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Abstract{ Hierarchy plays a signi�cant role in the
design of digital and analog circuits. At each level
of the hierarchy it becomes essential to evaluate if
a sub-block design is feasible and if so which design
style is the best candidate for the particular prob-
lem. This paper proposes a general methodology
for evaluating the feasibility and the performance
of sub-blocks at all levels of the hierarchy. A mod-
i�ed simplicial approximation technique is used to
generate the feasibility macromodel and a layered
volume-slicing methodology with radial basis func-
tions is used to generate the performance macro-
model. However, due to lack of space, only details
of the performance macromodeling techniques are
included. Macromodels are developed and veri�ed
for analog blocks at three di�erent levels of hierar-
chy (current mirror, opamp, and A/D converter).

1 Introduction
As feature sizes shrink even further, an increasing

percentage of IC's will have analog circuit designs in
them, stressing the need for analog design automation.
Hierarchy has played a signi�cant role in the design
of digital and more recently in analog circuits [1]. In
digital design, extremely large designs are routinely de-
signed by breaking up the task into smaller and smaller
sub-tasks, i.e., divide and conquer. Hierarchy helps to
hide the lower-level details and also helps to focus at-
tention on more tractable sub-tasks. Even though it
may be informal and less well accepted, hierarchy does
exist in analog circuit design practice. For example, an
analog to digital (A/D) converter is not designed at the
transistor level right from the start.

An example of hierarchy for an A/D converter is
shown in Figure 1. There are a number of di�erent
kinds of A/D converters, e.g, 
ash, successive approx-
imation, sigma-delta, etc, Each of these is called a de-
sign style [1]. The hierarchy for a �rst-order sigma-
delta is shown in this �gure. The converter has as
subcomponents, an integrator, a comparator, a 1-bit
D/A and a digital low pass �lter. There are di�er-
ent design styles, or ways of implementing, each one of
these components. For example, one of many possible
choices for the integrator is shown. One of the subcom-
ponents within the integrator is an opamp. Once again,
there are many di�erent design styles for the opamp,
e.g., simple one-stage, Miller-compensated two-stage,
folded-cascode, etc [1].

Design proceeds down such a hierarchy. At each level
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Figure 1: A/D converter hierarchical decomposition

of the hierarchy we are presented with a number of can-
didate design styles for each functional block. Each of
these design styles provides the same functionality but
provides di�erent performance tradeo�s. As part of the
design we need to select the best candidate for the job
at each level of the hierarchy. Two decisions need to
be made during this selection process. First, we need
to evaluate which design styles are feasible, i.e, can be
designed to meet input speci�cations. Second, we need
to evaluate which design style provides the best perfor-

mance. A second aspect of design, i.e., the translation
of speci�cations from one level of the hierarchy to the
next lower level, has been described elsewhere [1, 13].

One possible solution to the selection problem is to
exhaustively try out all the options and then select the
best candidate among them. However, the design time
increases exponentially, as the number of levels in the
hierarchy and/or the branching factor increase. Un-
fortunately, performance of analog circuits are strongly
tied to the bottom level transistor behavior. Therefore,
without an appropriate macromodel, the performance
or feasibility of a design at a level cannot be evaluated
without traveling to the very bottom of the hierarchy.
Typical branching factors in a real design situation can
be fairly large at all except the lowest level of the hier-
archy. For example, there are probably twenty di�erent
design styles for operational ampli�ers, i.e., a branch-
ing factor of twenty. As a solution to this problem we
propose a numerical macromodeling solution that gen-
erates macromodels a priori. To accurately predict per-
formance and feasibility, these macromodels are built
bottom-up throughout the hierarchy.
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Figure 2: Feasibility/performance relationship

To ensure that the methodology is general, i.e, can be
applied at all levels of the hierarchy and can be applied
to any circuit block, it is essential that the methodology
be abstract and not depend on the implementation de-
tails of any of the functional blocks. To this e�ect it is
essential that the methodology use a set of general basis
functions to perform macromodeling and general tech-
niques for experimental design. Two kinds of macro-
models are necessary. One model is necessary to check if
a design is feasible, the feasibility macromodel, and the
second model is necessary to predict the behavior, the
performance macromodel. The relationship between the
feasibility macromodel and performance macromodel is
shown in Figure 2. Performance macromodels are map-
pings from the feasible input speci�cation space to the
realizable performance space. At each level of the hi-
erarchy each design style has a single feasibility macro-
model and a set of performance macromodels, one for
each performance metric.

