph. The property is that if tHe  lowest weight spanning trees
for brevity. A similar treatment of the class of circuits containing have been found, then tigc+ 1)  -st lowest weight spanning tree
VCCSs as the only type of active elements can be found in [18].)can be derived from at least one of the lowest weight spanning
Each product term has an associated sign. The rules given byrees by exchanging an edge in the tree with an edge not in the
Mayeda and Seshu [18] to determine the sign were extended fotree. This means the search for the next tree is limited to the
our application. Such rules are efficient: Given a common tree,“neighborhood” of those trees already generated.
the sign of the tree admittance product can be determined by per- For a given frequency s(= j2rf ), we can apply Gabow’s
forming a depth-first search on both thgraph tree and thie algorithm toG,, , and every spanning tree@j so generated is
graph tree. checked againgg, . Ifitis a spanning tregsf  also, thenitis a

All previous implementations of two-graph tree enumeration valid product term irP (s) ; otherwise, it is ignored. Each span-
attempt to generate all the common trees. This severely limits theing tree of G,, takesO(Ea (E,V)) time to generate and

size of circuit that can be handled because the number of tree® (V) time to be checked again&; . If it is a common tree,
grows exponentially with the circuit size. O (V) additional time is needed to determine the sign of the tree
4. Generation of Significant Common Treeé admittance product. In this manner, we can efficiently generate

the product terms irP (s) , in decreasing order of magnitude
In typical integrated circuits, small signal circuit element val- until the generated set of product terms well approxinies
ues often vary by several orders of magnitude. Therefore it isThis procedure is carried out for both the numerator and denomi-
very likely that the numerator or denominator is dominated by anator so an approximate symbolic expression for the desired net-
small portion of all the product terms in the irreducible expandedwork functionT (s) results.

expression [11]. In order for the tree enumeration technique to be  Symbolic expressions so generated are valid only in the vicin-

applicable to large circuits, we seek to generate only those comity of a given frequency, however. For product termpi'd of
mon trees whose tree admittance product magnitude is not neglithe following form:

gible compared to the magnitude Bf(s) , cal&dnificant + i 9
common treesOne method is to generate the spanning trees of _gllglzn.gld—\cldfﬁlcldfuz.“Clds ' ©)

G,, in decreasing order of the magnitude of their tree admittancewhen the frequency changes, the relative magnitudes of product
product, and then check whether they are also spanning trees dérms with different powers of change. Hence a product term
G,. discarded at one frequency may become significant at another
In combinatorial optimization there are efficient algorithms frequency.

for generating th& lowest weight spanning trees of a weighted ~ This problem can be avoided by generating product terms
undirected graph in increasing order of weight, in which the with different powers of separately. That is, we seek to generate
weight of a tree is defined as the sum of the edge weights [8][25]spanning trees dB,, with exacilgapacitor edges in decreasing
We therefore define the weights for the edge&n @nd soorder of the magnitude of tree admittance product, and iterate
that a spanning tree with the largest magnitude of tree admittance@ver alli. The combinatorial optimization problem so formed is:
product becomes a spanning tree with lowest weight. The transGiven a weighted undirected graph where the edges are colored

lation from edge admittance to weight is given by: either red or green, efficiently generate lowest weight span-
resistors VCCSs CCVSs gd -loglg ning trees with exactly red edges in increasing order of weight
capacitors sCO -logl s@ (6) for all feasible.

Herelx denotes th itudeof A Aning tree wh tree The problem is different from the uncolored version in one
ere|x denotes the maghitudexot . A spa g tree whose aspect. When th&  lowest weight spanning trees with exactly
admittance product is

red edges have been found, tlle+1) -st such spanning tree
gllg'z"'g'd-isqd-i+1scld_i+z'"SCld ™ may not be derivable from any one of them by exchanging one
has a weight of edge in the tree with one edge not in the tree. So for the color-
constrained problem, the search space for the next spanning tree
1. The approximation strategy in this section was first proposed by thein the sequence must expanded. By expanding this search space,

authors in [25]. Subsequently and independently, a similar strategy wa . . .
reported by Wambacg et al. in [23]. Swe have obtained an efficient algorithm for the problem [25]. The




K; lowest weight spanning trees with exadtied edges can be
generated in order inO (K, Ea(E, V))

ning tree with color constraints také&3(E a(E, V))
generate. The modified algorithm is applied3g
ated spanning trees are checked agahst

