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Abstract: The first stage of over-the-cell routing in the the over-the-cell region is divided into two parts vertically
horizontally connected vertically connected (HCVC) modelby the power/ground busses in the middle of the cell.

a planar routing to connect a subset of nets (with Weights)(HCVC) Fig.1(b): In this model, cell terminals and
on each row of terminals using a fixed number of tracks tO0feedthroughs are both on layer M1. In the channel, hori-
maximize the total weight. This problem is called the two zontal wires are routed on layer M2 and vertical wires are
row fixed height planar routing (TFPR) problem [CPL93]. youted on layer M1. The power bus is on layer M2 in
The complexity of the TFPR problem was unknown up tahe upper channel just above the upper terminals, and the
now. An approximation algorithm for the TFPR problem ground bus is on layer M2 in the lower channel just below
was presented in [CPL93]. In this paper we present a®0(n the lower terminals. Over-the-cell routing is carried out on

* h?) time algorithm to solve the TFPR problem optimally, jayer M2. Clearly, layer M2 is available for over-the-cell
where n is the number of terminals and h is the height ofyouting, over the total area of the cells.

the standard cells. Our algorithm can be used to improve

Fhe pgrformance Of several over-the-cell channel rOUterShorizontally connected vertically connected (HCVC) model
including the ones in [CPL93] and [HSS93]. can be formulated as follows: Given two rows of terminals,
1. Introduction find a planar routing to connect a subset of nets (with
Over-the-cell channel routing for standard cell de- weights) on each row of terminals using a fixed number of
sign has been studied extensively recently [CPL93, CL90tracks to maximize the total weight. This problem is called
HSS93, LPHL91, SS87]. In the standard cell design, cellshe two row fixed height planar routing (TFPR)roblem
are placed in rows and channels are formed between adjgCPL93]. There were no polynomial time algorithms to
cent cell rows. There are three routing layers: one layer Rsolve the TFPR problem optimally before. Hence, its
of polysilicon and two layers M1 and M2 of metal. It has complexity was unknown and an approximation algorithm
been observed that intra-cell routing can be completed usfor the TFPR problem was presented in [CPL93]. In this
ing one layer of polysilicon and one layer of metal. There-paper we present a dynamic programming algorithm to
fore, it is possible to use the other metal layer over thesolve the TFPR problem optimally @(r?*h?) time, where
cells for inter-cell routing in order to reduce the channeln is the number of terminals ankl is the height of the
routing area. There are two physical models [CPL93].  standard cells. The time complexity is reducedim * h)

}Umhm if our algorithm is implemented in a SIMD parallel machine
rﬁﬁ} Upper Channd Aﬁ —  Pover with O(n * h) processors. The weight can be any kind

E U e |U| U — Vppertemenas of measurement for reducing channel width. Therefore

Over_the oo our algorithm may be used to improve the performance of

The first stage of over-the-cell channel routing in the

S S several over-the-cell channel routers including the ones in
= cromdus o [CPL93] and [HSS93]. Due to space limitations we have

removed the proofs, which can be found in [LT94]. We
milinimiS | M 1 . recently discovered that a similar result to ours is described
gﬁ =1 °"” ’ EI=e wf‘;”m in [DSMP94].

o e LowerCrene 2. Over-The-Cell Routing

Over_the_cell

=l

() Metal 2 layer

@ ] vediioe ® Since the over-the-cell channel routing problem is
NP-hard [GN87], a common approach is the following
Figure 1: (a) HCVD model; (b) HCVC model. [CPLO3]:

Stage 1: Route over the cells (in one layer). Fig. 2(a)
* The Horizontally connected vertically divided model shows a routing solution for one side of the channel after
(HCVD), Fig. 1(a): In this model, power/ground busses the first step. The routing is valid if any two different nets
are routed on layer M2 in the middle of the cell row. Over- do not cross or touch each other. The weight of the routing
the-cell connections are also routed on layer M2. Clearly,solution is equal to the sum of the weights of the nets
1 Dept. of Computer Science, The Univ. of Texas at Dallas, Ri(:hard-WhiCh are connected in the over-the-cell routing area. The
son, TX 75083-0688 xliu@utdallas.edu, tollis@utdallas.edu objective of stage 1 is to maximize the weight of the planar
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routing solution. For example, if each net has weight 1,It is easy to show that this solution is optimal since it has
then the routing solution in Fig. 2(a) is a valid solution with maximum weight. The important observation is that net
weight 3. The weight indicates the possibility to reduce the2 from top and net 1 from bottom share track 2. In Sec-
channel width. In [CL90] the number of nets routed over-tion 3 we will present a dynamic programming algorithm
the-cell is chosen as the weight. This means that we rout¢o find a valid routing solution with maximum weight for
as many nets as possible over-the-cell, which may not leaény TFPR instance.

