
A Redesign Technique for Combinational Circuits
Based on Gate Reconnections

Yuji Kukimoto Masahiro Fujita Robert K. Brayton
University of California Fujitsu Laboratories of America University of California

Berkeley, CA 94720 San Jose, CA 95134 Berkeley, CA 94720

Abstract

In this paper, we consider a redesign technique applicable to com-
binational circuits implemented with gate-array or standard-cell
technology, where we rectify an existing circuit only by recon-
necting gates on the circuit with all the gate types unchanged.
This constraint allows us to reuse the original placement as is,
thereby speeding up the total time needed for a redesign. We
formulate this problem as a Boolean-constraint problem and give
a BDD-based algorithm to check the feasibility of redesign.

1 Introduction

Incremental synthesis is a synthesis technique which reuses exist-
ing circuits to come up with circuits satisfying new specifications.
Since engineering changes arise frequently in actual design pro-
cesses, the technique is of practical importance from an industrial
point of view. Several synthesis techniques have already been
proposed for combinational circuits [2, 3, 9, 8] and sequential
circuits [1], where an additional logic is attached before and/or
after an existing circuit or a part of the existing circuit is replaced
with a new logic so that the final circuit follows a new specifica-
tion. In [5], a redesign technique for lookup-table type FPGA’s
was proposed, where, given a combinational circuit mapped on an
FPGA, the circuit is rectified by only changing the functionality
of lookup-tables with all the routing preserved. This approach is
natural for lookup-table type FPGA’s since modifying the func-
tionality of tables can be done by reprogramming the tables, which
is cheap, whereas rerouting requires an expensive physical design
all over again.

In this paper, we consider a redesign technique applicable to
combinational circuits implemented with gate-array or standard-
cell technology, where we rectify an existing circuit only by re-
connecting gates on the circuit with all the gate types unchanged.
Note that our constraint is symmetric with the one used in FPGA
rectification [5]. This constraint is reasonable in our set-up since,
in gate-array or standard-cell based designs, one can make a mod-
ification to routing without changing the placement of the gates
as long as there is space left for the routing. This way we get
around an expensive physical placement required otherwise. Fur-
thermore in standard-cell designs this enables us to reuse masks
for the original placement. Note that in industries this type of
rectification is actually done manually by designers. We formu-

a

b

c o

v1 v2

v3

Figure 1: Example – The Original Circuit

a

b

c

o

v1

v2

v3

Figure 2: Example – A Redesigned Circuit

late this problem as a Boolean-constraint problem and give an
algorithm based on BDD’s, which helps designers determine the
feasibility of redesign.

This paper is organized as follows. In Section 2, the proposed
redesign technique is informally discussed with an example. Sec-
tion 3 formulates the problem and gives an algorithm to solve it.
Experimental results are shown in Section 4. Section 5 concludes
the paper.

2 Example
In this section we present the basic idea of our approach using a
simple example.

Suppose we have a circuit shown in Figure 1. This is a combi-
national circuit with two 2-input AND gates and a single inverter,
whose functionality is o = (a + b)c. Assume that we like to
redesign this circuit only by reconnecting the gates so that its
functionality is o = abc. Figure 2 shows a circuit for the new
specification. Note that the circuit is composed of the same set of
the gates in the original circuit and the only difference between
the two is in the connectionsbetween the gates. More precisely, in
the original circuit we have the following five connections: from

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0632 $3.50

a to v1, from b to v1, from v1 to v2, from v2 to v3 and from c to
v3, whereas the redesigned circuit has different connections, i.e.
from a to v2, from b to v1, from c to v1, from v1 to v3 and from v2

to v3.
Since this transformation only involves changes in connec-

tions, the modifications required for the layout of the circuit are
restricted to its routing portion, i.e. the placement information can
be reused completely. It is true that an extremely congested layout
may not allow reconnections of two points far away on the layout
under the current placement, but by restricting our focus on phys-
ically feasible reconnections involving adjacent gates, our claim
is validated. This can be done automatically by investigating the
original layout.