(s = j2mf), to be thecontributionandcontribution complement

time from a lowest of y to N. (A technique of efficiently computing them can be
weight spanning tree with exactiyred edges. Thus each span- found in [3].) If the magnitude of (y, N) oz (y, N)
time to over all frequencies, we may remoyd(y; )
and the gener-the group of product terms containing or not containing
. If we adopt the erroN without introducing much numerical error. We call such
control scheme used in [22] and [20], this procedure continueswhosec(y, N) orC(y, N)

is small
N sy e,
, from

is small over all frequenci@sakly

until the sum of the tree admittance products well approximatescontributing or strongly contributingelements forN , respec-

p;s. When the same has been done for everg
i =1,2 ...,N_, an approximate symbolic expression Ros)
is obtained. The combination of expressions F(s)
D (s) gives an approximate symbolic expression To¢s)
which is valid for the entire frequency range of interest.

, tively. The removal ofyN(y; )

oN( ;y)
deleting or contracting, respectively, the edge

is equivalent to
in bagtaph

and andv-graph before tree enumeration.

However, because we are removing a group of product terms
containing or not containing , it is possible that two different

For our algorithm, ifK is the total number of spanning trees product terms with similarly large magnitudes (as compared to

generated foG,, oP(s) ,

K= yK;, (10)

then the total time to compute the approximate symbolic expres-

sion forP (s) isO(ElogE+K Ea(E, V)) .

N) but opposite signs, calledimerically cancelling large prod-
uct terms are removed together. In such cases, the information
content ofN is distorted.

The most important information provided by a symbolic net-
work function is how the elements contribute, directly or through

The ratio of the number afgraph spanning trees generated interaction with each other, to the network function. Conse-
over the number of common spanning trees among them largelyjuently a good way to preserve the information is to limit the

determines the overall efficiency of the tree enumeration processerror in thecontributionof an element to botN
This ratio varies with the size and structure of the two-graph. symbolic network functionT

arfd  when the
is simplified. We attempt to

Nevertheless, the significant savings from not having to generatgemove (delete or contract in the two-graph) each weakly con-

every valid product term makes the symbolic analysis of largetributing or strongly contributing elemegt

circuits viable.
5. Sensitivity-Based Two-Graph Simplification

frodd  in turn, and
after each attempt we check the contribution of every remaining
element toN . If a remaining elemeyit  has a new contribution
to N that is significantly different from the original value of

Our experience with generating significant common trees ¢ (y', N) prior to all such element removals at some frequency,

shows that the number of such common trees and the number gfen this attempt to remove

is rejected. Although such a pro-

v-graph trees needed to obtain good approximation accuracyection mechanism does not guarantee against the removal of
grow fast with the size of the two-graph. For improved interpret- numerically cancelling large product terms, it greatly reduces its
ability of the approximate expression and for tree generation effi-probability. The element selected for the next removal attempt is
ciency, we incorporate sensitivity-based simplificatioscheme  one that will cause the least cumulative erroNin . Meanwhile,
for the two-graphs. With this scheme, we reduce the number ofye [imit the cumulative error itlN  incurred during all removals.
edges, each of which corresponds to a unique circuit elementp s processed similarly. After the first stage we call the network

and the number of vertices in the two-graph.
If we define

N(ylvyZI---1yp;yp+1vyp+21"'lyp+q) (11)
to be the sum of product terms & that contgjny,, ..., Yp
and do not contailyp+1, Yp+2r o divided lez...yp
and define

D(y]_lyZ!"'1yp;yp+11yp+21"'1yp+q) (12)
similarly, then for a specific elememt , the network function
can be written as

+Yp+q

LN NGy FyN(y )
D D(;y) +yD(y; )’

(13)

The simplification scheme consists of two stages. We first treatdeleting the edge fay, . If we do, the contributiorgef

the two-graphs foN and

frequencies, we test them over a sesarhple frequenciesho-
sen from the frequency range of interest.

5.1 Simplifying Individual Two-Graphs
In the first stage, we define

N(y; _ N(
cyn = ) andeqy g = B

which are usually complex numbers for a given frequehcy

(14)

function represented by the simplified two-grafhs
Ny
T, = =—.

