
Abstract
This paper presents a CAD tool for automated sizing of

analog cells using statistical optimization in a simulation
based approach. A nonlinear penalty-like approach is pro-
posed to define a cost function from the performance speci-
fications. Also, a group of heuristics is proposed to increase
the probability of reaching the global minimum as well as to
reduce CPU time during the optimization process. The pro-
posed tool sizes complex analog cells starting from scratch,
within reasonable CPU times (approximately 1hour for a
fully differential opamp with 51 transistors), requiring no
designer interaction, and using accurate transistor models
to support the design choices. Tool operation and feasibility
is demonstrated via experimental measurements from a
working CMOS prototype of a folded-cascode amplifier.

1: Introduction

Most previously reported approaches for automated ana-
log cell design areclosedsystems where the knowledge of
the available topologies is provided asanalytical design
equations. The design equations associated to new topolo-
gies must be generated -- a task for only real analog design
experts. Also, sizing is carried out using simplified analyti-
cal descriptions of the blocks and thus, manual fine-tuning
using an electrical simulator and detailed MOS transistor
models may be necessary once rough automated sizing is
complete. These drawbacks are overcome in the so-called
simulation-based systems [1], which reduce sizing to a con-
strained optimization problem and aim to solve it by follow-
ing an iterative procedure built around an electrical
simulator, with no design equations required. A representa-
tive example is DELIGHT.SPICE [2] where DELIGHT (a
general algorithmic optimizer) and SPICE are combined.
Also, advanced electrical simulators, like HSPICE [3],
incorporate optimization routines. However, the optimiza-
tion routines in both tools search forlocal solutions, and are
consequently inappropriate to size analog cells from scratch.

This paper presents a simulation based approach forglo-
bal sizing ofarbitrary topology analog cells usingstatistical
optimization. We demonstrate that by combining proper cost

function formulation and innovative optimization heuristics,
complex cells are designed starting from arbitrary initial
points within reasonable CPU times and requiring no
designer interaction -- a very appealing feature for ASIC
applications.

2: Cost function formulation

Three different specification classes are considered:
 • Strong restrictions. No relaxation of the specified

value is allowed. Hence, if any of the design parameters
(equivalently, any point of the design parameter space)
does not satisfy one strong restriction, it must be
rejected immediately.

 • Weak restrictions. These are the typical performance
specifications required of analog building blocks, i.e.
Ao > 80dB. Unlike strong restrictions, weak restrictions
allow some relaxation of the target parameters.

 • Design objectives. Stated as the minimization/maximi-
zation of some performance features,

(1)

wherex is the vector of design parameters.
Mathematically, the fulfillment of these specifications

can be formulated as a multi-objective constrained optimi-
zation problem,

(2)

whereyΨi denotes the value of thei-th design objective;ysj
and ywk denote values of the circuit specifications (sub-
scripts s and w denote strong and weak specifications
respectively); andYsj andYwk are the corresponding targets
(for instance,Ao ≥ 80dB, settling time ≤ 0.1µs).

A cost function, which transforms the constrained opti-
mization problem into an unconstrained one, is defined in
theminimax sense as,

minimize yΨ i x() 1 i P≤ ≤

minimize yΨ i x() 1 i P≤ ≤,

subjected to

ysj x() Ysj or ysj x() Ysj≤ 1 j Q≤ ≤,≥

ywk x() Ywk or ywk x() Ywk≤ 1, k R≤ ≤≥
{

A Statistical Optimization-Based Approach for Automated Sizing of Analog Cells

F. Medeiro, F. V. Fernández, R. Domínguez-Castro and A. Rodríguez-Vázquez

Dept. of Analog Circuit Design, Centro Nacional de Microelectrónica, Sevilla, SPAIN

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0594 $3.50

(3)

where thepartial cost functionsFΨ(•), Fsj(•), and Fwk(•) are
defined as,

(4)

wherewi (called weight parameters for the design objec-
tives) is a positive (alternatively negative) real number ifyΨi
is positive (alternatively negative), and forKsj(•) and Kwk(•)
we have,

(5)

wherekk (weight parameters assigned to weak restrictions)
is a positive (alternatively negative) real number if the weak
specification is of≥ (alternatively≤) type. Weight parame-
ters are used to give priority to the associated design objec-
tives and weak specifications. As shown in the cost function
formulation, only relative magnitude of the weight parame-
ters of the same type makes sense. In (5) weak specifications
are assumed positive. Sign criteria is inverted for negative
specifications.

3: Process management

Fig.1 shows a block diagram illustrating the operation
flow in the proposed methodology. An updating vector,∆xn,
is randomly generated at each iteration. Strong restrictions
are then checked. If any of them is not met, the correspond-
ing movement is rejected. Otherwise, weak restrictions are
examined. Only if all of them are fulfilled, the design objec-
tives are included in the cost function. The value of the cost
function is calculated at the new point and compared to the
previous one. The new point is accepted if the cost function
has a lower value. Otherwise, it may also be accepted
according to aprobability function,

(6)

depending on acontrolparameter,T.

