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 Abstract
This paper describes a unified approach to the approximate

symbolic analysis of large linearized analog circuits. It combines
two new approximation-during-computation strategies with a
variation of the classical two-graph tree enumeration method.
The first strategy is to generate common trees of the two-graphs,
and therefore the product terms in the symbolic network function,
in the decreasing order of magnitude. The second approximation
strategy is the sensitivity-based simplification of two-graphs,
which excludes from the two-graphs many circuit elements that
have little effect on the network function being derived. Our
approach is therefore able to symbolically analyze much larger
analog integrated circuits than previous reported, using com-
plete small signal models for the semiconductor devices. We
show accurate yet reasonably sized symbolic network functions
for integrated circuits with up to 39 transistors whereas previous
approaches were limited to less than 15.

1. Introduction
Symbolic analysis provides insight into circuit behavior that

numerical simulation does not. Symbolic analysis as an impor-
tant tool for the design of analog integrated circuits is gaining
wider recognition, as evidenced by the success of several sym-
bolic simulators [9][20][16][6][12]. Such success is driven by the
strong need to reduce the long design time and high design cost
of analog IC’s as compared to their digital counterparts of the
same area and is based on the increasing power of computers and
symbolic analysis algorithms [10]. However, the size of circuits
that can be symbolically analyzed is still small by industrial stan-
dards. The difficulty, which is imposed by the exponential
growth of product terms in an expanded symbolic network func-
tion with respect to the circuit size [17], is only partially over-
come by various approximation strategies [9][7][2][20][1] and
decomposition strategies [21][12][13] employed up to now.

Our new approach presented in this paper efficiently analyzes
larger analog integrated circuits than those previously handled.
Our approach combines two new approximation-during-compu-
tation strategies with a variation of the classical two-graph tree
enumeration method. The first strategy generates common trees
(tree admittance products) of the two-graphs in decreasing order
of magnitude. This approach avoids the burden of computing all
the product terms only to find most of them numerically negligi-
ble, and is accomplished by our algorithm for generating color-
constrained spanning trees in the order of weight. The second
approximation strategy is the sensitivity-based simplification of

two-graphs which excludes many circuit elements that have little
effect on the network function and significantly reduces the com-
plexity of the two-graphs before tree enumeration. Our approach
has been implemented and it efficiently generates symbolic net-
work functions of reasonable size and accuracy in expanded for-
mat for integrated circuits with up to 39 transistors, using
complete small signal models for the devices. Such circuit exam-
ples are much larger than previously reported in the literature.
For even larger circuits, the limit is imposed mainly by the inter-
pretability of the generated symbolic expression.

The rest of the paper is organized as follows: Section 2
describes symbolic analysis background. Section 3 is dedicated
to the two-graph tree-enumeration method. Section 4 shows how
to generate only the important product terms in the expanded for-
mat and Section 5 introduces the second approximation strategy
of sensitivity-based two-graph simplification. Section 6 presents
the error control mechanism for tree generation and Section 7
gives experimental results obtained from our symbolic analysis
program. Section 8 is the conclusion.

2. Symbolic Circuit Analysis Background
Symbolic analysis produces various network functions in

symbolic form such that circuit element parameters are kept as
symbols. It is usually done in the complex frequency domain for
linearized analog circuits. For continuous-time circuits, an arbi-
trary network function can be expressed in theexpanded format
as the ratio of two polynomials in the Laplace variable s:

, (1)

where  and  are sum-of-product expressions in terms of cir-
cuit element parameters.

The main difficulty of symbolic analysis is the exponential
growth of product terms with the number of nodes and elements
in a circuit. As a result, exact symbolic expressions can only be
obtained for small circuits. Two strategies, approximation and
decomposition, have been adopted to tackle this problem.

We can approximate an exact symbolic expression by remov-
ing unimportant symbols or terms. For an expanded format,
product terms with small magnitudes are deleted or not generated
in both the denominator and the numerator. Nominal values of
symbols must be known for this purpose. Decomposition carries
out symbolic expression generation in a divide-and-conquer
fashion. Either the circuit or the associated graphs can be decom-
posed into smaller blocks, and the analysis results of these blocks
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pieced together. In this manner, nested expressions or sequences
of expressions can be produced for large circuits. Approximation
is a must for symbolic analysis of even moderate-sized circuits,
and for still larger circuits, both approximation and decomposi-
tion are necessary.