to a_good solution. In [CPL93] the Weig_ht qf a pair of In the HCVD model, for each row of cells &, the
terminals measures the degree of congestion in the channg|,er_the-cell routing region is divided vertically into two

between these two terminals. R sub-regions by the power/ground busses. Therefore, over-
J\—M the-cell routing for the terminals on the upper edge of the
—o—00- VT e cells ofRand the terminals on the lower edge of the cells of
8 ow0n fT‘h Over-the.cl R is carried out independently in the upper and the lower
R [ sub-regions, respectively. Moveover, the height of each
2li3s3s2e 2 sub-region is limited to half the height of the cell. Thus,
T—T UW the over-the-cell routing problem in the HCVD model is to
Over-the-cal Overthe-cl find a planar routindgs to connect a subset of the nets on a
ool I el o row of terminals, using a fixed number of tracks on one side
g lirzaness e Chame{ e s O cmd of the terminals such that the weight®fs maximum. We
© © call this problem theone row fixed height planar routing
Figure 2: (a) P_Ianar routing over the cell; (b) r_)ossible_ net ESZER%ELOQIE%EIISEZ(?% Tg?_gg]atﬁi“%ﬁ::ﬂg?ﬂiﬁg“ﬁgt
segment connecting two hyperterminals;(c) A valid solution for ) ’

TEPR (height is 3); (d) a valid solution to OFPR(height is 2). routing problem was first transformed into a two-terminal
net routing problem.
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Stage 2: Choose which net segments will be connectedTheorem 2.1: For any instancé of the multi—tgrminal net
OFPR problem] can be transformed to an instaniceof

in the channel such that the resulting channel density is i (o)
minimized. It was shown that the general net segmen he two terminal net OFPR problem (i) time such

, : N . .
selection problem is NP-hard, and an efficient heuristicthatl containsO(k*n) terminals, wheren is the number

algorithm was presented in [CL90]. This algorithm is used ©f términals inl andkis the maximum size of a net in.
in almost all over-the-cell channel routers [CL90, CPL93, Based on a dynamic programming approach presented
HSS93]. in [CPL93], the authors obtained the following result:

Stage 3: Connect the terminals corresponding to the se-Theorem 2.2:The two terminal net OFPR problem can be
lected net segments using a conventional two layer channgolved inO(t*n®) time, wheren is the number of terminals

router, such as [RF82]. andt is the number of available tracks.
In HCVC model, for each row of cellR, the entire 3. Solving the TFPR problem optimally
M2 layer over cellR can be used for over-the-cell routing. In over-the-cell routing (in the HCVC model), the

Moreover, both the lower terminals ¢t and the upper multi-terminal net routing problem is first transformed into
terminals ofR share the same over-the-cell routing region. a two terminal net routing problem. By a result similar to
Therefore, over-the-cell routing for both the lower and Theorem 2.1, we need only consider two terminal net TFPR
upper terminals oR has to be carried out simultaneously problems. In this section we will present a dynamic pro-
in order to use the common routing region efficiently. gramming approach to the two terminal net TFPR problem.
Furthermore, the number of tracks in the over-the-cell For an instancd of the two terminal net TFPR prob-
routing region is only limited by the height of cells. Thus lem. letn be the maximum number of terminals on the
the over-the-cell routing problem (stage 1) in the HCVC Iowér/upper edges of cells ifi andh be the number of

model can be formulated as follows: tracks used for over-the-cell routing, i.e., the height of the
Given two rows of terminals, we want to find a planar standard cells. LeT(j) be the instance of the two termi-
routing Sto connect a subset of nets on each row of termi-nal net TFPR problem that results by restrictingo the
nals, using a fixed number of tracks in order to maximizeinterval [1,j]. A valid routing solution forT(j) (j=11) is
the weight ofS This problem is called théwvo row fixed  shown in Fig. 2(c). LeM(j) denote the maximum weight
height planar routing (TFPRproblem. Fig. 2(c) shows a of any routing solution forT(j). Clearly, our goal is to
valid solution to a TFPR problem with weight 40 if nets 2, find a maximum weighted routing solution for the instance
4, 1, and 5 have weight 10 and any other net has weight 1T(n), i.e., a routing solution that achievé4(n). Let T1(j,



k, m) ( 1< k<j; 0 £ m< h) denote the instance df(j)
with a hole in its right lower corner. The routing solution
for T1(j, k, m)cannot go inside this hole which is located
between columrk and columnj and between track and
track h. A valid routing solution forT1(j, k, m)is shown

in Fig. 3(a). LetT2(j, k, m)denote the instance of(j)
with a hole in its right upper corner. The routing solution
for T2(j, k, m)cannot go inside this hole that is located
between columrk and columnj and between track 1 and
trackm. An example forT2(j, k, m)is shown in Fig. 3(b).

