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Abstract* mal noise andlicker noise which will all be considered in this work.

In Section 2 below, previous work on computer simulation of noise
in integrated circuits is reviewed with comparisons to our method. In
Section 3, shot, thermal and flicker noise models for integrated-circuit
devices, in the context of our time-domain noise simulation method, are
described. Section 4 describes our noise simulation method. In Section
5, the implementation of the noise simulation method, in the context of a

dynamic circuitnith any kind of excitatignhich can be simulated by nodal-analysis circuit simulation program (SPICE), is described. Two
thetransient analysigoutine in &circuit simulatorcan be simulated by xamples of noise simulation are presented in Section 6. Finally, future
our noise simulator in time-domain to produce the noise variances ana/Ork is stated in Section 7 : ’

covariances of circuit variables as a function of time, provided that noise
models for the devices in the circuit are available. Nmigelations 2 Previous work

between circuit variables different time pointsan also be calculated. . ) . . . .
Previous work on computer simulation of noise in integrated circuits is _The electrical noise sources in passive elements and integrated-cir-
reviewed with comparisons to our method. Shot, thermal and flickercUit devices have been investigated extensively. Small-signal equivalent
noise models for integrated-circuit devices, in the context of our time-Circuits, including noise, for many integrated-circuit components have
domain noise simulation method, are described. The implementation dpeen constructed [1]. The noise performance of a circuit can be analyzed
this noise simulation method in a circuit simulator (SPICE) is described !N terms of thesemall-signal equivalerircuits by performing sinusoi-

Two examples of noise simulation (& CMOS ring-oscillator and a BJT dal circuit analysis in frequency domain in the usual fashion. This analy-

A new, time-domainnon-Monte Carlanethod for computer simu-
lation of electrical noisen nonlinear dynamic circuitsvith arbitrary
excitationsis presented. This time-domain noise simulation method is
based on the results from the theorstothastic differential equations.
The noise simulation method is general in the sense thabaimear

active mixer) are given. sis is done separately for each of the uncorrelated noise sources, and for
. a range of frequencies. For a complicated circuit, the large humber of
1 Introduction noise sources and circuit complexity completely preclude hand calcula-

tion. In fact, even machine computation of the noise contributions from
all noise sources can be time consuming. Fortunately, an extremely effi-
cient computational technique, based on the interreciprocal adjoint net-
work concept, was proposed [4][5]. This technique calculates the noise
ontribution from an arbitrarily large number of noise sources at a given
equency with little more computer time than is normally required for a
ingle noise source. The noise analysis in SPICE is based on this

This paper presents a néwwe-domainnon-Monte Carlanethod
for computer simulation aflectrical noisein nonlinear dynamic cir-
cuits with arbitrary excitations This time-domain noise simulation
method is based on the results from the the@toohastic differential
equationsThe noise phenomena considered in this work are caused b
the small current and voltage fluctuations that are generated within th
integrated-circuit devices themselves. The existence of noise is basical i X . . X
duegto the fact that electrical charge is not continuous but is carried innethod. Unfortunately, this method is only applicablinear time-
discrete amounts equal to the electron charge. Electrical noise is assogi“-"a.”a”.tc'rcwts (e.9. the small-signal equivalent circuits corresponding
ated with fundamental processes in integrated-circuit devices [1]. Nois? Circuits with fixed operating points). It is not appropriate for noise
represents a lower limit to the size of electrical signal that can be ampliSimulation of circuits with changing bias conditions, or circuits which
fied by a circuit without significant deterioration in signal quantity. It &€ N0t meant to operate in small-signal conditions. . o
also results in an upper limit to the useful gain of an amplifier, because if ._[2:3] and [6] present noise analysis techniques for nonlinear circuits
the gain is increased without limit, the output stages of the circuit will With & periodic large signal excitation. The noise analysis for a nonlinear
eventually begin to cut off or saturate on the amplified noise from theCircuit with a periodic large signal excitation reduces to the analysis of a
input stages [1]. The influence of noise on the performance is not limitedna" periodically time-varyingircuit with cyclostationary{2,3][6]
to amplifier circuits. For instance, active integrated mixer circuits, whichN0iSe sources. This is arrived by a first-order Taylor's expansion of the
are widely used for down conversion in UHF and microwave receivers Sircuit équations around tperiodic steady-statlution of the circuit
add noise to their output. It is desirable to be able to predict the noise pef¥ithout the noise sources and the small-signal excitations. This Taylor's
formance of a given mixer design [2,3]. Most of the time, amplifier cir- approximation is similar to the one we will present in Section 4.1. The
cuits operate in small-signal conditions, that is, the operating point of thé'0iS€ analysis methods described in [2,3] and [6] use frequency-domain
circuit does not change. For analysis and simulation, the amplifier circuif€thods based on manipulatingpulse responsesdtransfer func-
with a fixed operating-point can be modeled as a linear time-invarian#IonSfora linear periodically ime-varying system, apelctral densities
network by making use of the small-signal models of the integrated-cir0 Cyclostationary noise sources. These noise analysis techniques are
cuit devices. On the other hand, for a mixer circuit, the presence of &Pplicable to only a limited class of nonlinear circuits with two excita-
large local-oscillator signal causes substantial change in the activdOnS, where one of the excitations is large and periodic and the other is
devices’ operating points over time. So, a linear time-invariant networkSmMall (€.9., mixer circuits, switched capacitor circuits). )
model is not accurate for a mixer circuit. There are many other kinds of ~ The previous work on noise simulation in time-domain is restricted
circuits which do not operate in small-signal conditions, such as a volti0 techniques which employ the Monte Carlo method [7]. This method
age-controlled-oscillator (VCO) composed of delay cells in a ring con- has several drawbacks. Pseudq-random number generators often do not
figuration. Noise simulation of these circuits requires a method whichdenerate a large sequence of independent numbers, but reuse old ran-
can handle nonlinear dynamic circuits with arbitrary excitations. The dom numbers instead. This becomes a problem if a circuit with many