B, (15)

Example 1. ConsiderN = g,+g,, whereg, =1 and
gy, = 100. Sincec (g, N) =0.01 anc (g, N) =0.01 g, isa
weakly contributing element ang},, is a strongly contributing
element. Thus we may try deleting the edgegipr  or contracting
the edge forg,,, . If we choose to contract the edgegfprg,, ,
becomes an independent factor.

Consider D = 9,9, + 09,093+ 9,95~ 995 where
g; =0, =03 =1,9, = 2. Sincec(g,, D) = 0 we may try
changes

individually, then treat both two- from c(g, D) =2toc(g,D( ;g9,) ) = 1.Thisis a signif-
graphs together. When certain conditions have to be met over alicant change, so the deletion of the edgegipr

is rejected. The
two-graph forD can not be simplified in this stage.

5.2 Simplifying Both Two-Graphs Simultaneously

In the second stage we further simplify the numerator and
denominator two-graphs by deleting or contracting certain edges
that are common to both and whaosentribution to both are
almost equal for all frequencies. The effect of deleting or con-
tracting a common edge  on the network function is to remove



the group of product terms not containing or containying simul- At every step the next candidate selected for a dual contrac-
taneously fromN; and, , respectively. The rationale behind tion or deletion attempt is one that will cause the least cumulative
such removal is that the large-change sensitivity of the networkerror in T, . In the whole process, we limit the cumulative error
function with respect to some of the circuit elements is smallin T, incurred during all the dual contractions and deletions.

over all frequencies in the range of interest. After the second stage of sensitivity-based simplification, we
We note that call the network function represented by the simplified two-
N, (;Y) graphsT,
T.(3y) = _ (16) N,
103Y) T, = —-. (20)
and D,
Ty ) = YN (y; ) Np(ys ) a7 Example 2. Consider
1 yD,; (y; ) Dl(y; ) T = g3+0, 21
are the network functions represented by the two-graphs derived 17 (9,+9,) (93+9,) (1)

from those forN, and,; by deleting and contracting in both

where = = = = 1. We havee ,T,) =0 ,
two-graphs, respectively. Define 9179 "93=9 c(03 T)

€:.(9, Ty =0, €4(95 Ty =0andey(g, T;) = 0. Sog,

. [Nl(W ) NlD MNip andg, are both contraction candidates and both deletion candi-
e(iT) = 5~ (18) 4
A m, (y; ) D O [DlD dates. We attempt to dual-contract the edgegyfor  so that
and oy 1
Ti(9s5: ) = - (22)
1193
gy o Y Nig g | o % -
ey Ty = D, (:y) D_1D IZD_lD Since g, is a deletion candidate and the new contribution

c(9gpN;(g5 )) =0 andc(gy, Dy(95 )) =0 are “very

as thedual contraction erroranddual deletion errorof T, with small”, we derivatively dual-delete the edge (M . (In fact, it

respect toy , which are generally complex numbers. If the magni- has already been deleted because it has become a self-loop.) We
tude ofe. (y; T;) orey(y; T;) is small over all frequencies, we

then check the contribution of the remaining elements in
can contract or deletg  from both the numerator and the denoms- d
. : N, (g5:9,) andD; (959, . Since
inator two-graphs without causing much numerical errof;jin .

Such an operation is calleddaal contractionor adual deletion ¢(9y, D1 (93,99 ) = ¢(9y, By) =05 (23)

and such an edge iscantraction candidater adeletion candi- and

date respectively. A common edge can be a contraction candi- c(9,D;(9595) ) = (c(g,Dy)) =05 (24)

date and a deletion candidate simultaneously. does not change after the dual removals, the dual-removals are