Even with approximation and decomposition, the limit to
symbolic analysis is twofold. They aregeneratability andinter-
pretability of symbolic network functions. When a circuit is too
large, generation of any reasonably accurate symbolic network
function is simply beyond the ability of currently available algo-
rithms. Furthermore, not all generated symbolic network func-
tions are directly interpretable by a user because of their large
size or complicated format. With the expansion in the power of
algorithms, this limit of interpretability will outweigh generat-
ability and become the new bottleneck for symbolic analysis.

Approximation strategies fall into two classes:approxima-
tion-during-computation (ADC) and approximation-after-com-
putation (AAC) [2]. AAC generates the exact symbolic
expression and then operates on it to arrive at a compact approxi-
mate expression, while ADC arrives at the approximate expres-
sion without explicit knowledge of the exact expression. As a
result, ADC expands generatability as well as interpretability
while AAC only expands interpretability. Although ADC is
superior, it is also more difficult. One has to eliminate symbols or
terms before they explicitly enter the symbolic expression. With
such techniques, published circuit examples of generatability for
integrated circuits are less than 15 transistors, aside from [14]
and [15]. The approach in [14] and [15], however, has the follow-
ing limitations: 1) The symbolic expressions produced are in a
nested format with embedded term cancellations; 2) If the nested
expression is translated into an irreducible expanded format, it
may include alien product terms created in the device elimination
process that have no origin in the exact unsimplified symbolic
expression.

Decomposition may be the only hope for the symbolic analy-
sis of even larger circuits. The core of a decomposition strategy is
how the partitioning is done. Typical transistor circuits unfortu-
nately do not possess the structural regularity or loose coupling
characteristics that existing decomposition schemes require.
Again, no circuit example of applying decomposition to a large
integrated circuit has been reported.

3. The Two-Graph Tree Enumeration Method
Our approach starts with the two-graph tree enumeration

method of symbolic analysis, which is mainly due to Mayeda and
Seshu [18] and is so called because a voltage graph  and a
current graph  are always used. The original results could only
handle one type of active element, the voltage controlled current
source (VCCS), but the method was further developed by many
researchers for general linear networks to include virtually all
active elements. However, these results are generally too compli-
cated to implement [17]. Based on the same underlying concepts,
we have generated a set of specific rules for constructing and
using the two graphs from the tableau approach of circuit equa-
tion formulation [4], which is applicable to a linear circuit
encompassing the following types of elements:
• Resistors and capacitors;
• Voltage controlled current sources and current controlled volt-

age sources (CCVSs);

GV
GI

• Nullors (for ideal opamps operating in the linear mode);
• Opens and shorts;
• Independent current and voltage sources.
These elements share the property that the non-trivial part of
their branch voltage-current relations (BVCRs) can all be repre-
sented by admittances. For example, the BCVR for a CCVS can
be written as

 and (2)

instead of
 and . (3)

This property allows them to be treated uniformly and simplifies
the topological rules for tree enumeration. Voltage-controlled
voltage sources (VCVSs) and current-controlled current sources
(CCCSs) can be modeled by VCCSs and CCVSs if desired.

We represent all resistors, capacitors, VCCSs and CCVSs as
admittances, which will be referred to aselements, oredges when
they appear in associated graphs. For resistors, VCCSs and
CCVSs , and for capacitors . Then the following
lemma is in order [4][17]:

Lemma 1. If every admittance type element of a circuit consist-
ing of the above mentioned types of elements is given a distinct
symbol for its admittance (i.e., no matching conditions are con-
sidered) and if the unsimplified symbolic expressions of the
numerator or denominator of an arbitrary network function are
expressed in the irreducible expanded format of sum of element
admittance products, then both expressions are polynomials of
degree one in each element admittance and every product term
(with its distinct element admittance combination) has a numeric
coefficient of either  or . Here irreducible means no two
product terms in the expression share the same element admit-
tance combination.

Such a network function can therefore also be written as:

, (4)

where  and  are the numbers of admittances in the product
terms of the denominator and the numerator, respectively.