The primary advantage of developing hierarchical
macromodels is that the macromodels need only be
built once. They can then be used during design time
to accommodate a complete top-down design. There-
fore, the performance or feasibility of a block at any
level can be determined by evaluating the macromod-
els at that level rather than having to travel to the
very bottom of the hierarchy. Only when we need to
complete the circuit design do we travel down the hi-
erarchy. However, at each level of the hierarchy, since
we have feasibility macromodels, we know which design
style can be designed to meet speci�cations and which
cannot. Likewise, since we have performance macro-
models for each of these feasible design styles, we can
choose the best candidate.

OASYS [1] is an example of analog synthesis sys-
tem that uses similar abstractions to e�ciently design
analog circuits. We shall use the OASYS system to
evaluate our macromodeling approach. However, the
methodology being described is general and can be used
with any other hierarchical design system. The mod-
eling technique has been �ne tuned to handle analog
circuits; however, the approach is general and is appli-
cable to both analog and digital circuits. This feature
makes it particularly suitable for mixed-signal designs.

This paper proposes a general methodology for
macromodeling using radial basis functions. Since a
large number of simulations are required and increases

exponentially in higher dimensions, systematic design
plans are used to reduce the number of experiments.
In our methodology, the signi�cance of input variables
is evaluated using experimental runs. Next variable
screening and variable grouping is performed based on
the signi�cance of each input on individual models. To
further minimize the cost of simulations we develop
an adaptive volume slicing technique during regression
analysis to dynamically perform experimental runs.

The paper is organized as follows. Section 2 reviews
the previous work in this area. Section 3 presents the
macromodeling methodology that has been developed.
In section 4 we provide examples with analog circuit
blocks to illustrate the viability of our approach. Fi-
nally, in section 5 we provide some conclusions.

2 Review of Previous Work
In an attempt to evaluate past research it is instruc-

tive to provide a more formal de�nition for the macro-
model. In general, the relationship between the ith
response and input variables and its macromodel can
be represented by

yi = fi(x1; x2; : : : ; xn) (1)

ŷi = f̂i(x1; x2; : : : ; xn) (2)

where xi; (0 � i � n), is the ith input variable, yi
is the ith response, ŷi is the approximation of the ith
response, fi is the unknown relationship between yi and
fx1; x2; : : : ; xng, f̂i is the macromodel of fi, and n is the
number of input variables in the ith macromodel. As
we shall see later, the number of variables in yi and ŷi

do not have to be the same.
A number of macromodeling techniques have been

developed for design centering of integrated circuits [2,
3, 4]. Design centering deals with choosing a nominal
design which maximizes the fabrication yield. The de-
sign approach to improve yield seeks to inscribe the
largest norm body, usually a hyperellipsoid, in the
boundary by moving the center of the norm body, called
the nominal point [2, 3]. In [2, 3, 4] an approximation
of the feasibility region is generated using simplicial ap-
proximation. We use a variation of this technique to
generate a macromodel for the feasibility region [5].