Again, consider the impact of a dual contraction or deletion accepted.
on the information content df, . Here we wish to limit the error 6. Error Control Mechanism
in the contribution of every remaining element to boty,  and ™~
D, . For each contraction candidate , we attempt a dual contrac-  The approximation error in our approach originates from sen-
tion and then check the contribution of all remaining elements tositivity-based two-graph simplification and significant common
N, and D, . For the dual contraction to be acceptable to atree generation. The approximation error associated with sensi-
remaining elemery’ , either the contributionyof Np  &nd tivity-based two-graph simplification is controlled by user-sup-
does not change significantly compared to before all dual con-plied error bounds. Here we discuss in detail the error control
tractions and deletions, or, whgh  is common to the numeratorscheme for significant common tree generation.
and the denominator and is a deletion candidate, the contribution Our error control mechanism limits error in magnitude and
of y' to bothN; andD; becomes very small. The latter case phase responses. We first choose a sedaofple frequencies
usually occurs when a deletion candidate edge becomes a seh‘Fi,i = 1,2 ..,n, in the range of interest, then compute and
loop in both two-graphs because of previous contractions. In therecord the numerical values bf,  aiy, at these frequencies.
former case the dual contraction is simply accepteg' by . In theWe choose a relative threshald and generate all product terms
latter case the dual contraction is accepteg’by yand isimmein N, or D, that are larger in magnitude thgpN,| rHD,|
diately dual-deleted. Such dual deletions are terdei/ative for at least one of the frequencigsi = 1,2 ...,n, , respec-
dual deletionslf not all of they’ 's accept the dual contraction, tively. Product terms with different powers ef are generated
the dual contraction is rejected; otherwise we proceed to checlseparately as described in Section 4 but treated uniformly. We
the acceptability of all associated derivative dual deletions. choose an error boursd .~ for the magnitude and another error

Likewise for the derivative dual deletions to be acceptable tobounde , _ for the phase for the simplified expression. If the
a remaining elemery” , the contribution yf Ny and generated product terms constitute a symbolic expression whose
should not change significantly compared to before all dual con-magnitude and phase errors with respectTjo at every fre-
tractions and deletions. If evesy  accepts the dual deletions,quencyf;,i = 1,2 ...,n;, are smaller th ha
then the derivative dual deletions together with the prior dual respectwely our procedure terminates. Otherwise we repeatedly
contraction are all accepted; otherwise, they are all rejected. Ireducen and generate more product terms for bigth  Dand
either case we advance to the next dual contraction attempt. A minimum value of n ., is specified amd s reduced until

Finally for each remaining deletion candidate we attempt aeither the symbolic expression is accurate enough or is
dual deletion with similar acceptance criteria. reached, when the procedure terminates.



Error_Control(two-graphs foN, _an_Bz €magn Ephas 10
Nmax Mmin & » S@Mple frequenciefi = 1,2....n; ) 90 numerical results-
comment & is the factor used to reduce the relative 80 symbolic results
thresholdn in every iteration; 70
2. compute numerical values b, aBd  at frequencies 60
foi=1,2..,n; 50
3. compute magnitude and phaseTgf  at frequencies
£ = . 40
pl= 1, 2,...,nf, 20
4N« Nmax’
5. do 20
6. generate all product termsify Dy thatare larger in 10} magnitude/db vs frequency/Hz
magnitude thamN, onD, for at least one 0
frequencyf,,i = 1,2 ...,n; ; -10__ 50 15500 18505
7. updateTaplor ; 0
8. comment. Tappr is the simplified symbolic expressmr.l -20 numerical results-
that consists of_aII product terms already generated,_ symbolic results
9. compute magnitude and phaseTg[Jpr at frequencies -40
foi=1,2..,n; -60
10. if magnitude error and phase error'l'%pr with 80
respect tol, are smaller thap, aqu1 for all i -
agn as
f,i =12 ..,n then 9 -100
11. output T, return (ok); -120
12. endif
13, neniE; 149
BRI ’ hase/deg vs frequency/Hz
14. while nzn_. ; -160f P 9 quency
15. return (warning). -
( 9) 18 100 10000 Te+06

Our error control scheme is different from the one in [22] and Figure 1. Voltage gain of fA741 as given by the approximate
[20], where individual powers of in both numerator and Symbolic expression.
denominator are approximated, in that product terms with differ-
ent powers o are treated uniformly according to their relative LI J M20 VDD
magnitude with respect to the numerator or denominator rather w13 ]| ™ }_E 3
than individual powers of . M14 M1 M2 M10 Mu\:I [ e

Specified matching conditions and mismatch variables for C o Fo ’_i
small signal model elements are incorporated after the symbolic NON NV e o™
expression is generated, allowing the effect of element mismatch
to FEJe readily (?bserved. Productg'][erms are collected after match- m1s Jl—p | PwRON L we e fvour
ing and the size of the expression reduced as partalfjabraic :.T' MN m] I ve
post-processingtep. M16 r~ "|

