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Abstract
Knowing that some variables are symmetric in a function
has numerous applications; in particular, it can help pro-
duce better variable orders for Binary Decision Diagrams
(BDDs) and related data structures (e.g., Algebraic Deci-
sion Diagrams). It has been conjectured that there always
exists an optimum order for a BDD wherein symmetric
variables are contiguous. We propose a new algorithm for
the detection of symmetries, based on dynamic reorder-
ing, and we study its interaction with the reordering al-
gorithm itself. We show that combining sifting with an
e�cient symmetry check for contiguous variables results in
the fastest symmetry detection algorithm reported to date
and produces better variable orders for many BDDs. The
overhead on the sifting algorithm is negligible.

1 Introduction

Interest in symmetric boolean functions has been keen since
the early days of logic design [15]. In the presence of sym-
metric variables, several design problems simplify consider-
ably. For instance, in recent times, attention has been paid
to the comparison of functions with unknown input corre-
spondence [4]. The comparison can be carried out more ef-
�ciently if some variables are symmetric. Another problem
that bene�ts from the knowledge of symmetric variables is
the ordering of variables for Binary Decision Diagrams. It
is well-known that the relative order of symmetric vari-
ables is immaterial. In addition, it has been empirically
observed in [8] that symmetric variables are adjacent in
optimum orders for BDDs without complement arcs.

In this paper we take a synergistic approach to sym-
metry detection and variable ordering. We present a new
algorithm for symmetry detection that outperforms pre-
viously published methods [12, 16] in terms of speed and
capacity. Our algorithm is based on dynamic reordering of
variables; speci�cally, it is based on sifting [14]. We show
that symmetry detection, when combined with the sifting
algorithm, produces higher-quality variable orders.

The symmetry detection method in [16], based on spec-
tral analysis, di�ers substantially from ours; however, our
work has a few ideas in common with [12]. (Theorem 3 in
Section 4 is the criterion for neighboring variables found
in [12].) However, our method is not based on a series of
�lters of increasing cost, but on a single algorithm that
identi�es symmetric variables and groups them together in
the order to produce a better BDD. In addition, it deals
with multiple output functions.

Although we present our algorithm for BDDs [2] and
ADDs [1], it is also applicable, with minor modi�cations,
to Edge-Valued BDDs [9] and Zero-Suppressed BDDs [11].

2 Preliminaries

A set fb1; : : : ; bpg of n-variable boolean functions is or-
thonormal if

Pp

i=1
bi = 1 and bi � bj = 0, i 6= j. Given an
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orthonormal set fb1; : : : ; bpg, we can expand a function f

with respect to it in the form f =
P

p

i=1
fi � bi: When the

bi's are product terms, the fi's are the familiar cofactors
or residues of f with respect to the product terms.

Binary Decision Diagrams (BDDs) [2] are an e�cient
data structure for the representation of logic functions. A
BDD representing a set of functions ff1; : : : ; fng is a di-
rected acyclic graph (DAG) with n roots|one for each
function|and two leaves. One leaf represents the con-
stant 1 and the other represents the constant 0. An inter-
nal node N of the DAG is labeled with a variable v and
has two children, T and E. The function represented by
N , denoted by fN is given by fN = v � fT + v

0 � fE . It
is customary to impose the restriction that the variables
be ordered along all paths in the DAG and that no iso-
morphic subgraphs exist. Under these restrictions, BDDs
provide a canonical representation of logic functions. It is
also customary to attach a complementation attribute to
arcs in the DAG. Proper use of complementation attributes
insures that complementary functions are represented by
the same DAG and that canonicity is preserved.

During the typical execution of a BDD-based program,
nodes are created and disposed of. An e�cient scheme to
address the ensuing memory management problem uses a
reference count for each node. The reference count of a
node is the number of arcs in the DAG pointing to it. In
particular, the arcs from the sources of the DAG are the
external references, while the other arcs are the internal
references. The reference counts play an important role
in our symmetry detection algorithm. More details on the
e�cient implementation of a BDD package that is quite
similar to ours can be found in [2].