In [6, 7, 8] macromodels are built by performing re-
gression analysis on empirical polynomials with the aid
of well designed experiments. The approach in [9] em-
ploys a quasi-physical model form for a MOS process us-
ing a predetermined set of variables and is thus not su�-
ciently general for our macromodeling requirements. In
the MULREG program [10], a multiple-layered regres-
sion scheme is used with a large number of variables.
In this approach, the polynomial regression model is
synthesized layer by layer using a number of low order
polynomials. The data points are generated randomly
which, unfortunately, leads to extremely large and non-
optimal experimental runs. The approach in [4] builds



a second-order polynomialmacromodel using regression
analysis with a fractional factorial experiment plan.
However, as with other polynomial based approaches,
the number of experimental runs required increases ex-
ponentially with the number of input variables. Ad-
ditionally, factorial design plans require that the max-
imum complexity of the polynomial be known before
experiments can be designed. However, to provide a
general solution, we cannot make any a priori assump-
tions about the complexity of the response surface.

In the next section, we develop our solution that uses
radial basis functions in combination with a dynamic
experimental design strategy to provide general macro-
models e�ciently.

3 Macromodeling Approach
As mentioned earlier, macromodeling is desirable

when the computation cost of generating data points
is unacceptably high. As we have seen before, the com-
plexity of the design space can grow rapidly. Both of
these stress the need for e�cient macromodeling tech-
niques. Macromodel construction requires a number of
simulations to gather the data points. Therefore, the
number of experimental runs can be used as a met-
ric of the cost of macromodeling. However, if too few
experimental runs are performed, the accuracy of the
resultant macromodel is sacri�ced. Hence, there is a di-
rect tradeo� between the cost of generating the model
versus the accuracy of the model. Experiments can be
generated statically or dynamically. Static experiments
are either designed using factorial design techniques [11]
or done manually using previous knowledge of the tar-
get space. On the other hand, dynamic techniques use
no previous knowledge of the target space, but adapt
to provide the best tradeo� between cost and accuracy.

In the following paragraphs, we present the four pri-
mary aspects of our macromodeling approach. These
are:

Feasibility region de�nition: The circuit design
problem is de�ned by specifying input variables and
output responses. The speci�cations include the do-
main of the input variables and constraints on the out-
put responses. This in e�ect de�nes the feasibility re-
gion for the design tool. To �nd the boundary points
of the feasibility surface we use one of two search algo-
rithms. Once an adequate number of data points are
gathered, a macromodel can be built for the feasibil-
ity region. The two methods that are used to perform
the search are radial binary search and vertical binary
search [5]. Radial binary search requires that the fea-
sibility surface be convex in all dimensions while the
vertical binary search requires that the surface be con-
vex in only one dimension. Figure 3 shows the feasi-
bility region for a two-stage opamp computed by using
the vertical binary search procedure. Interested readers
are referred to [5] for further details.
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Figure 3: 2-Stage opamp feasibility region

Experiment design: Experiment design techniques
are employed to build an appropriate experiment plan.
The use of an appropriate experiment plan results in
substantial savings in the number of experimental runs.
In our approach, we use both static and dynamic ex-
perimental design techniques. We use a static factorial
design technique to measure variable signi�cance and
we use a dynamic technique called volume slicing to
generate the data points for regression. During volume
slicing, we dynamically increase the number of experi-
mental runs where the response surface is more complex
and decrease the number of experiments where the re-
sponse surface is smooth.

Variable screening and grouping: Through sys-
tematic experimental runs the signi�cance of each vari-
able, i.e., its e�ect on the output response, is estimated.
The variables below a certain threshold level are ne-
glected. Selected variables are further grouped into
layers with the more signi�cant variables in the upper
layers. This classi�cation re
ects the varied in
uences
of di�erent variables on the output response and has
a signi�cant impact on the complexity of the modeling
technique for high dimensions.

Regression analysis: Having once performed the nec-
essary experimental runs and gathered the data points,
we now use these data points to calculate the coe�-
cients of the macromodel. Additionally, the accuracy of
the resultant macromodel also needs to be veri�ed. To
dynamically collect the data points, we perform the re-
gression analysis at two levels. A local regression anal-
ysis procedure is called recursively for a local area until
a certain accuracy is obtained. After all the data points
have been obtained, a global regression analysis is then
performed to obtain an approximation for the entire
surface. The adaptive volume slicing technique was de-
veloped in conjunction with local regression analysis to
dynamically generate the necessary experiments.