7. Implementation and Results

The above unified approach has been implemented in a sym- L‘
bolic analysis program. For integrated circuits, DC analysis is M7 - L, MLz m
carried out with SPICE and the program reads the small signal = 1L, M8
model element values for semiconductor devices from the SPICE M M4 Vss
output. Complete small signal models for bipolar and MOS tran-
sistors are used. The program is able to generate any network
function in the complex frequency domain. expression for the voltage gain, valid up to the unity-gain fre-

The first circuit example analyzed is the bipolar opamp duency, containing a total of 245 product terms before matching
HA741 containing 26 transistors and 11 resistors. An approxi- @hd algebraic post-processing was obtained in 20.4 seconds on
mate symbolic expression for the voltage gain, valid up to thethe same machine. The frequency response of the approximate
unity-gain frequency, containing a total of 57 product terms symbolic expression is compared to the numerical simulation
before matching and algebraic post-processing was obtained ifesults using SPICE in Fig. 3. Also shown is the frequency
18.5 seconds on a Sun SPARCStation2. The frequency respond€sponse of voltage gain approximated by different numbers of
of the approximate symbolic expression is compared to theProduct terms in the expression. The statistics of the symbolic
numerical simulation results using SPICE in Fig. 1. The statistics@Xpression are given in Table 1.
of the symbolic expression are given in Table 1. The third circuit example is a rail-to-rail opamp [24] contain-

The second circuit example is a CMOS cascode opamp coning 39 transistors. An approximate symbolic expression for the
taining 22 transistors given in Fig. 2. An approximate symbolic Voltage gain, again valid up to the unity-gain frequency, contain-

]

M17

Figure 2. CMOS cascode opamp.
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Figure 3. \Voltage gain of CMOS cascode opamp as approximated by Figure 4. \oltage gain of rail-to-rail opamp as given by the
different number of product terms in the symbolic expression: 1) approximate symbolic expression.

numerical results; 2) 54 terms; 3) 99 terms; 4) 245 terms; 5) 450 105
terms.

100

ing a total of 36 product terms before matching and algebraic
post-processing was obtained in 63.4 seconds. The frequency
response of the approximate symbolic expression is comparedto 90

the numerical simulation results using SPICE in Fig. 4. The sta- 85
tistics of the symbolic expression are given in Table 1. 80
The last circuit example is the bipolar opap#y725 with 26 \
transistors and 20 resistors. An approximate symbolic expression 75 numerical results-
for the differential mode input impedance containing a total of 39 70 symbolic results

product terms before matching and algebraic post-processing 65
was obtained in 41.6 seconds. Again, the frequency response of gg} Magnitude/db vs frequency/Hz
the approximate symbolic expression is compared to the numeri- c
cal simulation results using SPICE in Fig. 5. The statistics of the
symbolic expression are given in Table 1.

Table 1 contains upper and lower bounds on the numbers of  -10
product terms in the original unsimplified expressions of the -20
numerator and denominator. They are computed as

min { det(A A!), det(AA)} and|det(AA)|,  (25)
respectively, wheréy, and; are the reduced incidence matri-

100
-50
ces of the-graph and-graph and /
t At At -60F  numerical results-
det(AAY) , det(AA) and|det(AA)| (26) Lo "symbolic resuits \

10000 1le+06

are the number of-graph trees, the number iefraph trees and

the difference in the numbers of common trees with plus signand  -80}  phase/deg vs frequency/Hz

minus sign, respectively [17]. 90
In all examples, the number of circuit elements and the high- ! 100 10000 le+Ub

est powers ofs in the symbolic expression are reduced during Figure 5. Differential mode input impedance gfA725  opamp as

the approximation. Numerical accuracy is achieved with reason- given by the approximate symbolic expression.

able numbers of product terms before matching and post-protessing compared to astronomical numbers of product terms in




Table 1. Statistics for approximate symbolic expressions for voltage gain or differential mode input impedance