The success of BDDs in solving seemingly intractable
problems has motivated researchers to consider variants of
the basic data structure that support a wider variety of ap-
plications [1, 9] or that are very e�cient for some classes of
problems [11]. Algebraic Decision Diagrams (ADDs), for
instance, extend BDDs by allowing an arbitrary number
of leaves. The leaves may store, for instance, real num-
bers. ADDs are formally de�ned as boolean functions over
a boolean algebra whose carrier is larger than the number
of leaves. Thanks to this de�nition, all theorems of boolean
algebra (in particular the results of Section 3) apply to
ADDs. Though our presentation is in terms of the more
familiar BDDs, our methods have been implemented also
for ADDs. We shall comment on Edge-Valued BDDs [9]
and Zero-Suppressed BDDs [11] as the opportunity arises.

Finding a good variable order for a BDD is a non triv-
ial problem which has attracted lively interest in the last
few years. Many heuristic algorithms have been devised
for the problem (e.g., [10]). Most heuristics derive an or-
der by inspection of the circuit for which BDDs are to
be built. This approach is obviously of limited usefulness
when there is no circuit to start with. Furthermore, even
the best heuristics may occasionally fail. For these reasons
reordering algorithms have been developed [6, 7, 3, 13, 5].

Reordering algorithms are based on successive improve-
ments of an existing order according to some local search
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strategy. Of particular interest to us is the sifting algo-
rithm [14], which can be implemented very e�ciently. Sift-
ing reorders variables by considering each of them in turn.
A variable is moved up and down in the order by a series of
swaps of adjacent variables. The best position is recorded,
and at the end the variable is returned to that position.

The e�ectiveness of sifting depends on the e�ciency
with which adjacent variables can be swapped. Rudell has
shown how this can be done in time that only depends on
the number of nodes labeled by the two variables. The
key device is a dictionary of the nodes|called the unique
table|with a sub-table for each variable. Our implemen-
tation of sifting is similar to the one described in [14].

3 Some Results on Symmetric Variables

We study symmetric functions as originally de�ned by Shan-
non [15]. That is, we consider also the case of symmetry
with complementation.

De�nition 1 A boolean function f(x1; : : : ; xn) is symmet-
ric in xi and xj (x0

j) if the interchange of xi and xj (x0

j)
leaves the function identically the same.

A multiple-output function is symmetric in xi and xj if
and only if all outputs are symmetric in xi and xj.

Lemma 1 A boolean function f(x1; : : : ; xn) is symmetric
in xi and xj if and only if fxix0j

= fx0
i
xj
; f is symmetric

in xi and x
0

j if and only if fxixj = fx0
i
x0
j
.

It is easily seen that interchanging symmetric variables in
the order does not change the size of the BDD of f . On
the other hand, if one considers an extended de�nition of
symmetry, such that xi and xj are symmetric also if either
fxix

0

j
= f

0

x0
i
xj

or fxixj = f
0

x0
i
x0
j
[16], then the invariance

of the size of a BDD when xi and xj are interchanged is
not guaranteed. Therefore, in this paper we follow De�ni-
tion 1. Notice however, that our algorithm can be easily
augmented to detect symmetries of the extended type.

Theorem 1 If a boolean function f is symmetric in xi

and xj, it depends on xi if and only if it depends on xj.

Lemma 2 If f and g are symmetric in xi and xj, then
f + g, f � g, and f

0 are also symmetric in xi and xj.

Lemma 3 If a boolean function f is symmetric in vari-
ables xi and xj, then its cofactors with respect to variables
other than xi and xj are symmetric in xi and xj.

Lemma 4 If the cofactors of a boolean function f with
respect to an orthonormal basis that does not depend on
either xi or xj are all symmetric in xi and xj, then f is
symmetric in xi and xj.

In particular, we are interested in orthonormal bases com-
posed of all the cubes formed with the variables that pre-
cede xi and xj in the order.

Theorem 2 Let f be a boolean function symmetric in vari-
ables xi and xj. Let � be a variable order in which xi pre-
cedes xj. Let F be the BDD for f under order �. Then
there are no arcs in F entering a node labeled xj and com-
ing from a node labeled by a variable preceding xi in �.
Furthermore, there are no nodes labeled xi such that both
their children are either internal nodes labeled by variables
that come after xj in �, or constant nodes.

The properties studied so far only depend on the support
of a function and its cofactors. Therefore, they apply re-
gardless of the use of complement arcs.

