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Abstract function formulation and innovative optimization heuristics,
This paper presents a CAD tool for automated sizing ocomplex cells are designed starting from arbitrary initial
analog cells using statistical optimization in a simulation points within reasonable CPU times and requiring no
based approach. A nonlinear penalty-like approach is pro-designer interaction -- a very appealing feature for ASIC
posed to define a cost function from the performance specapplications.
fications. Also, a group of heuristics is proposed to increast
the probability of reaching the global minimum as well as to2: Cost function formulation
reduce CPU time during the optimization process. The pro
posed tool sizes complex analog cells starting from scratct  Three different specification classes are considered:
within reasonable CPU times (approximately 1hour for a « Strong restrictions. No relaxation of the specified
fully differential opamp with 51 transistors), requiring no value is allowed. Hence, if any of the design parameters
designer interaction, and using accurate transistor models  (equivalently, any point of the design parameter space)
to support the design choices. Tool operation and feasibility does not satisfy one strong restriction, it must be
is demonstrated via experimental measurements from rejected immediately.
working CMOS prototype of a folded-cascode amplifier. ~ « Weak restrictions. These are the typical performance
specifications required of analog building blocks, i.e.
1: Introduction A, > 80dB. Unlike strong restrictions, weak restrictions
allow some relaxation of the target parameters.
Most previously reported approaches for automated ane+ Design objectives Stated as the minimization/maximi-
log cell design arelosedsystems where the knowledge of zation of some performance features,
the available topologies is provided asalytical design
equations. The design equations associated to new topol
gies must be generated -- a task for only real analog desi¢ | herex is the vector of design parameters.

experts. Also, sizing is carried out using simplified analyti- Mathematically, the fulfillment of these specifications

cal descriptions of the blocks and thus, manual fine-tuninga, pe formulated as a multi-objective constrained optimi-
using an electrical simulator and detailed MOS transisto ation problem

models may be necessary once rough automated sizing

minimize i (X) 1<i<P (1)

complete. These drawbacks are overcome in the so-calle minimize Yoi (X) 1<isP
simulation-basedystems [1], which reduce sizing to a con- subjected to
strained optimization problem and aim to solve it by follow: Y5 () 2Yg oy (X) <Yy ,1<j<Q 2

ing an iterative procedure built around an electrical
simulator, with no design equations required. A represents
tive example is DELIGHT.SPICE [2] where DELIGHT (a whereyy; denotes the value of tireh design objectivey;
general algorithmic optimizer) and SPICE are combinedandy,, denote values of the circuit specifications (sub-
Also, advanced electrical simulators, like HSPICE [3], scripts s and w denote strong and weak specifications
incorporate Optimization routines. HOWeVer, the Optimiza'respective|y); an&sj andYWk are the Corresponding targets
tion routines in both tools search focal solutions, and are  (for instanceA, = 80dB, settling times 0.1us).
consequently inappropriate to size analog cells from scratct A cost function, which transforms the constrained opti-
This paper presents a simulation based approadidor  mjzation problem into an unconstrained one, is defined in
bal sizing ofarbitrary topology analog cells usirggatistical  the minimaxsense as,
optimization. We demonstrate that by combining proper cos

Yok (X) Z Y or Y (X) €Y, ,1<k<sR
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where thepartial cost function$-ys(+), Fg;(+), andF(-) are
defined as,

minimizeb (x) = max{ Fy, (Yy;). st(ysj),ka(ywk)}

st(ysj) = Ksj(ysj' Ys)

(4)

k
FukYwid = Kok Yk Ywid 109 g{yﬂ
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Fo(Yy) = _Zwi|09 (lywil)
O
0O

wherew; (called weight parameters for the design objec-
tives) is a positive (alternatively negative) real numby;if

is positive (alternatively negative), and fay(+) andK,{+)

we have,

—00

Ksj Osp Yep) = { )

if strong restriction holds

otherwise )
e sgn(ky) if weak rest holds
K Y, =
wk Ywie Yo 0k, otherwise

wherek (weight parameters assigned to weak restrictions
is a positive (alternatively negative) real number if the weal
specification is o (alternatively<) type. Weight parame-

ters are used to give priority to the associated design obje:
tives and weak specifications. As shown in the cost functiol
formulation, only relative magnitude of the weight parame-
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Figure 1: Block diagram of the tool