The two-graph tree enumeration method for the above men-
tioned class of circuits can be described as follows: For either the
numerator  or the denominator  of a network func-
tion, which is generically denoted as

, (5)

where  is the highest power of  and  is the sum of prod-
uct terms containing  capacitors, we can construct a voltage
graph  (v-graph) and a current graph  (i-graph), which are
connected undirected graphs. They have the same number of ver-
tices and the same edge set, but the vertices each edge connects
to may be different in one versus the other. Each edge corre-
sponds to an admittance type element in the circuit and is labeled
with that admittance.

The structures of  and  are such that the product terms
in  correspond one-to-one to the common spanning trees of

 and . Each product term equals the product of edge admit-
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tances in the common spanning tree and is termed atree admit-
tance product. A common spanning tree, orcommon tree for
short, is a set of edges that constitute a spanning tree in both
and . The structures of  and  are based on the structure
of the circuit and on the specific circuit variable which
represents (e.g., node voltage of node 1 or branch current of
resistor ). The combination of  and  is called atwo-
graph. The problem of finding all the product terms in the irre-
ducible expression is therefore converted to the problem of find-
ing all the common spanning trees of the two-graph. Two-graph
tree enumeration has thecancellation free property, as long as no
matching conditions are considered.

Rules to construct  and  are specified with respect to
every type of circuit element and to the circuit variable associ-
ated with . (The rules and their derivation are not included
for brevity. A similar treatment of the class of circuits containing
VCCSs as the only type of active elements can be found in [18].)
Each product term has an associated sign. The rules given by
Mayeda and Seshu [18] to determine the sign were extended for
our application. Such rules are efficient: Given a common tree,
the sign of the tree admittance product can be determined by per-
forming a depth-first search on both thev-graph tree and thei-
graph tree.

All previous implementations of two-graph tree enumeration
attempt to generate all the common trees. This severely limits the
size of circuit that can be handled because the number of trees
grows exponentially with the circuit size.

4. Generation of Significant Common Trees1

In typical integrated circuits, small signal circuit element val-
ues often vary by several orders of magnitude. Therefore it is
very likely that the numerator or denominator is dominated by a
small portion of all the product terms in the irreducible expanded
expression [11]. In order for the tree enumeration technique to be
applicable to large circuits, we seek to generate only those com-
mon trees whose tree admittance product magnitude is not negli-
gible compared to the magnitude of , calledsignificant
common trees. One method is to generate the spanning trees of

 in decreasing order of the magnitude of their tree admittance
product, and then check whether they are also spanning trees of

.
In combinatorial optimization there are efficient algorithms

for generating theK lowest weight spanning trees of a weighted
undirected graph in increasing order of weight, in which the
weight of a tree is defined as the sum of the edge weights [8][25].
We therefore define the weights for the edges in  and  so
that a spanning tree with the largest magnitude of tree admittance
product becomes a spanning tree with lowest weight. The trans-
lation from edge admittance to weight is given by:

(6)

Here  denotes the magnitude of . A spanning tree whose tree
admittance product is

(7)

has a weight of

1.  The approximation strategy in this section was first proposed by the
authors in [25]. Subsequently and independently, a similar strategy was
reported by Wambacq et al. in [23].
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after translation.
Using aK lowest weight spanning tree algorithm on , we

can generate its spanning trees in decreasing order of the magni-
tude of their tree admittance product. One such algorithm by
Gabow [8] has a time complexity of ,
where  is the number of vertices,  is the number of edges in
the graph,K is the number of spanning trees generated and

is the very slow growing inverse of Ackermann’s
function [5].

Gabow’s algorithm achieves efficiency by making use of a
fundamental property of the spanning trees of an undirected
graph. The property is that if the  lowest weight spanning trees
have been found, then the -st lowest weight spanning tree
can be derived from at least one of the  lowest weight spanning
trees by exchanging an edge in the tree with an edge not in the
tree. This means the search for the next tree is limited to the
“neighborhood” of those trees already generated.

For a given frequency  ( ), we can apply Gabow’s
algorithm to , and every spanning tree of  so generated is
checked against . If it is a spanning tree of  also, then it is a
valid product term in ; otherwise, it is ignored. Each span-
ning tree of  takes  time to generate and

 time to be checked against . If it is a common tree,
 additional time is needed to determine the sign of the tree

admittance product. In this manner, we can efficiently generate
the product terms in , in decreasing order of magnitude
until the generated set of product terms well approximates .
This procedure is carried out for both the numerator and denomi-
nator so an approximate symbolic expression for the desired net-
work function  results.