3.1 Static experiment design

Experiment design is a sampling strategy. Properly
designed experiments can result in substantial savings
in the number of experimental runs. Since one of our



primary concerns is to minimize the number of exper-
imental runs, systematic experiment design techniques
are employed to achieve this goal. The resultant ex-
periment plan is used for variable screening and vari-
able grouping. So, as not to waste experimental runs
we reuse the results of these experiments for regression
analysis as well. To maintain consistency, we use a two-
level fractional factorial plan to design experiments for
variable screening and for variable grouping.

In a two-level fractional factorial plan, each variable
takes two values. In our application, they are selected
to be within the feasible input domain. Assuming that
each variable has been normalized such that its low and
high values are �1 and +1 respectively, then a full two-
level factorial plan with n variables requires 2n exper-
imental runs for all possible combinations [11]. The
number of experimental runs can be reduced substan-
tially by using a 2n�pIII fractional factorial plan. Inter-
ested readers are referred to [4, 11] for more details.

3.2 Variable Screening and Grouping
As discussed earlier, not all the input variables have

the same e�ect on the output response. Therefore, it
is possible to identify a subset of the input variables
which are more signi�cant than the others. These sig-
ni�cant variables are then used in macromodel con-
struction while the other variables are discarded from
consideration. Even among the selected signi�cant vari-
ables, the degree of in
uence on the response is di�er-
ent. To further reduce the complexity of the regression
analysis, we group the signi�cant input variables into
layers.

A slightly modi�ed 2n�pIII fractional factorial plan is
used for variable screening. For each input variable xi
we de�ne the following quantities:

� Main e�ect, vi =
1
2
fvi+ � vi�g =

1
nr

Pnr

k=1sik � yk

� High deviation, dhi , from the nominal (i.e., the cen-
ter point) response, dhi =

2
nr

P
k2Ki

yk � yc

� Low deviation, dli, from the nominal response, dli =
2
nr

P
k2K0

i

yk � yc

where nr is the number of experimental runs, yk is the
response value of the kth run, sik is the sign of xk on
the kth run, Ki is the set of run indices when xi is +1,
K
0

i is the set of run indices when xi is �1, and yc is the
response value of the center point.

Using these quantities, a statistical signi�cance test
is performed to determine if the corresponding input
variable is signi�cant. Further we can de�ne

�
v
i =

jvij

�̂v

; �
h
i =

jv
h
i j

�̂h

; �
l
i =

jv
l
ij

�̂l

(3)

where �̂v; �̂h, and �̂l are the estimates of the standard
derivation of vi; dhi , and d

l
i, respectively.

A variable is considered to be signi�cant if j�ij >
t�=2;n�1 is true for at least two of the three variable,

vi; d
h
i , and d

l
i. Here � is the desired level of signi�-

cance and t�=2;n�1 is obtained from the t-distribution
table. Variables that are considered insigni�cant are
neglected from further discussion. Moreover, we rank
the remaining variables by their signi�cance in terms
of �vi , �

h
i , and �

l
i. We group them into layers according

to their ranks. The more signi�cant a variable is, the
higher is the group that it is placed in.

3.3 Regression Analysis

Having identi�ed the set of signi�cant input variables
and grouped them into layers, we now proceed to con-
struct the macromodel for the response in terms of these
variables. In general, a macromodel of a response y is
given as described in eq. (2), and the actual response
y can be written as, y = ŷ + � where � is the random
error due to the e�ects of the insigni�cant variables we
neglected earlier.

The form of the function f(:), in eq. (2), can be se-
lected from some known function classes. For example,
in most previous macromodeling e�orts, the polynomial
function is used. However, models for a large number
of variables requires excessive computation work and
the resulting model is too complicated to be used. Ad-
ditionally, polynomial function forms require some a
priori knowledge of the system in order to limit the
order of the polynomial. Therefore, the polynomial
function form isn't well suited for a general macromod-
eling methodology. We employ radial basis functions
(RBFs) as the model form in our approach. The linear-
in-the-variable structure of RBFs provides the general-
ity we require and the dimensionality of the problem
space has little e�ect on the complexity of the result-
ing macromodel. Furthermore, no a priori knowledge
of the problem domain is required for complete model
development.