3 Rectification Algorithm

In this section we formulate the rectification problem described
in the previous section as solving a set of Boolean constraints, for
which an algorithm based on BDD’s is given. Remember that we
are working on redesigns of combinational circuits. The key idea
behind this approach is to introduce a Boolean variable, called a
connection variable1, for each ordered pair of gates to represent
if there exists a connection from the output of the first gate to an
input of the second gate in a redesigned circuit. In other words,
the variable takes 1 if we have the connection, and 0 otherwise.
This way our goal is now to compute a 0-1 assignment to the
variables which makes the reconnected circuit behave exactly the
same as a new specification. The first step of this algorithm is to
compute the functionality of all the reconnected circuits in terms
of primary inputs, primary outputs and connection variables. Note
that each 0-1 assignment to the connection variables corresponds
to a single reconnected circuit. Therefore, this function captures
all the functionality which can be realized by our redesign scheme.
Having computed this, we proceed to compare this functionality
with a new specification to extract the constraint which has to be
satisfied for the rectification. The final constraint is represented
as a characteristic function in terms of connection variables. If
the function is equal to 0, then we know there is no solution.
Otherwise, a satisfying assignmentof the function is chosenbased
on a given criterion, i.e. the minimum number of connections
or the minimum change from the original circuit. The detailed
algorithm is given in the following, where we assume that every
Boolean operation is performed with BDD’s.

3.1 Connection Variables
In general we should introduce a connection variable for every
ordered pair of gates so that any connection is considered. Under
this assumption, a redesigned circuit could have a combinational
loop, i.e. a loop without a latch on it. The circuit can be considered
valid if there is no oscillation at primary outputs, but in this paper
we restrict ourselves to finding a circuit without any combinational
loop. For this purpose, connection variables are introduced such
that no combinational loop is obtained under any 0-1 assignment

1The same idea was used by Muroga et al.[7] in the formulation of
multi-level logic synthesis based on integer programming.

a
b
c

o

v1

v2

v3

c_a,v1
c_b,v1
c_c,v1 c_v1,v2

c_a,v2

c_b,v2
c_c,v2

a

a

b

b

c

c

c_a,v3

c_b,v3

c_c,v3

c_v1,v3

c_v2,v3

Figure 3: Connection Variables

to the variables. A simple way to guarantee this condition is to
give a linear order to the set of gates and introduce connection
variables only for the increasing direction in this order2. Currently
we extract the linear order from the original network with a depth-
first traversal so that the structural similarity between the original
network and a redesigned network is observed. Note that we
introduce a connection variable for any connection from a primary
input to a gate since this never produces a combinational loop.

For example, we introduce the following twelve connection
variables for the circuit in Figure 1 under a linear order v1 <

v2 < v3: ca;v1 ; cb;v1; cc;v1 ; ca;v2 ; cb;v2 ; cc;v2 ; cv1;v2 ; ca;v3 ; cb;v3;

cc;v3 ; cv1;v3 ; cv2;v3 , where cs;t is the variable for the connection
between the output of gate s and an input of gate t. Notice that
no assignment to the connection variables makes the reconnected
circuit cyclic3. For the correspondence between connections and
their associated variables, see Figure 3.

3.2 Computing the Set of All Functionality
Realized by Reconnections

Once a set of connection variables is fixed, the next step is to
compute the set of all functionality that can be realized by recon-
nections. We represent this implicitly as a characteristic function
of primary inputs, primary outputs, and connection variables.
Each 0-1 substitution to connection variables in this characteristic
function yields the characteristic function which represents the
input-output behavior of the corresponding reconnected circuit.

We first give a technique to model the functionality of each
gate with a characteristic function and then discuss how to build
up the final characteristic function from the set of component
characteristic functions obtained from all the gates.

Let us assume that we have a two-input AND gate vk in the
original network. We are interested in the functionality of this

2Another possible way is to partition the set of gates into several sets,
give an integer level to each set, and introduce a connection variable only
for a connection from a gate in a lower set to a gate in an upper set.

3As a more general set-up, one can introduce a connection variable for
every ordered pair of gates and compute, with Boolean-function matrix
manipulation, the condition that the reconnected circuit has a loop [4],
which gives us a systematic way to remove all cyclic circuits from our
consideration. This general approach, however, is likely to cause a BDD
blowup in the following stages due to the absence of a good variable
ordering.