three important types of noise in integrated circuitstaymoise ther- noise sources is simulated. This is usually the case, because every device
has several noise sources associated with its model. In this method, the

*_This work is supported by MICRO (Philips, Hewlett Packard and Harris). same circuit is simulated many times by obtaining “different” sample
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paths for each noise source. Then a statistical analysis is carried out &iationarywhite noise process, assuming that the resistance value is a
calculate averages and variances over these many simulations. Thm®nstant as a function of time. Tihensityof a stationary white Gauss-
noise content in a waveform will be much smaller when compared withian noise process is equal to the square root of the power spectral den-
the magnitude of the waveform itself. As a result, the waveformssity. For a stationary white Gaussian noise process, the power spectral
obtained for different sample paths of noise generators will be very closélensity (a function of frequency) is a constant on the entire real axis.

to each other. It is known that, in a simulator, these waveforms are onlg 1 2 Jjunction diodes

numerical approximations to the actual waveforms, therefore they con-
tain numerical noiseThe rms value of noise is calculated by taking a
difference of these waveforms. That is, two large numbers, which haveg
uncertainty in them, are being subtracted from each other. Consequentl
the rms noise calculated with this method, in fact, includesoike
generated by the numerical algorithms. This furthermore degrades th
accuracy of the results obtained by this method. This method has on

The series resistancg , in the model of a junction diode [1], is a
hysical resistor due to the resistivity of silicon, hence it exhibits thermal
oise. The thermal noiserip  can be modeled as in Section 3.1.1.

' The pn -junction exhibits shot noise which is associated with the
urrent flow through the diode. Timensityof the shot noise current,
hich is white Gaussian, is given by

advantage when compared with the frequency domain methods dis- INEhot(t) = Al (1) (3.2)
cussed above: It is not restricted to linear time-invariant, or to nonlineaivhereq is the electronic chargedx10°Cc ), agdt) isthise-

circuits with a large signal periodic excitation. In theory, it is applicable |essdiode current. Note that, in this casggnsityis a function of time,
to the general class of nonlinear dynamic circuits with any kind of exci-hence this white noise source is stationary.The square of the time-
tation. varying intensity for aonstationaryvhite noise source as above can be
Our method, unlike the frequency domain methods, is not restrictecthought to be théme-varyingpower spectral density, which isa@n-
to linear time-invariant or nonlinear circuits with a large signal periodic stant(as a function of frequency) on the entire real axis. During nonlin-
excitation. Our time-domain noise simulation method is based on thesar operation, the current through the diode shows variations as a
results from the theory of stochastic differential equations. There are ndunction of time, so does the intensity. In this way, shot noise associated
pseudo-random number generators involved in the simulation, thereforaiith a time-varying current is modeled as a nonstationary white Gauss-
the problems associated with them do not exist. The simulation of théan noise, which is also the case for thermal noise associated with a time-
average waveforms (without noise in the circuit) and the simulation ofvarying resistance. (3.1) is also valid for a time-varying resistance [16].
noise are separated, even though they are done concurrently. Thus, the The flicker noise source in a diode is modeled byrstationary
numerical noisproblem that arises in Monte Carlo methods is avoided. noise process which hatirae-varyingoower spectral density given by
Our method is capable of calculatirggiances and covariancébat is, L e (1) = KE (1o (1)) /f (3.3)
the covariance matrixfor the noise content in the node voltages and . licker A D . . .
other circuit variables in a circuit afiaction of timeFurthermoregor- whereKF  is a constant for a particular device, is a constant in the
relations between circuit variables different time pointsan also be ~ '@Nge0.5 t02 and s the frequency. This noise source can not be
calculated. Finally, the implementation of our method fits naturally into included in the noise simulation directly, because it is not white (i.e. the
a circuit simulator (such as SPICE) which is capable of doing time-time-varyingpower spectral densitynista constant as a function of fre-
domain transient simulations. Noise simulation is done along with theduency). A way of synthesizing this source from white noise sources

transient simulation over the time interval specified by the user. will be di.scussed in. Section 3.2.
3 Noise models 3.2 Flicker noise sources