3.1: Cooling schedule

Unlike classical simulated annealing algorithms [4],
whereT in (6) decreases monotonically during the process,
our tool uses a composed temperature parameter,

minimizeΦ x() max FΨ yΨ i() Fsj ysj() Fwk ywk(), ,{ }=

FΨ yΨ i() wi yΨ i()log
i

∑−= Fsj ysj() Ksj ysj Ys,()=

Fwk ywk() Kwk ywk Ywk,()
ywk

Ywk 
 log−=

Ksj ysj Ysj,()
∞− if strong restriction holds

∞ otherwise
{=

Kwk ywk Ywk,()
∞ kk()sgn if weak rest holds

kk otherwise
=

P Poe

Φ∆
T

−
=

(7)

wheren denotes the iteration count;To(n) (thenormalized
temperature) is a function ofn; andα(x) (the temperature
scale) is a function of the position in the design parameter
space. Our tool incorporates heuristics to chooseTo andα
for increased convergence speed, namely:
 • Non-monotonic and adaptive normalized tempera-

ture. Instead of a conventional slow monotonically
decreasing temperature [5], a sequence of fast coolings
and reheatings is used. This enables obtaining feasible
designs for low iteration counts for circuits with not
very demanding specifications. In the more general
case, this strategy reduces iteration count by an average
factor of 6. Two different evolutionary laws for the nor-
malized temperature are incorporated in the tool:expo-
nential decreasing and linear decreasing. Initial and
final temperatures, number of coolings, decreasing law
and rate, etc. are completely controlled by the user. An
alternative cooling schedule makesTo change as a func-
tion of the percentage of accepted movements:

(8)

whereρ is calculated as the ratio of accepted move-
ments to the total number of movements during the last
M iterations, whereM is a heuristic variable whose typ-
ical value is around 25;β in (8) controls the rate of tem-
perature change and has a typical value around 0.1; and

movement

new
movement

∆xn

Initial design
parameter estimate x0

accepted?

YES NO
END

xn xn 1− ∆xn 1−+=

Cost function evaluationΦ(x)
(electrical simulation)

Update temperature scale
Update movement amplitude

xn xn 1−=

accept movement
statistical acceptance

P=P(∆Φ,T)

end
process?

∆Φ(x)?

NOYES

> 0< 0

Figure 1: Block diagram of the tool

T α x() To n()=

To n() To n 1−() β 1
ρ

ρs n()
−

 
 +=

ρs(n) is a prescribed acceptance ratio, which can be
fixed or vary with some given law. This schedule pro-
vides very good results for practical circuits, rendering
the outcome of the optimization process somewhat
independent of the specified values of the initial and
final temperature.

 • Nonlinear scale. This is done to compensate the large
differences that may eventually appear in the incre-
ments of the cost function in the different regions. Thus,
no temperature definition is used for those regions
where strong restrictions do not hold, due to the fact
that any design entering this region is automatically
rejected. On the other hand, in regions where some
weak specifications are violated, temperature is given
as,

(9)

wherekmax is the weight associated to the maximum
among theFw(•)’s in (4), andTo is the normalized tem-
perature at the current iteration. Finally, if both strong
and weak restrictions hold, temperature is given as,

(10)

where wi is the weight associated to thei-th design
objective.

3.2: Parameter updating

Three kinds of heuristics have been adopted:
 • Temperature-dependent amplitude. At high T, large

amplitude movements are allowed as they are likely to
be accepted and favor wide exploration of the design
parameter space. On the contrary, at lowT, acceptance
probability decreases and hence, only small movements
are performed (equivalent to fine-tuning the design).

 • Logarithmic scales for independent variables. This
avoids underexploring the design space of design
parameters which vary over several decades, for exam-
ple, bias currents.

 • Discretization of the design parameter space. With
this partitioning, the parameter space can be viewed as
a collection ofhypercubes. Only movements over ver-
tices of this multidimensional grid are allowed, being
marked when they are visited. Thus, if during the opti-
mization process one vertex is revisited the correspond-
ing simulation need not be performed. Hence, an
important number of simulations is avoided. When this
optimization process ends, a local optimization starts
within a multidimensional cube around the optimum
vertex for fine tuning of the design. In this local optimi-
zation, design variables recover their continuous nature
or their original grid size.

Large efficiency enhancements are also achieved by

T To kmax α x()⇒ kmax= =

T To wi∑= α x()⇒ wi∑=

proper control of the DC electrical simulator routines. A
dynamic, adaptive, DC initialization schedule is imple-
mented which uses operating point information of previous
iterations to increase convergence speed of the simulator.
This significantly reduces CPU time, especially at low tem-
peratures.

3.3: Heuristics comparison

The proposed heuristics have been tested using the func-
tion

(11)

whereK, ξ, d, andγ are constants. It has one absolute mini-
mum (of value−K) and many local minima, whose count
increases linearly with the number of variables. Thus, the
complexity of the optimization process is determined exclu-
sively by the number of variables, and not by structural
changes in the cost function. Fig.2 shows this function for
two independent variables.