T=a(x)Ty(n) ()

ters of the same type makes sense. In (5) weak specificatiowheren denotes the iteration courf;(n) (the normalized
are assumed positive. Sign criteria is inverted for negativiemperature) is a function of anda(x) (the temperature
scalg is a function of the position in the design parameter
space. Our tool incorporates heuristics to chdgsanda

for increased convergence speed, namely:

specifications.

3: Process management

Fig.1 shows a block diagram illustrating the operation
flow in the proposed methodology. An updating vedy,
is randomlygenerated at each iteration. Strong restrictions
are then checked. If any of them is not met, the corresponc
ing movement is rejected. Otherwise, weak restrictions ar
examined. Only if all of them are fulfilled, the design objec-
tives are included in the cost function. The value of the cos
function is calculated at the new point and compared to th
previous one. The new point is accepted if the cost functiol
has a lower value. Otherwise, it may also be accepte
according to grobability function,

AP

- T
P=Pe

(6)
depending on aontrol parameterT.
3.1: Cooling schedule

Unlike classical simulated annealing algorithms [4],
whereT in (6) decreases monotonically during the process
our tool uses a composed temperature parameter,

Non-monotonic and adaptive normalized tempera-
ture. Instead of a conventional slow monotonically
decreasing temperature [5], a sequence of fast coolings
and reheatings is used. This enables obtaining feasible
designs for low iteration counts for circuits with not
very demanding specifications. In the more general
case, this strategy reduces iteration count by an average
factor of 6. Two different evolutionary laws for the nor-
malized temperature are incorporated in the &xo-
nential decreasing and linear decreasing. Initial and
final temperatures, number of coolings, decreasing law
and rate, etc. are completely controlled by the user. An
alternative cooling schedule makgshange as a func-
tion of the percentage of accepted movements:

P O

p(nN) O ®

T, (n) =T0(n—1)+B§i—

wherep is calculated as the ratio of accepted move-
ments to the total number of movements during the last
M iterations, wher is a heuristic variable whose typ-
ical value is around 2% in (8) controls the rate of tem-
perature change and has a typical value around 0.1; and



ps(n) is a prescribed acceptance ratio, which can beproper control of the DC electrical simulator routines. A
fixed or vary with some given law. This schedule pro-dynamic, adaptive, DC initialization schedule is imple-
vides very good results for practical circuits, renderingmented which uses operating point information of previous
the outcome of the optimization process somewhaiterations to increase convergence speed of the simulator.
independent of the specified values of the initial andThis significantly reduces CPU time, especially at low tem-
final temperature. peratures.

Nonlinear scale.This is done to compensate the large

differences that may eventually appear in the incre-3.3: Heuristics comparison

ments of the cost function in the different regions. Thus,

no temperature definition is used for those regions The proposed heuristics have been tested using the func-
where strong restrictions do not hold, due to the faction

that any design entering this region is automatically )

rejected. On the other hand, in regions where som (X) =K Imin{A ” cos(x—d), A |_1| cos(x +d) +v}

weak specifications are violated, temperature is giver K=IN kz N (11)

as, -€ (%= d)

A=-g KkTIN

T = Tolkmad B 00 (x) = Knay ©) wherek, &, d, andy are constants. It has one absolute mini-
whereky,, is the weight associated to the maximum mum (of value-K) and many local minima, whose count
among thé,(+)’s in (4), andT, is the normalized tem- increases linearly with the number of variables. Thus, the
perature at the current iteration. Finally, if both strongcomplexity of the optimization process is determined exclu-
and weak restrictions hold, temperature is given as, Sively by the number of variables, and not by structural

changes in the cost function. Fig.2 shows this function for
T=Toy (w0 a(x) =75 |w (10)  two independent variables.