. ) . . ) ~In our noise simulation method, onlyhite noise sources are

_The electrical noise sources in passive elements and integrated-Cigllowed. Flicker noise sources have a power spectral density which is
cuit devices have been investigated extensively, and appropriate modelfst a constant as a function of frequency. The natural way to include
have been derived [1][8]. Traditionally, these noise models are presentefiicker noise sources into simulation is, somehow, to synthesize them
asstationarynoise sources in tigenall-signal equivalerfat an operat-  ysing white noise sources. A promising approach/for (flicker) noise
ing point) circuits of the devices [1]. In this section, we describe thegeneration is to use the summation_ofentzian spectravhich is
adaptatiorof these noise models for use in our time-domain noise simu-defined by (3.4) [9)t has been shown that a constant distributidmof
lation method. In our method, the noise sources are insertetdiigehe p0|es per decade giveg_af Spectrum with less than 1% error [9] A
signal modelsf the integrated-circuit devices and they are, in general, sum ofN Lorentzian spectra is given by
nonstationaryln Section 3.1, the adaptatiorshbt, thermahndflicker 22 N b
noise models for resistors and junction diodes will be described. The S(H = i S h (3.4)
noise models for these two simple devices are representative of noise L= 1¢§ +2
models for all other integrated-circuit devices such as BJTs and MOS;, ;. ¢, s designate the pole-frequenciestand  is the frequency. It has
FETs, because all kinds of noise we consider (shot, thermal and ﬂicke{)een sﬁown in [9] thal = 20 poles uniformly distributed omar.
noise) exist in these devices [16]. The noise source models we use in OHEcades are sufficient to generaté noise twer  decades with a

methoq are adapted from [l.] and [S]' . . . maximum error less than 1%. Each Lorentzian spectrum in the summa-
As it will become clear in Section 4, our noise simulation method o, i (3.4) can be easily obtained by usingiBenalnoise generator
requires that noise sources\afite. The thermal and shot noise sources 5 5 resistor, connected in parallel to a capacitance C and their

are modeled as white noise sources, hence they can be directly includgfly, can be achieved by putting (Fig. 811)  of sichC roups in
in the simulation. However, the flicker noise sourcesatre included series [9]. yP g (Fig. 811) RYenCy, group

in the simulation as they are. The inclusiofiicier noise sources into Ry
the noise simulation method will be described in Section 3.2. o
3.1 Shot, thermal and flicker noise models R, c !
2 .
3.1.1 Resistors 1/f noise
CN

Monolithic and thin-film resistors display thermal noise. The ther- z
mal noise in a resistor can be modeled by a white Gaussian noise current S
source withintensity
R _ N
INthermar = ~2KT/R 3.1 Figure 3.1:  1/fNoise Synthesizing Circuit

wherek is Boltzmann's constaft, is the absolute temperature and  is  In the noise simulation, a flicker noise source in the model of an inte-
the resistance [1]. The thermal noise source associated with a resistor igygated-circuit device is built by using the circuit in Fig. 3.1 with an ideal



voltage-controlled current sourcghis is illustrated in Fig. 3.2. The  The white Gaussian noiggt) is a very useful mathematical idealiza-
voltage-controlled current source is connected between the two nodes tibn for describing random influences that fluctuate rapidly and hence

a device where the flicker noise source is modeled. are virtually uncorrelated for different instants of time. A white Gaussian
1/f Noise F—— Flicker noise model is appropriate thermalandshotnoise in integrated cir-
Svnthesizing v g(tv —> Current cuits [1]. Fllcker noise sources are taken_ care of in th_e way described in
C)i/rcuit ) go'se Section 3.2v in (4.3) is simply a combinatiorpof  independent one-

. ,:; . °F”°e dimensional white Gaussian noise processes as defined above. These
Figure 3.2: Flicker Current Noise Source Synthesis ~ noise processes actually correspond to the current noise sources which
~ The spectral density of it noise obtained from the circuit in are included in the models of the integrated-circuit devices. Since the

Fig. 3.1 is approximately noise models for the integrated-circuit devices are to be employed here

S() = 20%/md (3.5) in the context of an MNA circuit simulator (SPICE), noise sources in the

where 62 = kT/ (2C) . This spectral density is time-invariant. The devices are all modeledazcorrelated currensources. _

flicker noise model given in Section 3.1.2 requires a time-varying spec- B (x 1) , in (4.3), contains thetensitiesas described in Section 3.1,

tral density. This is achieved by having a time-varyimgconductance for the white noise sourcesin . Tiheensitiesfor these noise sources
(g(1)) for the voltage-controlled current source in Fig. 3.2. For are, in general, a function of time (not a constant). Because of intensity
instance, for a diode, we require that the flicker noise source spectraf@riations, these noise sources arestatibnary Thus, thenonstation-

density is in the form given by (3.3). This is assured with arity of the noise sources in the circuit are capturesi(i 1) . Every
5 column inB (x, ) corresponds to a noise source in , and has either
g() = JTKF (I, (1% / (207 (3.6) one or two nonzero entries [16].