1

0

1

0

1

0

1

0

1

1

1

model of vk−1

LTE2

1

1

v k

model of v

model of v

model of v
1

2

3

v
1

v
2

v
3

v k−1

c

c

c

c

v
1

v k

v
2

v k

v
3

v k

v k−1v k

Figure 4: Model of the 2-input AND gate

gate when reconnection is allowed. Let cvi;vk (i = 1; : : : ; k � 1)
be the Boolean variable for the connection from the output of
gate vi to an input of the AND gate vk . Let vi be the Boolean
variable corresponding to the output of gate vi. Then this gate
can be modeled as the circuit extended with selectors shown in
Figure 4. Each selector connects the output of gate vi to an input
of the AND gate iff the corresponding connection variable cvi;vk
is set to one. Otherwise, the non-controlling value of the AND
gate, a Boolean value one, is fed into the input. In addition, since
the original AND gate has two inputs, at most two connection
variables out of cv1;vk ; : : : ; cvk�1;vk can evaluate to one4.

Thus, the characteristic function of the circuit in Figure 4,
�2-AND, is:

�2-AND = LTE2(cv1;vk ; : : : ; cvk�1;vk)�(vk �

k�1Y

i=1

(cvi;vk) vi))

where LTE2() is the Boolean function which evaluates to one iff
less than or equal to two arguments are one. Note that LTEn() is
easily computed recursively. (See details for Appendix.) Further-
more, LTEn() is a symmetric function, thus the size of the BDD
is guaranteed to be small independent of variable orderings.

One can easily see that a similar model exists for any type of
gates5. For example, the characteristic functions of a 2-input OR

4Note that it is valid that only a single connection variable takes one
since this means that the AND gate is used as a buffer by feeding a Boolean
one to the remaining input. Similarly all the connection variables can be
set to zero, in which case this gate is not used in the redesigned circuit.

5A slightly elaborate model is needed for complex gates especially
when the gates are not symmetric, in which case we have to introduce more
than one connection variable for an ordered pair of gates to distinguish
inequivalent inputs.

gate, a 2-input XOR gate and an inverter are defined as follows.

�2-OR = LTE2(cv1;vk ; : : : ; cvk�1;vk) � (vk �

k�1X

i=1

(cvi;vk � vi))

�2-XOR = LTE2(cv1;vk ; : : : ; cvk�1;vk) � (vk �

k�1M

i=1

(cvi;vk � vi))

�INV = LTE1(cv1;vk ; : : : ; cvk�1;vk) � (vk �

k�1X

i=1

(cvi;vk � vi))

Having defined the characteristic function of each gate type,
one can construct the characteristic function of the whole circuit
by ANDing the componentcharacteristic functions of all the gates
since all the input-output constraints have to be satisfied simulta-
neously in the final circuit. Formally, the characteristic function
of the circuit after reconnection,� , is computed as follows.

�(v;c) =
Y

g2G

�g(v;c)

where G is the set of all the gates in the original network and �g

is the component characteristic function for gate g. Note that v
is the set of variables containing all the primary inputs i, all the
primary outputs o, and all the internal variables t associated with
intermediate nodes6 and c is the set of all the connection variables.
Thus, one can see �(v;c) as �(i;o; t;c), which describes the
constraint among primary inputs, primary outputs, internal vari-
ables and connection variables imposed by the structure of the
circuit.

Now, since we are only interested in the input-output behaviors
of the circuit under various assignments to connection variables,
internal variables can be dropped off from � by the smoothing
operation.

�D(i;o;c) = S
t
�(i;o; t;c)

This computation can be sped up by merging the AND operations
in�(i;o; t;c)with the smoothing operation by theand smooth
operation. More precisely, the componentcharacteristic functions
of �(i;o; t;c) are AND-ed from primary outputs to primary in-
puts in a reverse topological order with simultaneously smoothing
out variables in t. Furthermore, each LTE term in a component
characteristic function can be pulled out of the smoothing opera-
tion since it doesn’t depend on t.

Let us follow the above construction with the example in Sec-
tion 2. The characteristic functions of the three gates in the circuit
are:

�v1 = LTE2(ca;v1 ; cb;v1 ; cc;v1)

� [v1 � (ca;v1) a)(cb;v1) b)(cc;v1) c)]

6Here we assume that for each primary output the same gate which
feeds into the output in the original network is used for feeding the output.
In other words, we don’t change any connections directly connected to
primary outputs. We can formulate a more general problem where this
constraint is absent,by introducing for each primary output a buffer,whose
input is selected from the output of the gates in the network. The same
modeling technique using connection variables works in this case. One
has only to multiply this new constraint to �.