Circuit name 741 Cascode Rail-to-rail 725
Nu. De. Nu. De. Nu. De. Nu. De.
Original # g elements 62 62 a7 a7 79 81 82 82
# g elements after simplifying individual two-graphs 18 24 26 29 45 50 82 82
# g elements after simplifying both two-graphs togethe 7 14 11 14 19 24 9 9
Original # C elements 39 39 40 42 58 58 46 46
# C elements after simplifying individual two-graphs 19 21 2§ 2f an 41 46 46
# C elements after simplifying both two-graphs togethey] 7 9 6 9 9 9 5 5
Original highest power of 22 22 12 12 24 24 31 32
Highest power o§ after simplifying individual two-graphs 14 16 12 12 24 24 31 32
Highest power o$ after simplifying both two-graphs togeth 6 8 6 7 8 8 5 5
Highest power o§in the final expression 4 4 4 6 2 7 3 4
Upper bound on # product terms in the original expressign 14el17 1j#el7  2.0ell 1.3ell [8.9e20 || 6.9e22 | 2.6e22| 6.9e22
Lower bound on # product terms in the original expressign 1.1e14  3{Bel6 4.4e9 1.2e11 0 1.2e22 | 5.8e21 | 1.2e22
# product terms in the approximate symbolic expression 20 37 57 188 11 25 20 19
before matching and algebraic post-processing
# elements in a product term 6 8 7 7 8 8 6 7
#v-graph spanning trees generated 64 18p 179 454 117 3006 66 110
the original unsimplified expressions. [7] F. V. Fernandez, A. Rodriguez-Vazquez, J. D. Martin and J. L. Huer-
tas, “Formula Approximation for Flat and Hierarchical Symbolic
8. Conclusion ge%si%énalog Integ. Circuits Sig. Processingl. 3, No. 1, pp.

We have presented a new unified approach to the approximatg] H. N. Gabow, “Two algorithms for generating weighted spanning
symbolic analysis of large analog circuits. In addition to being (o G”.egise'lgrgrdH‘?rﬁ;ﬁtﬂh‘;‘rg’c’{?f’gﬁ%\f& 9|’§/§’A<1:?%'§3%bhgﬁé ii?\ﬂétor
able to handle much larger analog circuits than previously ana- ~ for analog integrated circuitsiEEE J. Solid-State Circuitd/ol. SC-
lyzed, our approach possesses the following virtues: [10]2éf'gp'|1587-§?/37'sDec' 1939- bolic Analvsis for Automated Desi

. P : : P . . Glelen an . .Sansen, sympolic AnalysIs 1or Automate esign
* The smpllfled symbollc_ expression is in expanded format_._lt IS of Analog Integrated Circuits, Boston: Kluwer Academic Publishers,
irreducible, or cancellation-free The expanded format facili- 1991. ) )
tates post-processing of the expression for different applica-[11] G. Gielen, P. Wambacq and W. Sansen, “Symbolic analysis methods
. and applications for analog circuits: a tutorial overvieRyoc.
tions. IEEE, Vol. 82, pp. 287-304, Feb. 1994.
® Every product term in the simplified expression, before match-[12] M. M. Hassoun and P. M. Lin, “A new network approach to sym-
ing and algebraic post-processing, corresponds to a unique bgh%ggrléjcl)gtlon of large-scale network$toc. IEEE ISCAS1989,
product term in the unsimplified irreducible sum-of-products [13] M. M. Hassoun and K. S. McCarville, “Symbolic Analysis of large-
expression for both the numerator and the denominator. No Iscalletnetwcqus_?sg_g aph'era"h.'cgc')f'g”ﬂ ﬂOlV\lgfapglafzpfggg%-"
: . og Integ. Circuits Sig. Processingol. 3, No. 1, pp. 31-42, .
alien produ.ct terms are |r.1troduced. . o [14] J.-J. Hsu and C. Sechen, “Low-frequency symbolic analysis of large
® The error in thecontribution of every remaining circuit ele- analog integrated circuits,Proc. Custom Integ. Circuits Conf.

; ‘s limited i 14.7.1-5, May 1993.
ment to both the numerator and denominator is limited in the[lS] 3-3.Fisu and C. Sechen, “Fully symbolic analysis of large analog

sensitivity-based two-graph simplification. This offers good integrated circuits,Proc. Custom Integ. Circuits Confpp. 457-
protection of the information content of the symbolic expres- 460, May 1994. ,
sion against distortion during approximation. [16] A. Liberatore and S. Manetti, “SAPEC - a personal computer pro-

. o . . gram for the symbolic analysis of electric circuit®foc. IEEE
® Generation of significant common trees provides maximum ISCAS 1988, pp. 897-900.
flexibility to any error control mechanism for symbolic expres- [17] P. M. Lin, Symbolic Network AnalysisStudies in Electrical and
sions in expanded format Electronic Engineering 4INew York: Elsevier, 1991.
p ' [18] W. Mayeda, Graph Theory, New York: Wiley-Interscience, 1972.
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