: : (4.3) is a system of nonlinear stochastic differential equations
4 Development of the simulation method (SDEs) where the forcing is an irregular stochastic process (white

The noise simulation method will be described assuming that modi-noise). This kind of SDEs require fundamentally different and complex
fied nodal analysis (MNA) [10] is used for the formulation of circuit methods of analysis and numerical solution [12]. Fortunately, some
equations. MNA is the method for circuit equation formulation in most characteristics of our problem help us simplify the numerical solution of
of the circuit simulators (such as SPICE) available. Translation of the(4-3): The noise content in the signals in any useful circuit is, almost
noise simulation method into other ways of circuit equation formulation always, much smaller when compared with the signal itself.

is straightforward. Letx,, be the solution of (4.3),,, is not deterministic, since itis the
41 D eriv_ ation of th e stochastic differenti "?II %?ilggon of the circuit equations with the noise sources included, and sat-
equation for noise from MNA formulation of F (e %oy ) +B (g, OV = 0 X (0) = X+ ¥porego (4:4)
the nonlinear circuit equations . S ;
. o . wherex, is deterministic, and ;.o IS @ vectonof  zero-mean ran-
The MNA equations for any circpitithout the noise sourcesan dom variables. We use (4.2) in (4.4) to approxirite,, X, t) . and
be written compactly as we obtain
F(x,xt =0 X(0) =%, (4.2) F (% X, 1) +9F (% x 1) (X - x) +
wherex is the vector of the circuit variables with dimension , is the 0x X=X
time derivative ok { istimearl ismappigx , and into a vector X =%
of real numbers of dimensiom . It is obvious that x(9 and 0 o S 45
x = x (1) . The time dependencexf and  will not be written explic- 7 %0 X:XS(XS” X) +B (%, VIO (4.5)
itly for notational simplicity. In MNA, the circuit variables consist of

X =X

node voltages and branch currents for some elements (e.g. inductors and
voltage sources). The circuit equations consist of the node equations %n(0) =Xg+ Xyise0
(KCL) and branch equations of the elements for which branch currents  Defining
are included in the circuit variables vector. Under some rather mild con- Xnoise = Xsn™ Xs (4.6)
ditions (which are satisfied by well modeled circuits) on the continuity , s actually, the difference between the solutions of the circuit
and differentiability off , it can be proven that there exists a unique gqi3fions, with and without the noise sources. In other wols, is
solution to (4.1) assuming that a fixed initial valyé) = x, iS given thanoise contenin x. . x_ ... is much smaller when compared with
[10]. Letx, be the solution to (4.1). Thansient analysii circuit sim- . which validates the above approximation.
ulators solves for,  using numerical methods for solving ordinary dif- ' For notational simplicity, define
ferential equations (ODEs) [10]. The initial value vegt®@) = x, is P ' PR
obtained by a dc solution of the circuit before the transient simulationis A() = 32 F (x x| c( = ;F (X% 1) (4.7)
started. For a circuit, there may be several different dc solutions. . X X=%

The first-order Taylor's expansion®f aroud is expressed as X=X X=X

whereA (t) andC(t) arexn matrices with time-dependent entries.

F(x X t) OF (X, X, ) + :
( ) (s X5 1) Furthermore, we approximate

aiF(x, x| (x-x) +LF(xx 1) (x-%)  (4.2) B (X t) OB (% 1) (4.8)

X x=x% ox x=x and define
L X=X X=% B(t) =B(x 1) 4.9)
which will be used later. If (4.6), (4.7), (4.8) and (4.9) are substituted in (4.5) we obtain

If the noise sources are included in the circuit, the MNA formulation

F(Xg Xg 1) +A(t) X +C (1) Xpoiset B(Y) vOO

of the circuit equations can be written as noise (4.10)
F(x,x,1) +B(x, )v =10 x(0) = X0 * Xnoise 0 4.3) ) ) Xnoise(0) _: XO+Xn0ise0_Xs(0)

whereB (x t) isamxp matrix, the entries of which are a function of ~ Sincex; is the solution of (4.1) we have

x, andv is a vector of white Gaussian stochastic processes. A one- F(xgXgt) =0 Xs(0) = X (4.11)

dimensional Gaussian white noise is a stationary Gaussian procesgnd if we substitute (4.11) in (4.10), we obtain

& (1), for-o<t<ow,withmeare[£(t)] = 0 and a constant spectral A(D X +C () Xnoieat B(DV=0

density on the entire real axis. The covariance functigiitpf is given noise noise (4.12)

by e[€(s) & (t+5)] = &(t) , whered is Dirac’s delta function [11]. Xnoise(0) = Xnoiseo



(4.12) is dinear SDE[11] in x, ;.. With time-varying coefficients.
A(t), B(t) andC(t) are functions of , and they do not depend on
Xnoiser 1NE SOlUtion of this equation will be discussed in the next four
subsections.