�v2 = LTE1(ca;v2 ; cb;v2 ; cc;v2 ; cv1;v2)

� [v2 � ca;v2 ā+ cb;v2 b̄+ cc;v2 c̄+ cv1;v2 v̄1]

�v3 = LTE2(ca;v3 ; cb;v3 ; cc;v3 ; cv1;v2 ; cv2;v3)

� [v3 � (ca;v3) a)(cb;v3) b)(cc;v3) c)

(cv1;v3) v1)(cv2;v3) v2)]

Now the characteristic function of a set of reconnectedcircuits,
�D , is defined as:

�D(a; b; c; o; ca;v1 ; : : : ; cv2;v3) = Sv1;v2;v3�v1�v2�v3(o � v3)

3.3 Extracting Constraints on Connection
Variables

At this point we are ready to compare the functionality repre-
sented by this characteristic function �D(i;o;c) with the char-
acteristic function of a new specification,�S(i;o). Note that one
can easily compute the characteristic function of a specification
given either as a completely specified function, an incompletely
specified function or a Boolean relation. The condition on the
connection variables c is that the input-output behavior of a re-
connected circuit is included in the input-output behavior of the
specification, namely,

�redesign(c) = C
i;o

(�D(i;o;c)) �S(i;o))
7

The consensus operator in the above extracts all the 0-1 assign-
ments to c such that (�D(i;o;c)) �S(i;o)) gets equal to a
tautology, which means that the reconnected circuits correspond-
ing to the 0-1 assignments follow the specification. Therefore,
we first check to see if �redesign is a negative tautology. If that
is the case, then no solution exists under our redesign scenario.
Otherwise, any satisfying assignment to c gives a solution.

Let us go back to the example. Remember that our new spec-
ification in the example is o = ābc. Therefore, the characteristic
function of the specification,�S , is:

�S(a; b; c; o) = [o � ābc]

Combined with �D, the final constraint on connection variables,
�redesign, is computed as follows.

�redesign(ca;v1 ; : : : ; cv2;v3)

= Ca;b;c;o(�D) �S)

= c̄a;v1cb;v1cc;v1ca;v2 c̄b;v2 c̄c;v2 c̄v1;v2 c̄a;v3 c̄b;v3 c̄c;v3cv1;v3cv2;v3

For this particular example, the characteristic function has a single
minterm, which means that there is a single solution for this
problem. Note that the reconnections implied by the minterm
yields the circuit shown in Figure 2.

In general, however, since the final characteristic function has
more than one minterm, we are interested in a solution optimum

7Unless the specification is given as a Boolean relation, this compu-
tation can be transformed into a simpler one by processing each output
separately and multiplying each constraint to construct�redesign(c) .

minimum hamming distance(f;x)
1 if (f = 1) return 0
2 if (f = 0) return 1
3 if (9(f;d) in cache) return d

4 c is the top variable of f
5 d0 = minimum hamming distance(fc; x)
6 d1 = minimum hamming distance(fc; x)
7 if (xc 6= 0)
8 d = min(d0 + 1; d1)

9 else
10 d = min(d0; d1 + 1)
11 if (min is achieved by the first argument above)
12 f:link = fc̄

13 if (min is achieved by the second argument above)
14 f:link = fc

15 save (f; d) in cache
16 return d

Figure 5: Algorithm to Compute the Minimum Hamming
Distance

in some sense. For simplicity, we assume in the following that
any connection requires the same amount of routing resource8.
Under this assumption, two possible criteria are:

1. minimum number of connections

2. minimum number of reconnections which transform the
original circuit to a redesigned circuit

The first criterion gives us a new circuit which requires the min-
imum routing resource, which corresponds to the satisfying as-
signment of �redesign that has the least number of 1’s. Given
�redesign in a BDD, this solution can be computed in time linear
to the size of the graph based on the Lin-Somenzi procedure[6].
The second criterion yields a solution which requires the minimum
change in the original circuit. The corresponding assignment to
c is the satisfying assignment of �redesign that has the minimum
Hamming distance from the assignment c̃ which corresponds to
the original circuit. Note that the original circuit is also charac-
terized by some assignment to c, which we call c̃ here. Figure 5
shows an algorithm to compute the minimum Hamming distance
between satisfying assignments of f and a minterm x, given f as
a BDD. The first two lines are terminal conditions. If f = 1, then
x itself is guaranteed to be a satisfying assignment of f . There-
fore, the minimum Hamming distance is 0. If f = 0, however,
no satisfying assignment exists for f . Thus the procedure returns
infinity. If the terminal conditions are not met, then we first look
into the cache which maintains the previous results and return
the corresponding result if we have it. Otherwise, we proceed to