Rather than sampling randomly, we have developed
an adaptive volume slicing technique to perform the
experimental runs and gather data points. We perform
additional experimental runs only in areas where more
details are required. To this end, we dynamically adapt
the spacing to minimize the total number of experimen-
tal runs. However, before discussing volume slicing we
present some details about radial basis functions.

3.3.1 Radial Basis Functions

Radial basis functions have been used extensively to
approximate multi-dimensional spaces [12]. The form
of the radial basis function for an n-variable input space
with a scalar output response y is given by,

y = �0 +

nrX

i

�i�(k ~x� ~xi k) (4)

where �(:) is a function from R
n to R, k : k denotes

the Euclidean norm, ~x 2 R
n, �i, (0 � i � nr), are

the weights or the parameters, ~xi 2 R
n, (1 � i � nr),



are the RBF centers and nr is the number of the cen-
ters. The function form �(:) is selected before hand.
The choice of the function form doesn't a�ect the aver-
age performance, but particular forms are better suited
for di�erent conditions. The centers ~xi are points in
n-dimensional space where experimental runs are per-
formed. The centers could potentially be distributed
uniformly within the input domain. However, substan-
tial savings in terms of experimental runs can be gar-
nered by selecting appropriate centers. These centers
can be selected using a priori knowledge of the design
space or by using the knowledge garnered from previous
experimental runs. The second of these two approaches,
dynamic experiment design, was selected because of it
generality. We call this experiment design technique
adaptive volume slicing and use it to select the RBF
centers dynamically.

We note, from eq. (4), that the dimension n of the
input space has little in
uence on the function, because
the Euclidean norm k : k is a scalar. This gives the RBF
an advantage over other model forms where the number
of terms in the function depends upon the dimension of
the input space.

Typical choices for �(:) are the thin-plate-spline
function, �(r) = r

2 log r, and the gaussian function,
�(r) = exp(�r2=�2),. The approximation capabilities
of the RBF approximation is directly related into its
localization properties. The localization property im-
plies that the contribution of ~x in the input domain,
D, which are far away from the center of the function
�i, is much less than those in the vicinity of the center.
For a set of given centers, the global function of these
radial basis functions corresponding to the contribution
from each center is formed into eq. (4). It is easy to see
that �(r) ! 0, as r ! 1. For these choices, the RBF
approximation has good localization properties. A ju-
dicious choice of the RBF centers, or experiments, is
extremely important and leads to our adaptive volume
slicing strategy.

3.3.2 Adaptive Volume Slicing

The allocation of the RBF centers has a direct im-
pact on the performance of the RBF approximation.
Additionally, we also wish to minimize the number of
experimental runs. Both these constraints require a ef-
�cient method to determine when and where to place
the RBF centers. We call our method of locating the
RBF centers as adaptive volume slicing. In adaptive
volume slicing we choose the intersection points of sur-
faces in the input domain as the RBF centers, and slice
the volume only when the accuracy of the approxima-
tion is not su�cient. To illustrate this methodology, we
present an example in two dimensions.