It is clear that if there is no hole in the routing region of
T1(, k, m)(or T2(j, k, m)), thenT1(j, k, m)(or T2(j, k,
m) ) becomesT(j). Let M1(j, k, m)andM2(j, k, m)denote
the maximum weight of any routing solution farl(j, k,
m) and T2( j, k, m) respectively.
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Figure 3: (a) A valid routing solution for T1(j,k,m);
(b) a valid solution for T2(j,k,m); (c) A valid
solution for 11(i,j,s); (d) a valid solution for 12(i,j,s).
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ca. 1 k ) i

TG km) 11(' +1j-1,{n-2)
track m
Obstacle [ Hole
Hole

@ co. 1 i K i

Col. 1

routing area
track m

obsva:l\

T 1 +1,j-1, 5-1)

T2k, \9)

obstcle

©

Figure 4: (a) An instance with j’ out of routing region; (b)
An instance with k<=j'<j; (c) An instance with 1<=j'<k.

Case 2 k<j <j (Fig. 4(b)). A maximum weighted routing
solution S for T1(j, k, m)may or may not route ne.

Subcase 2.1 If net a is not routed inS clearly, we still have
M1(, k, m) = M1(j-1, k, m)

Subcase 2.21If net a is routed inS (without loss of generality,
we assume that net is routed inS using trackm-1; otherwise,
we waste part of trackn-1), then neta partitionsT1(j, k, m)into
T1(j’, k, m)andI1(j'+1, j-1, m-2). Since the over-the-cell routing
is planar, the routing solution foF1(j’, k, m) (11(j+1, j-1, m-2)
)should not go inside routing region tf(j'+1, j-1, m-2) ( T1(j’,
k, m) ) Therefore, we hav#1(j, k, m) = M1(j’, k, m) + N1(j’+1,
j-1, m-2) + w(a.j, a.j’), wherew(a.j, a.j’) is weight of neta.

Thus, for case 2 we have the following equation:
M1(j, k, m) = max{M1(j-1, k, m), M1(’, k, m) + N1(j+1, j-1,
m-2) + w(a.j, a.j)}, if Isk<j <j. (Eq. 2)
Case 3 1<j <k (Fig. 4(c)). A maximum weighted routing

solution S for T1(j, k, m)may or may not route ned.
Subcase 3.1 If net a is not routed inS clearly, we still have

net OFPR problem resulting from restricting nets on theM1G, k, m) = M1(-1, k, m)

upper edge of the cells inside interJalj] , and allowing
tracks 1 tos for routing. An example is shown in Fig.
3(c). Letl2(i, j, s) be the instance of the two terminal net

OFPR problem resulting from restricting nets on the lower

edge of the cells inside intervdil j] , and allowing track
(h-s) to hfor routing. A valid solution forl2(i, j, S) is
shown in Fig. 3(d). LeilN1(i, j, s) and N2(i, j, s) be the
maximum weight of any routing solution fdt(i, j, s) and
12(i, j, s), respectively. In the following, we will show how
to computeM1(j, k, m) (kk<j; 0 £ m< h).

Assume that the net at colunjron the upper edge of
the cell is neta and that the other terminal of natis at

columnj of the upper edge of the cell. There are threep_si1) + w(aj, aj)}, M2G-1, k, m)}, if 1< < k.

cases according to position pf We consider all cases for
computing M1(j, k, m)
Case 1 If j’ is not in the interval [1j] ( Fig. 4(a) shows this
case), we cannot route netn any of the solutions fof1(j, k, m)
Thus, a routing solution fof1(j, k, m)is also a routing solution
for T1(j-1, k, m) Therefore,
M1(j, k, m) = M1(j-1, k, m), ifj isnotin [1,]] (Eq. 1)

If j is in the interval [1,j], there are other two cases
according to the relationship betwegnand k.

Subcase 3.21If net ais routed inSusing tracks (0<s<m—1)
, then neta partitionsT1(j, k, m)into two sub-problems$1(j'+1,
j-1, s-1)and T2(k, j’, s). Hence, we haveM1(j, k, m)=M2(k, j,
s) + N1(j'+1, j-1, s-1) + w(a.j, a.j)

Therefore, for case 3 we have the following equation:
M1(j, k, m)=Max{M1(j-1, k, m), Mags<m1{M2( k, j’, s) +
N1('+1, j-1, s-1) + w(a.j, a.j)} L if 1 <j<k. (Eq. 3)

We computeM2(j, k, m)in a similar fashion to the compu-
tation of M1(j,k,m)using the following three equations:
M2(j, k, m) = M2(j-1, k, m) if j is notin [1, ]] (Eq. 4)
M2(j, k, m) = max{M2(j-1, k, m), M2(j’, k, m) + N2(j'+1, j-1,
h-m+1) + w(a.j, aj)}, if1<k<j <j. (Eqg. 5)
M2(j, k, m) = Max{ MaX,<s<n{M1(K, J, s—=1) + N2(j'+1, j-1,
(Eqg. 6)