8One can evaluate a routing cost in a more reasonable way by assign-
ing a weight to each connection depending on the difficulty in routing
the connection, for example using the distance of two terminals of the
connection in the layout. Note, however, that this extension can be easily
handled in the algorithms presented afterwards without changing their
time-complexity.

0 0 1

c1

c2 c2

c3 c3

infinity infinity 00

min(0,infinity)=0

min(0+1,infinity)=1

min(1,1+1)=1

min(0+1,1)=1

min(infinity,0+1)=1

1 1

0

x = c1c2c3

Figure 6: Computing the Minimum Hamming Distance on
BDD

pick a splitting variable c as the top variable of f , solve two sub-
problems separately, and construct the solution from the solutions
of the two. Two different cases have to be distinguished in this
process. The first case is when x lies in the half space c(line 7), in
which case the minimum of d0 + 1 and d1 is returned, where d0

and d1 are the solutions of the two subproblems for the negative
and the positive cofactors with respect to c respectively. Note that
we have to use d0 + 1 instead of d0 since setting c to 0 increases
the Hamming distance by one in the case where x has the opposite
value, i.e. 1, in c-coordinate. If not, then the procedure returns
the minimum of d0 and d1 +1 based on the symmetric argument9.
The procedure runs in time linear to the size of a given graph.
Each BDD node has an additional entry called link, which points
to the child node which achieves the minimum value. Thus, by
traversing the BDD along with this link information after call-
ing minimum hamming distance, the minterm of f which
achieves the minimum distance can be extracted in time linear to
the number of supports of f .

Let us take an example to show how the procedure works.
Let f = c1c3 + c̄2c̄3 and x = c̄1c2c̄3. Figure 6 shows how the
minimum Hamming distance is computed on the BDD of f . An
Italic number attached to a node denotes the minimum Hamming
distance between x and the minterms of the function represented
by the node. An arrow on a BDD edge is a link connected by the
procedure. A traversal of the BDD from the root to a 1-leaf along
with links gives the satisfying assignment off which achieves the
minimum distance one, i.e. c̄1c̄2c̄3.

9If the top variable of fc is not the next variable of c, then for the
skipped variables between the two we can always choose a 0-1 assignment
so that it exactly matches x. Therefore, these variables don’t contribute
anything to the minimum distance.

4 Experimental Results

We have implemented the proposed redesign algorithm on top
of SIS using BDD’s10. Table 1 shows preliminary experimental
results of our rectification method on DEC 5900/260. ex1 is an
industrial example encountered in an engineering change of an
embedded micro-processor. It is a part of the circuit extracted
by a designer, which was known from a manual redesign to be
rectifiable under the assumption that only reconnections are per-
missible. ex2 is a simplified version of ex1. In both of these
examples the algorithm successfullyfinds solutions. Although the
circuits are small, the CPU time needed for this computation is
fairly large. This is due to a large number of connection variables
introduced for the formulation. One way to get around this is to
extract constraints on reconnections from the layout and utilize
that information to reduce the number of connection variables.
For example, some reconnection might not be routable on the
current placement since it is blocked somewhere in the middle or
the two terminals are simply located too far, which implies that
no connection variable is needed for this connection. Following
this idea, we conducted further experiments where only a subset
of the connection variables is introduced. Table 2 shows the re-
lationship between the number of connection variables and CPU
time. Note that the reduction of variables significantly improves
CPU time. We expect that the technique is practical also for
larger circuits(e.g. circuits composed of 20 gates) if the number
of connection variables is controlled by the layout information.