Symbolic expressions so generated are valid only in the vicin-
ity of a given frequency, however. For product terms in  of
the following form:

, (9)

when the frequency changes, the relative magnitudes of product
terms with different powers ofs change. Hence a product term
discarded at one frequency may become significant at another
frequency.

This problem can be avoided by generating product terms
with different powers ofs separately. That is, we seek to generate
spanning trees of  with exactlyi capacitor edges in decreasing
order of the magnitude of tree admittance product, and iterate
over all i. The combinatorial optimization problem so formed is:
Given a weighted undirected graph where the edges are colored
either red or green, efficiently generate  lowest weight span-
ning trees with exactlyi red edges in increasing order of weight
for all feasiblei.

The problem is different from the uncolored version in one
aspect. When the  lowest weight spanning trees with exactlyi
red edges have been found, the -st such spanning tree
may not be derivable from any one of them by exchanging one
edge in the tree with one edge not in the tree. So for the color-
constrained problem, the search space for the next spanning tree
in the sequence must expanded. By expanding this search space,
we have obtained an efficient algorithm for the problem [25]. The
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Ki lowest weight spanning trees with exactlyi red edges can be
generated in order in  time from a lowest
weight spanning tree with exactlyi red edges. Thus each span-
ning tree with color constraints takes  time to
generate. The modified algorithm is applied to  and the gener-
ated spanning trees are checked against . If we adopt the error
control scheme used in [22] and [20], this procedure continues
until the sum of the tree admittance products well approximates

. When the same has been done for every ,
, an approximate symbolic expression for

is obtained. The combination of expressions for  and
 gives an approximate symbolic expression for

which is valid for the entire frequency range of interest.
For our algorithm, if  is the total number of spanning trees

generated for  of ,

, (10)

then the total time to compute the approximate symbolic expres-
sion for  is .

The ratio of the number ofv-graph spanning trees generated
over the number of common spanning trees among them largely
determines the overall efficiency of the tree enumeration process.
This ratio varies with the size and structure of the two-graph.
Nevertheless, the significant savings from not having to generate
every valid product term makes the symbolic analysis of large
circuits viable.

5. Sensitivity-Based Two-Graph Simplification
Our experience with generating significant common trees

shows that the number of such common trees and the number of
v-graph trees needed to obtain good approximation accuracy
grow fast with the size of the two-graph. For improved interpret-
ability of the approximate expression and for tree generation effi-
ciency, we incorporate asensitivity-based simplification scheme
for the two-graphs. With this scheme, we reduce the number of
edges, each of which corresponds to a unique circuit element,
and the number of vertices in the two-graph.

If we define
(11)

to be the sum of product terms in  that contain
and do not contain  divided by
and define

(12)

similarly, then for a specific element , the network function
can be written as

. (13)

The simplification scheme consists of two stages. We first treat
the two-graphs for  and  individually, then treat both two-
graphs together. When certain conditions have to be met over all
frequencies, we test them over a set ofsample frequencies cho-
sen from the frequency range of interest.

5.1  Simplifying Individual Two-Graphs

In the first stage, we define

 and , (14)

which are usually complex numbers for a given frequency
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( ), to be thecontribution andcontribution complement
of  to . (A technique of efficiently computing them can be
found in [3].) If the magnitude of  or  is small
over all frequencies, we may remove  or ,i.e.,
the group of product terms containing or not containing , from

 without introducing much numerical error. We call such
whose  or  is small over all frequenciesweakly
contributing or strongly contributing elements for , respec-
tively. The removal of  or  is equivalent to
deleting or contracting, respectively, the edge  in bothi-graph
andv-graph before tree enumeration.

However, because we are removing a group of product terms
containing or not containing , it is possible that two different
product terms with similarly large magnitudes (as compared to

) but opposite signs, callednumerically cancelling large prod-
uct terms, are removed together. In such cases, the information
content of  is distorted.