The adaptive volume slicing method is compatible
with the experiment design techniques used for variable
screening and grouping. Therefore, we are able to reuse
the experimental runs generated for variable screening
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and grouping. To maintain generality we adopt a reg-
ular structure for the data points, i.e, the method is
recursive. The left-side of Figure 4 shows a unit of the
input domain D0, with input variables x1 and x2 and
the output response y. To start with, the intersection
points ci, 1 � i � 4 (the four nodes of the square), are
chosen as the RBF centers. From eq. (4), we have

y =
4X

j=1

�j�j(jj~x� ~cj jj) (5)

which is the approximation of the response of the input
domain D0. The RBF coe�cients �j are solved using
the values at ci's. To check if the accuracy of this ap-
proximation is good enough, we perform an experimen-
tal run at the center point c0 and generate the response
value yc. From eq. (5), we have the estimated value of
the response at c0, ye. If the criterion in eq. (6) is satis-
�ed, then the RBF model of the four centers is a good
approximation for the domain D0. Otherwise, we slice
the square such that it results in the �gure on the right-
side of Figure 4. For each subarea Di, 1 � i � 4, we
repeat the above procedure for D0. The recursive pro-
cedure is terminated when the criterion given in eq. (6)
is satis�ed for each subarea.

j
yc � ye

yc
j � � (6)

The parameter �, in eq. (6) can be varied for the de-
sired level of accuracy. As a second example, we use
our volume slicing method to generate RBF centers for
an opamp circuit design. The distribution of the RBF
centers are shown in Figure 5. In this �gure, each cir-
cle represents an RBF center, and the lines themselves
represent domain edges. We slice input domain units
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and add new centers (i.e., experimental runs) only when
it is necessary to further explore the details of the re-
sponse surface. By doing so we not only increase the
performance of the RBF approximation but we also
minimize the number of necessary experimental runs.
Since these improvements are made without any ear-
lier knowledge about the shape of the response surface
our methodology proves to be extremely general. The
simple volume slicing technique mentioned here can eas-
ily be extended to 3-dimensions. However, for higher
dimensions (n > 3) the basic methodology has to be
modi�ed due to the complexity of the data structures
that are generated. This modi�cation and generaliza-
tion of the volume slicing approach to n-dimensions is
described next.

3.3.3 Layered Volume Slicing
To extend the volume slicing method to 3-

dimensions, a cubic unit is used instead of a square
unit as shown in Figure 6. When slicing a cube, we
add 19 additional center points, instead of 5 in the 2-
dimensional case. The number of RBF centers that
have to be added dynamically grows exponentially for
higher dimensions. To reduce this problem, we use the
signi�cance of input variables. We group the variables
into layers, as discussed in subsection 3.2. Each layer
has at most three variables. The most signi�cant vari-
ables are assigned the highest layers. The layering for
a single unit cube is shown in Figure 7.

The volume slicing method for each layer is the same
as that described in subsection 3.3.2. Let the top layer
be L0, then the procedure for layered volume slicing is
as follows:

1. Call the procedure for layer L0.

2. For layer Li, perform the volume slicing procedure
in the input domain of xi1; xi2 and xi3: obtain the
value of the response at each node, derive the lo-
cal RBF model for the local domain, run an extra
simulation at the center of the domain to check if
eq. (6) is satis�ed. In the case that eq. (6) is not
satis�ed, the local domain is sliced as described in
subsection 3.3.2.
For each RBF center, to obtain the value of the re-
sponse, set the values of xi1; xi2 and xi3, and call

the volume slicing procedure for layer Li+1.
Return the average response value of the center
point.

We make the approximation that the response value
of a RBF center in layer Li is equal to the average of the
response values of layer Li+1 with the input variables in
layer Li set to the values at that center. Since we have
grouped the most signi�cant variables on the top layer,
the response values of RBF centers in a lower layer have
less in
uence. So, the resulting error from making this
approximation is small. It is important to note that
this approximation only a�ects the experiment design
phase. It has no e�ect on the �nal regression. For
the �nal regression all the input variables are included
at the same level. We have found that this variable
grouping strategy works well in practice. We show an
example of this in section 4.