5 Conclusions

We have discussed a redesign scheme based on gate reconnec-
tions, which is applicable to technology-mapped combinational
circuits. This technique allows us to rectify a given circuit with
the same set of gates in the original circuit. This fact is of sig-
nificant importance in the case where the circuit is already laid
out since the rectification is now completed by only changing the
routing portion of the layout without redoing the whole layout.
We have formulated the problem as a Boolean constraint and have
given an algorithm to solve it. Experimental results showed that
only small-sized problems are tractable due to the inherent com-
plexity of the problem in the most general setting where any pair
of gates is connectable, but additional constraints derived from
layouts decrease the complexity significantly. We are currently
working on the further improvement of the algorithm with the
efficient use of these constraints. In addition, to handle larger
circuits, we are considering automatic extraction of promising
subnetworks, to which the proposed technique is applied, using
don’t care information.

Acknowledgments

The authors would like to thank Xudong Zhao of CMU for his
collaboration in the initial stage of this work.

10Dynamic reordering is set during the computation due to the difficulty
in finding a good variable ordering.

circuit # inputs # outputs # gates # connection variables CPU time(sec)
ex1 6 2 9 91 9830.5
ex2 6 2 7 64 91.3

Table 1: Experimental Results

circuit # connection variables CPU time(sec)
ex1 91 9830.5
ex1 63 2170.1
ex1 54 825.4
ex1 48 318.4
ex1 44 45.1

Table 2: Experimental Results — # Connection Variables and CPU Time

References

[1] M. Fujita. A method for automatic design error correction in
sequential circuits. In Proceedings of the European Confer-
ence on Design Automation(EDAC-93), pages 76–80, Febru-
ary 1993.

[2] M. Fujita, T. Kakuda, and Y. Matsunaga. Redesign and au-
tomatic error correction of combinational circuits. In Pro-
ceedings of the IFIP TC10/WG10.5 Workshop on Logic and
Architecture Synthesis, pages 253–262. North Holland, May
1990.

[3] M. Fujita, Y. Tamiya, Y. Kukimoto, and K.-C. Chen. Ap-
plication of Boolean unification to combinational logic syn-
thesis. In Proceedings of IEEE International Conference on
Computer-Aided Design, pages 510–513, November 1991.

[4] N. Ishiura. Private communication, April 1994.

[5] Y. Kukimoto and M. Fujita. Rectification method for lookup-
table type FPGA’s. In Proceedings of IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pages 54–61,
November 1992.

[6] B. Lin and F. Somenzi. Minimization of symbolic relations. In
Proceedings of IEEE International Conferenceon Computer-
Aided Design, pages 88–91, November 1990.

[7] S. Muroga and T. Ibaraki. Design of optimal switching net-
works by integer programming. IEEE Transactions on Com-
puters, C-21:573–582, June 1972.

[8] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney.
The Transduction method – design of logic network based
on permissible functions. IEEE Transactions on Computers,
38(10):1404–1424, October 1989.

[9] Y. Watanabe and R. K. Brayton. Incremental synthesis for
engineering changes. In Proceedings of IEEE International
Conference on Computer Design,pages 40–43,October 1991.

LTEn(v)
1 return LTE(v;m;n)

LTE(v;k; l)
1 if (l < 0) return 0
2 if (k � l) return 1
3 if (9(v; k; l; f) in cache) return f

4 f0 = LTE(v;k � 1; l)
5 f1 = LTE(v;k � 1; l � 1)
6 f = v[k]f0 + v[k]f1

7 save (v; k; l; f) in cache
8 return f

Figure 7: Algorithm to Compute LTEn()

A An Algorithm to Compute LTEn()
Given a set of m variables, LTEn returns the function which

evaluates to one if and only if less than or equal to n variables
are set to one. Let v[1 : : :m] be the array which contains the
m variables. Figure 7 shows a recursive algorithm to compute
LTEn. Given a set of m variables in the array v, LTEn(v) first
calls a subprocedure LTE(v;m;n), which is then computed re-
cursively. LTE(v; k; l) is designed so that it returns the function
which evaluates to one iff less than or equal to l variables out of
v[1 : : : k] are set to one. The first two lines of the algorithm are
terminal cases. If l < 0, then since any 0-1 assignment to v has
at least zero 1’s the result is 0. If k � l, then any 0-1 assignment
to v has at most k 1’s, thus the procedure returns 1. If the result is
not in the cache, then we split the problem into two subproblems.
In one subproblem, by assuming that v[k] is set to 0, we solve
LTE(v;k � 1; l), while in the other problem LTE(v; k� 1; l� 1)
is computed assuming v[k] gets 1. The two results are merged
into the final solution in line 6.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