Finally we discuss how to computel(j) (j=1, 2, ... n).
Assume that the net at colunmjron the upper edge of the cells
is neta and that the other terminal of natis at columnj’ of
the upper edge of the cells. Assume that the net at coluom
the lower edge of the cells is nétand that the other terminal
of netb is at columnj” of the lower edge of the cells. L&
be the routing solution of maximum weight fai(j). There are
four cases according to whethgror j” is out of the intervalif
j] as follows.
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Figure 5: (a) an instance of T(j) with j>j, j">]; (b) An
instance of T(j) with j’<=j but j">j; (c) An instance of T(j)
with j’<=j but j'>j; (d) An instance of T(j) with ', j’<=j.

Case I If neitherj norj” is in the interval [1,j] (shown in
Fig.5(a)), then neither netnor netb can be routed in any routing
solution for T(j). This means that any routing solution foj)
is also a routing solution fofl(j-1). So we have the following
equation:
M(j) = M(j-1), if neither j’ nor j” is in the interval [1, j]. (EQ.7)
Case Il: If j is in the interval [1]] but j” is not (shown in Fig.
5(b)), then neb should not be routed i and neta may or may
not be routed inS.
Subcase 1.1 If net a is not routed inS, then we haveM(j)
= M(j-1).
Subcase 11.2 If net a is routed inS using tracks (1< s < h),
then it partitionsT(j) into two routing subregion32(j, j’, s) and
11(j+1, j-1, s-1). FurthermoreM(j) = M2(j, j’, s) + 11(j'+1, j-1,
s-1) + W(a.j, a.j’). So in case Il, we have:
M(j) = max{M(j-1), max <s<n{M2(j, j’, s) + N1('+1, j-1, s-1) +
W(a.j, a.j)} }, ifj is in [1,j] but j” is not. (Eq. 8)
Case lll: If j” is in the interval [1] but j is not (shown in
Fig.5(c)), then we have the following equation:
M(j) = max{M(j-1), max <s<n{M1(], ", s) + N2(j"+1, j-1, h-s-1)
+ W(b.j, b.jn} }, if j"is in [1,j] but j" is not. (Eq. 9)
Case IV: If bothj andj” are in the interval [1j] (shown in Fig.
5(d)), then neta ( or netb ) may or may not be routed i&
Subcase V.1 If neither neta nor netb is routed inS, then we
still have M(j) = M(j-1).
Subcase V.2 If net a is routed inS using tracks (1< s<
h), then it partitionsT(j) into two routing subregion32(j, j, S)
and11(j+1, j-1, s-1). This implies thatM(j) = M2(j, |, s) +
N1(’+1, j-1, s-1) + W(a.j, a.j).
Subcase V.3 If net b is routed inS using trackt (1 <t < h),
thenM(j) =M1(j, j”, t) + N2(j"+1, j-1, h-t-1) + W(b.j, b.j") .

So for case IV, we have the following equation:
M(j) = max{M(j-1), max <s<n{M2( j, j, S) + N1(j'+1, j-1, s-1)
+ W(a.j, a.j)}, max <i<n{M1(, ", t) + N2(j"+1, j-1, h-t-1) +
W(b.j, b.j")} }, if both j and |” are in [1, j]. (Eq. 10)

If nis the number of terminals aridis the number of avail-

step 1: compute {N1(i, j, s) | ¥i <j < n, 1<s<h}, {N2(i, j, S) |
1<i<j<n, 1<ss<h}using the method of [CLP93];
step 2: for j:=1 to n do beginPhase j

step 2.1: compute {M1(j, k, m), M2(j, k, m) £k <j, 1
<m <h } using equations 1 to 6;

step 2.2: compute M(j) using equations 7 to #ddPhase j;
return(M(n));
End of Algorithm TFPRS

By Section 2 we know that step 1 tak@¢r’*h) time.
Since the computation of equation 3 or equation 6 takes
O(h) time, step 2.1 takes @th?) time in one iteration. It
is clear that step 2.2 takes @ time in one iteration. Thus
the time taken by step 2.1 dominates the time taken by step
2. Since step 2.1 is executedtimes, step 2 takes @&

* h?) time. Moreover, by keeping proper information at
each step, not only can we compute the valudi@f), but
also we can construct the solution which achieM¥s) at
the end of our algorithm.

Theorem 3.1 Algorithm TFPRS finds the maximum
weighted routing solution fof(n) in O(n? * h?) time.

The time complexity of our algorithm can be reduced
to O(n*h) if it is implemented on a parallel computer.

Theorem 3.2 The two terminal net TFPR problem can
be solved optimally in Qf*h) time in a SIMD parallel
computer with O*h) processors.
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