wherew; is the weight associated to théh design 5
objective.
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Temperature-dependent amplitude.At high T, large [ n “\‘Q

amplitude movements are allowed as they are likely tc
be accepted and favor wide exploration of the desigr 10
parameter space. On the contrary, at To@cceptance
probability decreases and hence, only small movement
are performed (equivalent to fine-tuning the design).
Logarithmic scales for independent variablesThis
avoids underexploring the design space of desigr
parameters which vary over several decades, for exan
ple, bias currents.

Discretization of the design parameter spacelith

this partitioning, the parameter space can be viewed &
a collection ofhypercubesOnly movements over ver-

Figure 2: Test function for heuristics comparison.

The test procedure consisted in the repeated execution of
the different heuristics on the test function, starting from
random points of the parameter space and with a fixed iter-
ation count. The best achieved minimum for each of these
executions was stored. Experimental results from these tests
. X . X : . are shown in the three-dimensional plots in Fig.3. In order to
tices of this multidimensional grid are allowed, being got petter insight into the test results, the plot of the test
marked when they are visited. Thus, if during the opti-¢ 1 ion is allowed to assume only integer values. Hence,
mization process one vertex is revisited the COMesponCy o minimum achieved at each test execution is represented
ing simulation need not be performed. Hence, ary, jis closest integer value. Theaxis in Fig.3 represents
important number of simulations is avoided. When thisyo 1y agnitude of the achieved minimum (its closest integer
optimization process ends, a local optimization starts, 5,6y Theraxis corresponds to the number of independent
within a multidimensional cube around the optimum 4 iapjes in the test functidr), and thez-axis represents
vertex for fine tuning of the design. In this local optimi- o nercentage of iterations that achieved that minimum.
zation, design variables recover their continuous natur'Fig.Ba corresponds to a conventional cooling schedule. It

or their original grid size. _ had a single cooling with fixed scale in variable movements
Large efficiency enhancements are also achieved b



and variable Markov chain length [4]. For a function with a /I/
small number of variables, most iterations provided the glo
bal minimum of the function but this percentage decrease
rapidly when the number of variables was increased. Fig.3
corresponds to our improved cooling schedule with the
same number of iterations. The cooling schedule used he
four successive coolings and reheatings, variable scale, ar {1
a Markov chain length equal to 1. Most iterations provided
the global minimum of the function, even when the numbel 50/5
of independent variables was increased. 21.9/5 20/5
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£ 7 \%\@%\\\\\\\\\\i\%\\\\\\\\b\\&\\\&\\\&\\\ utes for the design of similar analog cells. But the effort to
of \\\\\Qx\\g\i\‘\\\yb\\\\\‘\\\\ﬁb\\\w 91011 generate the knowledge required for new topologies varies
o ”.’.".’0‘ g 78 _ between several weeks and 12 months. On the contrary,
S o 5° # variables input file preparation in our tool requires no more than one
! ¢ w0 ; S o 31 hour of a SPICE user.
@ Achieved minimurh % < S
§ A § Table 1. Simulated and measured results for Fig.4.
:‘; \ Specs Simulatetli Measured Units|
€ Ao >70 | 7852 | 76.01| dB
g 40 GBW(1pF) >30 34.88 - MHz
T o —— GBW(12pF,1MY) 4.17 421 | MHz
g = 1 PM(LpF) >60 | 66.28 - o
- 91l
o= ‘ e 78 PM(12pF, MQ) 87.2 86.8 °
S 329 o3 72 ° # variables ——
TN 2 2 oS d s 53 Input white noisg¢ <12 13.53 - nWHz
(b) Achieved minituin & 5 S SR >70 | 74.81 705 | s
Figure 3: Cooling schedule heuristics comparison. 0os > 43 £3.2 £30 Vv
) Offset - - 3.35 mV
4: Practical results Power minimize 1.95 1.93 mWw|
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