3.3.4 RBFs vs. Polynomials

We now compare the e�ects of using RBFs instead
of polynomials as the function form in the macromodel.
The number of RBF centers is determined by the size
of our data points. Increasing the dimension of input
space does not directly a�ect the number of regressors
(RBF centers). On the other hand, for polynomials of
n variables, the number of regressors is determined by

m =
Pl

i=0mi where l is the polynomial degree and

m0 = 1; mi = mi�1(nr + i � 1)=i; 1 � i � l

It is obvious that the number of regressors m increases
exponentially as l increases. Therefore, in practice, l
must be restricted. This is the reason that, in most
polynomial approximations, only the second order poly-
nomial is considered. Although second order polyno-
mial approximations work well for some cases, it usu-
ally requires some knowledge of the response surface.
Moreover, second order polynomials do not provide a
general solution and cannot be used for higher order
surfaces. The RBF approach provides a more general
solution and can be used for any dimension response
surface.

4 Macromodeling Results
In this section, we applying our macromodeling

methodology on a few circuit examples. We illustrate
the versatility of the approach by apply the modeling
technique to circuits at di�erent levels of the hierar-
chy. Macromodeling results for a CMOS current mir-
ror, with particular emphasis on the feasibility region,
have appeared in [5]. The macromodels that were devel-
oped were fairly accurate. The maximumerror was less
than 3 percent. For our �rst example here we apply the
modeling technique to a two-stage Miller-compensated
CMOS opamp and a one-stage OTA [1]. For our sec-
ond example, we apply our modeling technique to a
�rst-order sigma-delta A/D converter. As mentioned



Variable De�nition Range

Gain voltage gain 40|100 dB

UGF bandwidth 0.2|30 MHz

Slew slew rate 0.5|30 V=�s

Cld load 0.1|50 pF

Power supply current 1.0|5.0 mA

Vmax
o

max. Vout 0.5|2.25 V

Vmin
o

min. Vout �2:25|�0:5 V

Phase phase margin 30o|75o

Table 1: The input variables for the opamp

Variable De�nition vi dl
i

dh
i

Gain x1 29.157 30.560 27.754

UGF x2 12.270 10.867 13.672

Slew x3 14.312 12.910 15.715

Cld x1 � x2 4.825 6.227 3.422

Power x1 � x3 1.785 0.382 3.187

Phase x2 � x3 8.377 9.779 6.974

Vmax
o

x1 � x2 � x3 10.920 12.322 9.517

Table 2: Two-stage opamp variable signi�cance

earlier, we treat each of these designs as block boxes,
only the interfaces are visible.

Example I. Opamp Macromodels

The opamp uses the current mirror and other func-
tional blocks in its design. We investigate two design
styles: a two-stage opamp and a one-stage OTA. The
subset of input variables considered for our example are
listed in Table 1. We have selected the active area as
the response to be monitored.

For our experiments we set Vmax
o and Vmin

o to have
the same magnitude but opposite sign. We, therefore,
only have seven input variables. Using a 27�4III design
plan, we obtain the measurements of vi, dhi , and d

l
i as

shown in Table 2. We use the signi�cance criterion

Gain UGF Slew Areae Areao �

dB MHz V=�s �M2 �M2

50.866 5.086 6.069 11700 11390 0.0257

50.866 8.086 6.069 13100 12660 0.0330

65.866 8.086 6.069 13700 14890 0.0872

50.866 6.586 7.269 12300 12320 0.0017

65.866 6.586 7.269 12900 11980 0.0706

50.866 5.086 8.469 11600 11610 0.0010

65.866 5.086 8.469 12100 12070 0.0019

50.866 8.086 8.469 13100 12550 0.0413

65.866 8.086 8.469 13700 14890 0.0872

Table 3: 2-stage opamp macromodeling results
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Figure 8: The 2-stage opamp performance surface
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Figure 9: The OTA performance surface

developed in section 3.2 to discard and group the input
variables. The variable power is discarded, and the
variables, gain, ugf, and slew are grouped into Layer 0,
the variables, Cld, phase, and Vmax

o are grouped into
Layer 1. Using the layered volume slicing procedure
we obtain the response surface for the selected input
domain. Figure 8 shows the response surface where all
variables except the gain and the ugf are �xed. The
variables are not �xed in the model. However, they
were �xed for the �gure because it is not possible to
show data for dimensions greater than three. Table 3
shows the results of the macromodel for the opamp.
For the results shown in this table the Cld, Vmax

o , and
phase are �xed. The errors here, though slightly larger
than the current mirror, are still small.