4 Sifting-Based Symmetry Check

Checking for symmetry of distant variables (distant in the
order) may be expensive, because it may involve the con-
struction of the BDDs for the cofactors fxix

0

j
and fx0

i
xj
.

However, checking for symmetry of adjacent variables is
easy.

Theorem 3 Let f , �, and F be as in Theorem 2. Let xi
and xj be adjacent variables. Then xi and xj are sym-
metric in f if and only if: 1) For all nodes labeled xi, the
condition gxix

0

j
= gx0

i
xj

is veri�ed, where g is the function

rooted at the node labeled xi. 2) All arcs into nodes labeled
xj come from nodes labeled xi.

Checking for negative symmetry is similar and only re-
quires replacing fxixj for fxix

0

j
and fx0

i
x0
j
for fx0

i
xj
. For

both conditions of Theorem 3, the organization of the unique
table makes checking e�cient. The nodes labeled xi and xj

can be accessed by simply scanning the appropriate subta-
bles. The second condition, in particular, can be checked
by computing the sum of the reference counts of the nodes
labeled xj and comparing it to the number of arcs out of
nodes labeled xi and into nodes labeled xj. If the former is
larger, then there are references, either external or internal,
that do not come from nodes labeled xi.

For Edge-Valued BDDs, it is also necessary to check
that the value on the then arc of the node labeled xi equals
the value on the then arc of the else child of that node.

The criterion for symmetry in xi and xj, and the one
for symmetry in xi and x

0

j are slightly di�erent in Zero-
Suppressed BDDs (ZDDs). In a ZDD, a node is suppressed
if its then child is 0. A node with identical then and else
children, on the other hand, is not suppressed.

The test for symmetry of a ZDD in xi and xj is exactly
the same as the one for BDDs: For every node labeled xi,
the condition fxix

0

j
= fx0

i
xj

must hold; all edges into nodes

labeled xj must come from nodes labeled xi. The �rst
condition is obvious; for the second, observe that an arc
coming from above xi implies the presence of a suppressed
node labeled xi with fxi = fxix

0

j
= 0. For symmetry, fx0

i
xj

should be 0, but that would imply the suppression of the
node labeled xj.

For symmetry in xi and x
0

j, the second condition of
Theorem 3 is modi�ed as follows: If a node labeled xj has
references from above xi, its else child must be 0.

In the sifting algorithm, every variable that is moved up
and down is at some point adjacent to any other variable.
Hence, if we combine the test for adjacency with sifting, we
can identify all symmetric pairs, without ever computing
a cofactor, as long as each variable is sifted.

Once two variables are identi�ed as symmetric, we \lock"
them, so that their relative position never changes from
that point on. This leads to an algorithm that sifts groups
of variables of varying size. There are a few di�erences
from the original sifting algorithm that derive from this
characteristic. First of all, if we want to make sure that the
locally optimum position of a group of variables is found,
we may have to sift the group twice instead of once.

The requirement for a single variable is that it takes all
positions in the order. This is obtained by initially sifting
it to the closer extreme of the order, and by then sifting
it all the way to the other extreme. If symmetries are
considered, though, the variable that is sifted may collect
other variables along the way. The information on the best
position is therefore invalidated and one additional pass of
sifting is needed. If the size of the group does not change
during the �rst complete sifting, the second can be skipped.

The other observation is that sifting a group of m vari-
ables from one extreme of the order to the other requires



m(n�m) swaps, where n is the total number of variables.
This is clearly more expensive than sifting one variable
only, but is roughly equivalent to sifting the m variables
one at the time. In summary, the number of pairwise swaps
does not increase appreciably when symmetric variables
are clustered and moved as a group.

Group sifting may be desirable not only to keep sym-
metric variables together, but also, for instance, to impose
proximity constraints on variables for which the analysis
of the circuit suggests that they should be kept close.

5 Experimental Results

In this section we present experiments conducted on several
circuits from the IWLS benchmark set and on some addi-
tional symmetric circuits. Table 1 summarizes the runs of
di�erent combinations of ordinary sifting and sifting com-
bined with symmetry check. In all experiments, BDDs
are built for the circuits while applying dynamic reorder-
ing. Once the BDDs for all primary outputs are built, the
BDDs for the internal nodes of the circuit are freed and
reordering is applied again.