4.2 Transformation of the stochastic differential
equation for noise into state-equation form

wherew is a vector of  independent one-dimensional Wiener pro-
cesses. A -dimensional Wiener process can be defined as a process
with independent and stationaty,(0, (t, —t,) ) -distributed incre-
ments w(t) -w(t,) , with initial value w(0) = 0 . Here,

N (Mean Coy denotes the -dimensional normal distribution with
expectation vectomean and covariance mattigv  [11]. A Wiener
process can be thought to be the “integral” of a white noise, or, alterna-

To make use of some of the results from the theory of SDEs, (4.12jively, white noise is the “derivative” of a Wiener process in the sense of

will be put into the form
y = E()y+F(Dv y(0) =y, (4.13)

If C (1) is a full-rank matrix, this can be easily done by premultiply-

ing both sides of (4.12) by the inversegf)

coincidence of the covariance functionals [11]. In our case, we have
w(t) = ﬁ)v(r)d'r v(t) = w(t) (4.19)
As with ordinary differential equations, the general solution of a lin-

[ - However, this is not trueear SDE can be found explicitly. The method of solution also involves
in generalC (t) may have zero columns. For instance, if a circuit vari-

an integrating factor or, equivalently, a fundamental solution of an asso-

able is a node voltage, and if this node does not have any capacitors caglated homogeneous differential equation. The solution of (4.15) is

nected to it in the circuit, then all of the entries in the colun@(of
corresponding to this circuit variable will be zero fot all . At this point,
we should note that the zero-nonzero structura (@f B (t) and
C(t) is independent af . So, some of the columrs @jf
turally zero, independent of . If we reorder the variables jn,
such a way that the zero column£gt)
side of the matrix, (4.12) becomes

in

I:Al(t) Az(t):l Xims +|:Cl(t) (il )iOis +B()v=0

nois Xnois
(4.14)
1 1
Xnoise(o) = Xnoise 0
X2 (0) X2
noise noise 0
whereA, () andc,(t) ar@xm A, (t) i8xk X, isan -

dimensional vector? ... isk is the number
of nonzero columns i@ (t)

urally,n = m+ k.

-dimensional vector,

Then, expanding (4.14) and performing straightforward operations
on this equation [16], we arrive at the SDE for noise in the state equatiol

form, which is given by

X#oise =E (t) Xﬁoise"' F (t) v X#oise(o) = xrlmiseo (4'15)
, Xﬁoise: Dl (t)lxﬁoise*' D2 (t)v (4.16)
XnoiseO = Dl (0) Xnoiseo + D2 (0) V(O)
with
1 .
noise = x.,isc(reordered) (4.17)
2
Xnois
Here,E(t) ismxm ,F(t) ismxp D,(t) ikxm D,(t) is
kx p, and they are obtained from (t) A, (t) C,(t) anc) by

performing some matrix algebra operations [16].

4.3 Solution of the stochastic differential equation
for noise

(4.15) is a linear differential equation where the forcing is an irregu-
lar stochastic process whichaibite noiseA mathematically rigorous
treatment of equations of this type requires a new theory. In 1951, It
defined thdto or stochastiantegral and in doing so put the theory of
SDEs on a solid foundation [11]. (4.15) is written symbolically as a lin-
ear SDE, but it is interpreted as an integral equationltwithr Stra-
tonovichstochastic integrals [11]. The solution of (4.15) obtained by the
Stratonoviclinterpretation is equal to the one obtained bytdhiater-
pretation, because it idirear SDE in the narrow senfil]. A detailed

explanation of Ito and Stratonovich stochastic integrals and stochastic

differential equations can be found in [11], [12] and [13]. In the follow-
ing development, we state and use some of the results from the theory
SDEs.

(4.15) is often written in the form

dxt E()xt . dt+F(t)dw

noise noise

X#oise(o) = Xﬁoiseo (418)

are struc-

are grouped at the right-hand

given by
Xoise(l) = (L o) Xpoie(te) + [ @(LTDF (D dw(T)  (4.20)

whereg(t, T) is the matrix determined as a function of by the homo-
geneous differential equation

do/dt = E(t) @ o(t, 1) =1, (4.21)
(4.20) involves arito integral as opposed to a Riemann integral [11].
The integral in (4.20) can not be interpreted as an ordinary Riemann
integral, because almost all sample functions(af are of unbounded
variation. Ito’s definition of the stochastic integral includes the ordinary
Riemann integral as a special case [11]. If the fundiign)s  F @nd

are “measurable” and bounded on the time interval of interest, there

exists a unique solution for every initial vakjg,..(t,) [11]. We are
interested in the case where
X#oise(o) = Xrlmiseo (4-22)

In our problem, it is sufficient to find theobabilistic characteristics

r 1 . ; .
and s the number of zero columns. Nat-Of Xnoise @ @ function of . In other words, we would like to determine

themearand theovariance matrief x, ... as a function of time in the
time interval desired. K/, ... is@aussiarstochastic process, then it is
ompletelcharacterized by its mean and covariance function as a func-
lon of time. Further explanation on this topic will be given in Section

4.5. If we substitute (4.22) in (4.20) with= 0 we obtain
Xhoise(D) = @(t 0) Xhoiseo +I§)<p(t, 1) F (1) dw (1) (4.23)
If we take the expectation of both sides of (4.23) we get the mean of

Xt oise Which is a function of . Considering thefv (t)] = 0 and
E[X:miseo] = 0, we get
m () = e[Xpice(D)] =0 (4.24)

Next, we would like to determine the covariance matrix of the com-

ponents ok’ ... as afunctionof , which is given by
KLY = e[, 0e() X oae( ] (4.25)
since mean is zero as given by (4.24). Consider
T T T
dxrlmisexrlmise = X1]1-oisedxrl10ise + (dxr]{oise) X%oise + (4.26)