The most important information provided by a symbolic net-
work function is how the elements contribute, directly or through
interaction with each other, to the network function. Conse-
quently a good way to preserve the information is to limit the
error in thecontribution of an element to both  and  when the
symbolic network function  is simplified. We attempt to
remove (delete or contract in the two-graph) each weakly con-
tributing or strongly contributing element  from  in turn, and
after each attempt we check the contribution of every remaining
element to . If a remaining element  has a new contribution
to  that is significantly different from the original value of

 prior to all such element removals at some frequency,
then this attempt to remove  is rejected. Although such a pro-
tection mechanism does not guarantee against the removal of
numerically cancelling large product terms, it greatly reduces its
probability. The element selected for the next removal attempt is
one that will cause the least cumulative error in . Meanwhile,
we limit the cumulative error in  incurred during all removals.

 is processed similarly. After the first stage we call the network
function represented by the simplified two-graphs :

. (15)

Example 1. Consider  where  and
. Since  and ,  is a

weakly contributing element and  is a strongly contributing
element. Thus we may try deleting the edge for  or contracting
the edge for . If we choose to contract the edge for ,
becomes an independent factor.

Consider  where
, . Since  we may try

deleting the edge for . If we do, the contribution of  changes
from  to . This is a signif-
icant change, so the deletion of the edge for  is rejected. The
two-graph for  can not be simplified in this stage.

5.2  Simplifying Both Two-Graphs Simultaneously

In the second stage we further simplify the numerator and
denominator two-graphs by deleting or contracting certain edges
that are common to both and whosecontribution to both are
almost equal for all frequencies. The effect of deleting or con-
tracting a common edge  on the network function is to remove
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the group of product terms not containing or containing  simul-
taneously from  and , respectively. The rationale behind
such removal is that the large-change sensitivity of the network
function with respect to some of the circuit elements is small
over all frequencies in the range of interest.

We note that

(16)

and

(17)

are the network functions represented by the two-graphs derived
from those for  and  by deleting and contracting  in both
two-graphs, respectively. Define

(18)

and

(19)

as thedual contraction error anddual deletion error of  with
respect to , which are generally complex numbers. If the magni-
tude of  or  is small over all frequencies, we
can contract or delete  from both the numerator and the denom-
inator two-graphs without causing much numerical error in .
Such an operation is called adual contraction or adual deletion
and such an edge is acontraction candidate or adeletion candi-
date, respectively. A common edge can be a contraction candi-
date and a deletion candidate simultaneously.

Again, consider the impact of a dual contraction or deletion
on the information content of . Here we wish to limit the error
in the contribution of every remaining element to both  and

. For each contraction candidate , we attempt a dual contrac-
tion and then check the contribution of all remaining elements to

 and . For the dual contraction to be acceptable to a
remaining element , either the contribution of  to  and
does not change significantly compared to before all dual con-
tractions and deletions, or, when  is common to the numerator
and the denominator and is a deletion candidate, the contribution
of  to both  and  becomes very small. The latter case
usually occurs when a deletion candidate edge becomes a self-
loop in both two-graphs because of previous contractions. In the
former case the dual contraction is simply accepted by . In the
latter case the dual contraction is accepted by  and  is imme-
diately dual-deleted. Such dual deletions are termedderivative
dual deletions. If not all of the ’s accept the dual contraction,
the dual contraction is rejected; otherwise we proceed to check
the acceptability of all associated derivative dual deletions.

Likewise for the derivative dual deletions to be acceptable to
a remaining element , the contribution of  to  and
should not change significantly compared to before all dual con-
tractions and deletions. If every  accepts the dual deletions,
then the derivative dual deletions together with the prior dual
contraction are all accepted; otherwise, they are all rejected. In
either case we advance to the next dual contraction attempt.

Finally for each remaining deletion candidate we attempt a
dual deletion with similar acceptance criteria.
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At every step the next candidate selected for a dual contrac-
tion or deletion attempt is one that will cause the least cumulative
error in . In the whole process, we limit the cumulative error
in  incurred during all the dual contractions and deletions.

After the second stage of sensitivity-based simplification, we
call the network function represented by the simplified two-
graphs :

. (20)

Example 2. Consider

(21)

where . We have ,
,  and . So

and  are both contraction candidates and both deletion candi-
dates. We attempt to dual-contract the edge for  so that

. (22)

Since  is a deletion candidate and the new contribution
 and  are “very

small”, we derivatively dual-delete the edge for . (In fact, it
has already been deleted because it has become a self-loop.) We
then check the contribution of the remaining elements in

 and . Since
(23)

and
(24)

does not change after the dual removals, the dual-removals are
accepted.