The column headings give the combinations of meth-
ods. Speci�cally, sift-sift means ordinary sifting while build-
ing the BDDs, followed by ordinary sifting. Sift-symm
means ordinary sifting while building the BDDs, followed
by sifting with symmetry check. Similarly for the other
sets of columns. Cosift indicates ordinary sifting to con-
vergence; cosymm indicates sifting with symmetry check to
convergence. Also displayed for each circuit are the num-
ber of inputs, the number of inputs that are symmetric
to some other input, and the total number of symmetry
groups containing more than one variable.

In all cases except for the adders and dpath32 , the stan-
dard misII ordering [10] was used as initial order. For the
other circuits, the orders were intentionally chosen so as
to generate exponentially sized BDDs. The intent was to
study the ability of the reordering algorithm to recover
from bad initial orders. Sizes are given in BDD nodes and
times are in seconds on a DECstation 5000/200 with 80
MB of memory.

We �rst compare the new sifting with symmetry check
to ordinary sifting when they are used for the �nal reorder-
ing. The data in the tables shows that for examples that
have no symmetry the results are the same, as expected.
More interestingly, the times are quite similar, indicating
that the overhead for symmetry check is very small. For
the circuits in the remaining two groups, the data show
that symmetry checking almost always produces better or
equally good results. Obviously, the biggest wins come
from circuits with lots of symmetry.

It should be noted that ordinary sifting in many cases
puts symmetric variables close to each other. Therefore,
the advantage of our symmetric sifting lies in being able
to sift groups of variables at once, rather than in placing
symmetric variables close to each other.

In ordinary sifting, when two symmetric variables are
adjacent, it is unlikely that their position in the order will
change, because pulling them apart is likely to increase
the size of the BDD, even though one variable is going
towards the \right" position. Group sifting does not have
this problem, because it moves both variables at once.

The data for the case when sifting with symmetry is
used while building the BDDs exhibits much larger vari-
ance than the other two sets of data. The reason is that
a function is symmetric in all variables on which it does
not depend. When the BDDs are being built, many sym-
metries of this type may occur. Those variables are then
grouped together, even though they are not related in the
�nal circuit. This sometimes provides good results, and
sometimes it does not.

Finally, in the case of sifting to convergence, one can

see that the advantages of symmetry checking are larger
in terms of nodes. However, this comes at the expense of
an increase in CPU time. The larger di�erences are due to
di�erent numbers of iterations to reach convergence.

Table 2 gives the times required to run the symmetry
check once the BDDs are built. For our method, this cor-
responds to the time required by the one pass of sifting
done after the BDDs are built for all primary outputs. We
compare our times to those reported by [12, 16]; it should
be kept in mind that our method considers all outputs si-
multaneously. It is quite clear, though, that our method is
much faster, especially for large circuits.

6 Conclusions

We have presented an algorithm that combined the detec-
tion of symmetric variables with the dynamic reordering
of the variables of a BDD. This method handles multiple-
output functions and is the fastest method devised so far
for large functions. It is also very memory-e�cient. No ad-
ditional data structures are required, except for a few bytes
per variable (not per node) to keep track of the symmetry
information. The size of the BDD may grow during sifting.
However, in practice this has not been found to be a prob-
lem. In addition, a limit can be imposed of the allowable
growth of the DAG. Even though in theory this may lead
to missing some symmetries, in our experiments we have
observed that very few symmetries escape detection, even
when the maximum growth is limited to 20%.

We have shown that the detection of symmetric vari-
ables improves the e�ectiveness of the sifting algorithm:
The BDDs produced are smaller and the overhead, when
no symmetries are present, is negligible.

The fact that a function is symmetric in all the vari-
ables on which it does not depend may cause some prob-
lems when using symmetry detection while building the
BDDs for a circuit. We are currently investigating ways
of mitigating the problem, while retaining the advantages
that symmetry detection a�ords in many cases.

Symmetry detection represents one example of struc-
tural analysis of a BDD that may help produce a better
order. Given the sensitivity of dynamic reordering algo-
rithms to the initial conditions, such methods are highly
desirable and are the focus of our current research.
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