The performance surface for the one-stage OTA is
modeled in a similar manner and is shown in Figure 9.

Example II. �� Converter Macromodel

As shown in Figure 1, the sigma-delta converter in-
cludes an integrator, a comparator, and a digital LPF.
The feasibility macromodel of the sigma-delta converter
can be built through the design hierarchy. Given a set
of speci�cations for the sigma-delta converter; resolu-
tion n and bandwidth, f0, the design is feasible if and
only if the speci�cations translated for each sub-block
lie in their feasible design regions. Macromodels for
the integrator, the comparator, and the LPF can be
built by using a similar procedure. Using the feasi-
bility macromodels for the two-stage opamp and the
one-stage OTA and the comparator, etc., we obtain the
feasibility curve in 2-d for the sigma-delta converter in
Figure 10. The performance surface has also been built
using our methodology, but is not included here for lack
of space.
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Figure 10: Feasibility region for a sigma-delta converter

Methodology Performance

The rationale for developing hierarchical macromod-
els was to substantially reduce the design time. The
savings in the design time for a simple design may
not be signi�cant because of the limited number of de-
sign styles at each level included in the OASYS sys-
tem, i.e., small branching factor. Recall that there are
over twenty design styles for an opamp while only two
of them have been implemented in OASYS. However,
even for the limited branching factor, the savings can be
substantial when running multiple experiments as may
be necessary for design space exploration [1]. Addition-
ally, the rationale for developing a systematic methodol-
ogy to select experimental runs was to reduce the e�ort
necessary to develop the macromodel. The savings in
design time and in the number of experiments is illus-
trated by the following examples.

A. To develop the performance macromodel for the
OTA, we performed 196 experiments in 524.34 sec-
onds CPU time(2.675 seconds/data point). Having
once built the macromodel, we were able to perform
667 experiments in 20.46 seconds CPU time (0.031 sec-
onds/data point). This is a savings of 98.84%.

B. In macromodeling, traditional experimental design
techniques use no knowledge of the statistical distri-
bution of previous regressors and thus uniformly dis-
tributes the regressors. To obtain the same accuracy
for the two-stage opamp performance macromodel, the
most optimum traditional method would generate 289
data points, while the volume slicing method only re-
quired 204 data points (see Figures 5. This is a savings
of approximately 30%. However, care should be taken
when interpreting this number. Since no a priori knowl-
edge can be assumed, a designer would normally either
overestimate the number of experimental runs, i.e., our
savings would be substantially more. Or she/he would
underestimate the number of experimental runs, i.e, a
less accurate model.

C. Design space exploration without a macromodel is
generated by performing a design run for each point on
the design surface. However, with the macromodel, the
design surface is already approximated by the macro-
model. Therefore, design space exploration only in-
volves evaluating the macromodel a number of times.

As illustrated by (A), the savings can be substantial.
However, more importantly, the substantial reduction
in real time implies that design space exploration be-
comes practical even for systems that take substantial
design time [13].

5 Conclusions
In this paper, we have presented a general macro-

modeling approach for hierarchical circuit design. The
validity of our approach was tested by generating
macromodels at di�erent hierarchical levels. Fractional
factorial experiment experiment design techniques were
used to measure the signi�cance of input variables.
Variable screening and grouping techniques were em-
ployed to select and organize the input variables based
upon their in
uence on the output response. An adap-
tive volume slicing technique was used during regression
analysis to dynamically distribute regressors such that
the number of experimental runs is minimized. The
RBF approximation is well suited to our methodology
because of its locality and linear-in-parameter struc-
ture. We have found that our methodology works well
for analog circuit blocks. Though not explicitly tested,
our approach should be directly applicable to digital
circuit blocks as well as no knowledge of the underlying
circuit is assumed.
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