F (1) F (1) Tdt
Notice that there is an extra term in (4.26) which would not be there if
we were using ordinary calculus insteadtothasticor Ito calculus.
This equation is obtained frdito’s Theorenj11] using (4.18)We use

44.18) to expand (4.26) and obtain

dxt

1 T 1 1 T T
n +Xnoisexnoise E(t) ) dt +

-
oisexﬁoise = (E(t) Xnoisexﬁoise

F () F (1) Tdt+ 30 i (F (8) dw) T+ (F (t) dw) X ool
If we take the expectation of both sides of this equation, noting that
anddw are uncorrelated and using (4.25), we get

Kt = E()KE() +KE W EMT+FMF ()T
WhereK* () is the unique symmetric nonnegative-definite solution of
matrix  equation (4.28) with the inital value
1(0) = e[Xoiseo (Xhoise0) 1 = Ki. Calculation of the initial value
K: will be described in" Section 4.4. The differential equation for
K (t) = K*(t) T, (4.28), satisfies the Lipschitz and boundedness condi-
tions in the time interval of interest, so that a unique solution exists [11].

(4.27)

Xnoise

(4.28)



(4.28) represents (in view of symmetry ®f(t) ) a system of ty=0tg =Tt ., =t +h r=014...,R (51)
m(m+1)/2 linear differential equations. (4.28) can be solved for \herep . s are the time steps. At each time ppint , the numerical
K (t)f uoslljnéz anumerical method (such as Backward Euler) for the S0luypathods compute an “approximatior. [ r] of the exact solution
tion o S.
. . . L . x. (t) [10].

K (t) represents the noise covariance matrix of circuit variables as ° (-[[f)16[ ngise simulation (solution of (4.28) and (4.30)) is doneur-
a function of time. So, the information about the noise variances of Cir‘rently with the transient simulation. (4.28) represents a system of
cuit variables, or the noise correlations between circuit variables at g, (m+ 1y /2 linear differential equations. We currently useBaek-
given time point are containedd (t) . In some problems, one might,arq Eylerscheme to discretize these equations in time.
be interested in the noise correlations of circuit variables at different time At each time point. , after the transient simulation routines have

-

points, which can be expressed as calculated x[r] , the matrices[r] DA(t) G[r] OC(t)  and

K (t ty) = € [XEoise(ty) Xooise(ty) '] (4.29) B[r] UB(t,), as defined by (4.7) and (4.9), are calculated using the
In a similar way to the derivation of (4.28), one can derive values inx [r] . The routines for loading these matrices have been writ-
I . ' ten for each device. The routines for loadé{g] contain the noise
K (tuty) = KAt ) E(L) T (4.30) models for the devices, which are described in Section 3. Then the oper-
2

. - o 1 ) ations described in Section 4.2 are performed to caleflafelE (t,)
with the initial conditiork™ (t,, t)) = K (t,) [13]. Integrating (4.30)at  andF[r) OF (t,) fromA[r] ,C[r] and3[r] , usingparsematrix

various values of, , one can obtain a number of sections of the covariyats structures and routines. THep] R are used to calculate
ance functiork” (t;,tp)  a,>t, . Thel'(t,,tp) gt<t; isdeter- :(y] oK (t,) inthe discretized solution of (4.28) with the Backward
mined by Euler scheme. This last operation requires the solutiorf of+ 1) / 2
Kty t,) = KX (t,, tl)T (4.31) simultaneous linear equations, because Backward Euleimigplanit
. - . method [10]. Herem is, roughly, the number of nodes to which a
4.4 Calculation of the initial value for the linear capacitor is connected. Simulations have shown that, for larger circuits,
ODE for the covariance matrix of the the CPU time spent for this last operation at a time pedavilydomi-
components ofxrl1 oise nates the CPU time required by the other operations. Most of the CPU

éime is used for solving systems of linear equations. e currently use a
eneral-purpose, direct method, sparse matrix solver to solve systems of
b ) : : inear equations. With this direct method linear solver, the computational
trﬁz;(t?igvg éﬂgt:glrtll?rvaalue((J -We sef;  to the solution of the following cost of noise simulation is still high for large-scale circuits. Experiments
with several circuits have shown that significant speedup can be
E(0)P+PE(0)T+F(0)F(0)T =0 (4.32) obtained by usingarallel iterativelinear solver (running on a CM-5)
The matrix equation (4.32) has a symmetric nonnegative-definite soluf17], especially for larger circuits. CPU times obtained with this parallel
tion P, if the equatiorz = E(0)z is asymptotically stable (that s, if all iterative solver suggest that even using a sequential version of this itera-
the eigenvalues & (0)  have negative real parts) [11]. (4.32) representtive solver will reduce the computational cost of noise simulation con-
(in view of symmetry oP ) asystemof(m+1) /2  linear equations. siderably when compared with the CPU times obtained with the direct
It is interesting to analyze the special case of noise simulation whersolver we currently use.