6. Error Control Mechanism
The approximation error in our approach originates from sen-

sitivity-based two-graph simplification and significant common
tree generation. The approximation error associated with sensi-
tivity-based two-graph simplification is controlled by user-sup-
plied error bounds. Here we discuss in detail the error control
scheme for significant common tree generation.

Our error control mechanism limits error in magnitude and
phase responses. We first choose a set ofsample frequencies

, in the range of interest, then compute and
record the numerical values of  and  at these frequencies.
We choose a relative threshold  and generate all product terms
in  or  that are larger in magnitude than  or
for at least one of the frequencies , respec-
tively. Product terms with different powers of  are generated
separately as described in Section 4 but treated uniformly. We
choose an error bound  for the magnitude and another error
bound  for the phase for the simplified expression. If the
generated product terms constitute a symbolic expression whose
magnitude and phase errors with respect to  at every fre-
quency , are smaller than  and ,
respectively, our procedure terminates. Otherwise we repeatedly
reduce  and generate more product terms for both  and .
A minimum value of , , is specified and  is reduced until
either the symbolic expression is accurate enough or  is
reached, when the procedure terminates.
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Error_Control(two-graphs for  and , , ,
, , , sample frequencies )

1. comment:  is the factor used to reduce the relative
threshold  in every iteration;

2. compute numerical values of  and  at frequencies
;

3. compute magnitude and phase of  at frequencies
;

4. ;
5. do
6. generate all product terms in  or  that are larger in

magnitude than  or  for at least one
frequency ;

7. update ;
8. comment:  is the simplified symbolic expression

that consists of all product terms already generated;
9. compute magnitude and phase of  at frequencies

;
10. if  magnitude error and phase error of  with

respect to  are smaller than  and  for all
then

11. output ; return  (ok);
12. endif
13. ;
14. while ;
15. return  (warning).

Our error control scheme is different from the one in [22] and
[20], where individual powers of  in both numerator and
denominator are approximated, in that product terms with differ-
ent powers of  are treated uniformly according to their relative
magnitude with respect to the numerator or denominator rather
than individual powers of .

Specified matching conditions and mismatch variables for
small signal model elements are incorporated after the symbolic
expression is generated, allowing the effect of element mismatch
to be readily observed. Product terms are collected after match-
ing and the size of the expression reduced as part of analgebraic
post-processing step.

7. Implementation and Results
The above unified approach has been implemented in a sym-

bolic analysis program. For integrated circuits, DC analysis is
carried out with SPICE and the program reads the small signal
model element values for semiconductor devices from the SPICE
output. Complete small signal models for bipolar and MOS tran-
sistors are used. The program is able to generate any network
function in the complex frequency domain.

The first circuit example analyzed is the bipolar opamp
 containing 26 transistors and 11 resistors. An approxi-

mate symbolic expression for the voltage gain, valid up to the
unity-gain frequency, containing a total of 57 product terms
before matching and algebraic post-processing was obtained in
18.5 seconds on a Sun SPARCStation2. The frequency response
of the approximate symbolic expression is compared to the
numerical simulation results using SPICE in Fig. 1. The statistics
of the symbolic expression are given in Table 1.

The second circuit example is a CMOS cascode opamp con-
taining 22 transistors given in Fig. 2. An approximate symbolic
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fi i, 1 2 … nf, , ,=

T2
fi i, 1 2 … nf, , ,=
η ηmax←

N2 D2
ηN2 ηD2

fi i, 1 2 … nf, , ,=
Tappr

Tappr

Tappr
fi i, 1 2 … nf, , ,=

Tappr
T2 εmagn εphas

fi i, 1 2 … nf, , ,=
Tappr

η η ξ⋅←
η ηmin≥
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µA741

expression for the voltage gain, valid up to the unity-gain fre-
quency, containing a total of 245 product terms before matching
and algebraic post-processing was obtained in 20.4 seconds on
the same machine. The frequency response of the approximate
symbolic expression is compared to the numerical simulation
results using SPICE in Fig. 3. Also shown is the frequency
response of voltage gain approximated by different numbers of
product terms in the expression. The statistics of the symbolic
expression are given in Table 1.

The third circuit example is a rail-to-rail opamp [24] contain-
ing 39 transistors. An approximate symbolic expression for the
voltage gain, again valid up to the unity-gain frequency, contain-

numerical results
symbolic results
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Figure 1. Voltage gain of  as given by the approximate
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ing a total of 36 product terms before matching and algebraic
post-processing was obtained in 63.4 seconds. The frequency
response of the approximate symbolic expression is compared to
the numerical simulation results using SPICE in Fig. 4. The sta-
tistics of the symbolic expression are given in Table 1.

The last circuit example is the bipolar opamp  with 26
transistors and 20 resistors. An approximate symbolic expression
for the differential mode input impedance containing a total of 39
product terms before matching and algebraic post-processing
was obtained in 41.6 seconds. Again, the frequency response of
the approximate symbolic expression is compared to the numeri-
cal simulation results using SPICE in Fig. 5. The statistics of the
symbolic expression are given in Table 1.

Table 1 contains upper and lower bounds on the numbers of
product terms in the original unsimplified expressions of the
numerator and denominator. They are computed as

 and , (25)

respectively, where  and  are the reduced incidence matri-
ces of thev-graph andi-graph and

,  and (26)

are the number ofv-graph trees, the number of i-graph trees and
the difference in the numbers of common trees with plus sign and
minus sign, respectively [17].

In all examples, the number of circuit elements and the high-
est powers of  in the symbolic expression are reduced during
the approximation. Numerical accuracy is achieved with reason-
able numbers of product terms before matching and post-pro-

magnitude/db vs frequency/Hz

Figure 3. Voltage gain of CMOS cascode opamp as approximated by
different number of product terms in the symbolic expression: 1)
numerical results; 2) 54 terms; 3) 99 terms; 4) 245 terms; 5) 450
terms.
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the original unsimplified expressions.

8. Conclusion
We have presented a new unified approach to the approximate

symbolic analysis of large analog circuits. In addition to being
able to handle much larger analog circuits than previously ana-
lyzed, our approach possesses the following virtues:
• The simplified symbolic expression is in expanded format. It is

irreducible,or cancellation-free. The expanded format facili-
tates post-processing of the expression for different applica-
tions.

• Every product term in the simplified expression, before match-
ing and algebraic post-processing, corresponds to a unique
product term in the unsimplified irreducible sum-of-products
expression for both the numerator and the denominator. No
alien product terms are introduced.

• The error in thecontribution of every remaining circuit ele-
ment to both the numerator and denominator is limited in the
sensitivity-based two-graph simplification. This offers good
protection of the information content of the symbolic expres-
sion against distortion during approximation.

• Generation of significant common trees provides maximum
flexibility to any error control mechanism for symbolic expres-
sions in expanded format.
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Table 1.Statistics for approximate symbolic expressions for voltage gain or differential mode input impedance

Circuit name 741 Cascode Rail-to-rail 725

Nu. De. Nu. De. Nu. De. Nu. De.
Original # g elements 62 62 47 47 79 81 82 82

# g elements after simplifying individual two-graphs 18 24 26 29 45 50 82 82
# g elements after simplifying both two-graphs together 7 14 11 14 19 24 9 9

Original # C elements 39 39 40 42 58 58 46 46
# C elements after simplifying individual two-graphs 19 21 25 28 41 41 46 46

# C elements after simplifying both two-graphs together 7 9 6 9 9 9 5 5
Original highest power ofs 22 22 12 12 24 24 31 32

Highest power ofs after simplifying individual two-graphs 14 16 12 12 24 24 31 32
Highest power ofsafter simplifying both two-graphs together 6 8 6 7 8 8 5 5

Highest power ofs in the final expression 4 4 4 6 2 7 3 4
Upper bound on # product terms in the original expression 1.4e17 1.4e17 2.0e11 4.3e11 8.9e20 6.9e22 2.6e22 6.9e22
Lower bound on # product terms in the original expression 1.1e14 3.3e16 4.4e9 1.2e11 0 1.2e22 5.8e21 1.2e22
# product terms in the approximate symbolic expression

before matching and algebraic post-processing
20 37 57 188 11 25 20 19

# elements in a product term 6 8 7 7 8 8 6 7
# v-graph spanning trees generated 64 182 179 454 117 3006 66 110
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