In the last subsection, we have derived a linear ODE, (4.28), for th
covariance matrix of’ . In order to be able to solve (4.28), we nee

noise,

the circuit idinear time-invariantor nonlinear dynamic with dc excita- The operations described in the above paragraph are performed at
tions [16]. In this case, noise simulation reduces to solving the linearevery time point. Upon completior,[r] Ox.(t,),r=0,...,R  con-
equation system (4.32) [16]. tains themeanwaveforms for the circuit variables as a function of time,
4.5 The condition for x* to be Gaussian which is the usual SPICE transient simulation output. And

- T noise - i ) K*[r] OK'(t,),r =0, ..., R contains the waveforms for the covariance

The noise in the circuit (solution of (4.15)) Saussiarstochastic  matrix of the noise contents in the circuit variables, as defined by (4.25)
process if and only if the initial valuql;oi,Se o isnormally distributed or as a function of time, which is the noise simulation output.
constant [11]. Up to this point, we have characterized the initial value . . .
X! oise0 @S being am  -dimensional vector of zero-mean random vari-6  Noise simulation examples
ables with the covariance matrix given by the solution of (4.32). Here, | this section, we present two examples of noise simulation. In par-
We restrich, s o o be a vector of zero-mearmally distributedan- — _ticyjjar, noise simulations for a CMOS ring-oscillator circuit and a BJT
dom variables with the covariance matrix given by the solution of active mixer circuit will be presented. For both of these circuits, we have
(4.32). With this restriction on the initial valig, e Xupise  (SOIUtON jnclyded only the shot and thermal noise sources in the simulation. One
of (4.15)) is &aussiarstochastic proces®nstationaryn general, and  yea50n for this is that flicker noise has little effect on the noise perfor-
it is completely characterized by its mean, (4.24), and covariance funCmance of these circuits. Secondly, including the flicker noise sources

tion (given as the solution of (4.28) and (4.30) as a function of time). Folincreases the simulation time because of the extra nodes created for

linear time-invariant, or nonlinear dynamic circuits with dc excitations, flicker noise source synthesis.
X: o ise IS @stationary(in the strict sens&aussiarprocess, completely

characterized by its covariance matrix (a constant function of time a$.1 CMOS ring-oscillator

given by the solution of (4.32)) [16]. Three CMOS inverters loaded witipF capacitors were connected
; ; in a ring-oscillator configuration and a noise simulation was done. In
S Implementatlon in SPICE Fig. 6.1, themeanandnoise variancef one of the taps of this ring-

The noise simulation method described in Section 4, along with theoscillator can be seen. As seen in Fig. 6.1, the noise at one of the taps of
noise models described in Section 3, was implemented inside the circuihe ring-oscillator isionstationarythat is, the noise variancenist a
simulator SPICE3 [14]. Time-domain noise simulation is done along constant as a function of tinféne noise variance ligghestduring low-
with thetransient simulatioin the time interval specified by the user. to-high and high-to-lowransitionsof the tap voltage.

The transient simulation in SPICE3 solvesdor , which is the solu-  Ring-oscillator based VCOs and delay-lines are used in many phase/
tion of (4.1), using numerical methods for solving ordinary algebraic- delay-locked systems such as clock generators and clock recovery cir-
differential equations. The initial value vectof0) = x, in (4.1) is cuits. Phase noisefjitter is a major concern in the design of such systems.
obtained by a dc solution before the transient simulation is started. Th&ehavioral models which capture noise effects, and behavioral simula-
numerical methods for solving (4.1) subdivide the time interval [0,T], in tion is used to predict the phase noiseljitter performance of these systems
which the transient simulation is to be performed, into a finite set of dis{15]. Our transistor-level noise simulator can be used to simulate ring-
tinct points: oscillator VCOs and delay-lines to obtain the timing jitter at the outputs



of the delay cells (as well as the correlations between the jitters.) This
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6.2 BJT Active Mixer Figure 6.3: BJT Active Mixer - Noise Figure
This circuit was obtained from industry sources. It contains 14 BJTs, Future Work

21 resistors, 5 capacitors, and 18 parasitic capacitors connected between
some of the nodes and ground. The LO (local oscillator) input is a sine-

We plan to compare the results from this noise simulator with noise

wave at 1.75 GHz with an amplitude of 178 mV. The RF input is a sine-measurements on actual circuits. The numerical methods used in the
wave at 2 GHz with an amplitude of 31.6 mV. Thus, the IF frequency isnoise simulator will be modified to make it more efficient (as explained
250 MHz.1/f noise sources are not included in the simulation, becausih Section 5). We will be using our transistor-level noise simulator in the

1/f noise is rarely a factor at RF and microwave frequencies [2].

top-

down constraint-driven design of a clock generator circuit for a

This circuit was simulated to calculate the noise variance at the outRAMDAC. The noise simulator will be used to extragite parame-
put as a function of time. (Fig. 6.2: This waveform is periodic with a tersin thebehavioral modelingf phase/delay-locked loops [15].

period of 4 nsecs: IF frequency is 250 MHz.) The noise at the output of
this circuit isnotstationary, because the signals applied to the circuit are
large enough to change the operating point. The noise analysis of thid!
circuit by assuming a small-signal equivalent circuit around a fixed,
operating point does not give correct results. Such an analysis would
predict the noise at the output as stationary, i.e. a constant noise variané
as a function of time.

The noise performance of a mixer circuit is commonly characterized[4]
by itsnoise figuravhich can be defined by [1]

total output noise
that part of the output noise due to the source resistance

This definition is intended for circuits in small-signal operation. For (6]
such circuits, noise figure is a scalar quantity. In our case, the noise at the
output of the mixer circuit changes as a function of time over one period
We can generalize the noise figure definition such that noise figure is [Zi]
quantity that is a function of time. For the mixer circuit we have simu- [g]
lated, the noise figure turns out to be a periodic function of time. To cal-
culate the noise figure as defined, we simulate the mixer circuit again !
calculate the noise variance at the output with all the noise sourcegoj
tuned off except the noise source for the source resistance
RS = 50Q at the RF port. Then we can calculate the noise figure adtll
below, and the result is shown in Fig. 6.3.

[5]

[12]
Total Noise VarV_ . (t)
O out 0
NF(t) = 10l 6.2 13
® o9 [Noise VarV, (1) due to the source rel (6.2) (3]
As observed in Fig. 6.3, the maximum and minimum value of the (24]

noise figure over one period differs by over 4 dB.

This BJT mixer circuit has 65 nodes (including the internal nodes for
BJTs) which are connected to capacitors. The noise simulation require[sm]
the solution of 214566 x 66/2 ) simultaneous linear equations at every
time point, as it was explained in Section 5. The simulation (with 250
time points) took approximately 17 hours on a DECstation 5900/260M ]
with our current implementation (with the direct method linear solver).

[15

References

P.R. Gray and R.G. Meyémalysis and Design of Analog Integrated Circ@tsap-

ter 11. Second Edition. John Wiley & Sons. 1984.

C.D. Hull. Analysis and Optimization of Monolithic RF Down Conversion Receivers.
Ph.D. Thesis. U.C. Berkeley. 1992.

C.D. Hull and R.G. Meyer, “A Systematic Approach to the Analysis of Noise in Mix-
ers”, IEEE Transactions on Circuits and Systems-1: Fundamental Theory and Appli-
cationsyol. 40, No. 12, p. 909, December 1993.

R. Rohrer, L. Nagel, R.G. Meyer and L. Weber, “Computationally Efficient Electronic-
Circuit Noise CalculationslEEE Journal of Solid-State Circuitgl. SC-6, No. 4, p.

204, August 1971.

R.G. Meyer, L. Nagel and SK. Liu, “Computer Simulationlgff Noise Perfor-
mance of Electronic CircuitdE&EE Journal of Solid-State Circuifs,237, June 1973.

M. Okumura, H. Tanimoto, T. ltakura and T. Sugawara, “Numerical Noise Analysis
for Nonlinear Circuits with a Periodic Large Signal Excitation Including Cyclostation-
ary Noise SourcedEEE Transactions on Circuits and Systems-1: Fundamental The-
ory and Applicationssol. 40, No. 9, p. 581, September 1993.

P. Bolcato and R. Poujois, “A New Approach for Noise Simulation in Transient Anal-
ysis”, Proc. IEEE International Symposium on Circuits and Syste®87, 1992.

A. Jordan and N. Jordan, “Theory of Noise in Metal Oxide Semiconductor Devices”,
IEEE Transactions on Electron Deviqes]48-156, March 1965.

B. Pellegrini, R. Saletti, B. Neri and P. Terredi/‘f Noise Generatolsgige in
Physical Systems ardd f ~ Nojse425, 1985.

A.L. Sangiovanni-Vincentelli, “Circuit Simulation”, i@omputer Design Aids for
VLSI Circuits,The Netherlands, Sijthoff & Noordhoff, 1980.

L. Arnold. Stochastic Differential Equations: Theory and Applicatidoisn Wiley &
Sons. 1974.

PE. Kloeden and E. Platésumerical Solution of Stochastic Differential Equations.
Berlin; New York: Springer-Verlag, 1992.

V.S. Pugachev and I.N. Sinits@tochastic Differential Systems: Analysis and Filter-
ing. Chichester, Susses; New York: Wiley, 1987.

T.L. QuarlesAnalysis of Performance and Convergence Issues for Circuit Simulation.
Ph.D. Thesis. U.C. Berkeley, April 1989.

] A. Demir, E. Liu, A.L. Sangiovanni-Vincentelli and lasson Vassiliou, “Behavioral

Simulation Technigues for Phase/Delay-Locked Systére, IEEE Custom Inte-
grated Circuits Conferencg, 453, May 1994.

A. Demir. Time-Domain non-Monte Carlo Noise Simulation for Nonlinear Dynamic
Circuits with Arbitrary ExcitationdVl.S. Project. Technical Report UCB/ERL M94/
39, U.C. Berkeley, May 1994.

E. Tomacruz, J. Sanghavi and A. Sangiovanni-Vincentelli, “A Parallel lterative Linear
Solver for Solving Irregular Grid Semiconductor Device Matricgiercomputing
‘94,1994.



	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index