The test procedure consisted in the repeated execution of
the different heuristics on the test function, starting from
random points of the parameter space and with a fixed iter-
ation count. The best achieved minimum for each of these
executions was stored. Experimental results from these tests
are shown in the three-dimensional plots in Fig.3. In order to
get better insight into the test results, the plot of the test
function is allowed to assume only integer values. Hence,
the minimum achieved at each test execution is represented
by its closest integer value. TheX-axis in Fig.3 represents
the magnitude of the achieved minimum (its closest integer
value). TheY-axis corresponds to the number of independent
variables in the test functionf(•), and theZ-axis represents
the percentage of iterations that achieved that minimum.
Fig.3a corresponds to a conventional cooling schedule. It
had a single cooling with fixed scale in variable movements

f x() K min{ A xk d−() , A xk d+() γ}+cos
k 1.N=
∏cos

k 1.N=
∏⋅=

A - e
ξ xk d−() 2

k 1.N=
∑−

=

Figure 2: Test function for heuristics comparison.

x1
x2

−10
0−5

5 10
10

5
0

−5 −10

−10

−5

0

5

T
es

t F
un

ct
io

n

and variable Markov chain length [4]. For a function with a
small number of variables, most iterations provided the glo-
bal minimum of the function but this percentage decreased
rapidly when the number of variables was increased. Fig.3b
corresponds to our improved cooling schedule with the
same number of iterations. The cooling schedule used had
four successive coolings and reheatings, variable scale, and
a Markov chain length equal to 1. Most iterations provided
the global minimum of the function, even when the number
of independent variables was increased.

4: Practical results

Let us consider the folded-cascode fully-differential
opamp of Fig.4, which displays the sizes provided by the
tool. These sizes were obtained for the specifications needed
in a 17bit@40KHz fourth order∑∆ modulator. The specifi-
cations are given in the first column of Table 1. The power
consumption was the only design objective. The optimiza-
tion process started from scratch on a 10-dimension design
space and required about 45min. CPU time on a 100MIPS
Sparcstation. Program results for the sized circuit, corre-
sponding to the electrical simulator output, are shown in the
second column of Table 1. The opamp has been integrated
in a CMOS 1.2µm double poly technology. Experimental
results are given in third column of Table 1. The finalΣ∆
modulator prototype displayed 16.8bit@40Khz.

Figure 3: Cooling schedule heuristics comparison.

1
2 3

4 5 6 7
8 910

11

variables

Achieved minimum

Ite
ra

tio
ns

 (
%

)

0

20

40

60

80

100

−1
0.

0

−9
.0

−8
.0

−7
.0

−6
.0

−5
.0

−4
.0

−3
.0

−2
.0

−1
.0

0.
0

1 2 3 4 5 6 7 8 91011

variables

Achieved minimum

0

−1
0.

0

−9
.0

−8
.0

−7
.0

−6
.0

−5
.0

−4
.0

−3
.0

−2
.0

−1
.0

0.
0

Ite
ra

tio
ns

 (
%

)

20

40

60

80

100

(a)

(b)

These results compare advantageously to equation-based
design systems. These typically spend a few seconds or min-
utes for the design of similar analog cells. But the effort to
generate the knowledge required for new topologies varies
between several weeks and 12 months. On the contrary,
input file preparation in our tool requires no more than one
hour of a SPICE user.

5: References

[1] G. Gielen and W. Sansen: “Symbolic Analysis for Automated
Design of Analog Integrated Circuits”. Kluwer, 1991.
[2] W. Nye et al.: “DELIGHT.SPICE: An Optimization-Based Sys-
tem for the Design of Integrated Circuits”.IEEE Transactions on
Computer-Aided Design, Vol. 7, pp. 501-519, April 1988.
[3] “HSPICE User Manual”. Meta Software Inc. 1988.
[4] P.J.M. van Laarhoven and E.H.L. Aarts:“Simulated Annealing:
Theory and Applications”, Kluwer Academic Pub., 1987.
[5] R. A. Rutenbar: “Simulated Annealing Algorithms: An Over-
view”. IEEE Circuits and Devices Magazine, Vol. 5, pp. 19-26,
January 1989.

Table 1. Simulated and measured results for Fig.4.

Specs Simulated Measured Units

A0 ≥ 70 78.52 76.01 dB

GBW (1pF) ≥ 30 34.88 - MHz

GBW(12pF,1MΩ) 4.17 4.21 MHz

PM(1pF) ≥ 60 66.28 - o

PM(12pF, 1ΜΩ) 87.2 86.8 o

Input white noise ≤ 12 13.53 - nV/√Hz

SR ≥ 70 74.81 70.5 V/µs

OS ≥ ±3 ± 3.2 ± 3.0 V

Offset - − 3.35 mV

Power minimize 1.95 1.93 mW

61.8/3

63.8/3
29/3

274/3

19.4/5
21.2/5

20/5

50/5

20/5

48/5

10/5

6.8/5

40µA

v− v+
o+

o−
183.6/9.4

166.2/3.6

20/5

50/5

10/5

20/5

1:1

1:1

1:1

Figure 4: Fully-differential folded-cascode opamp.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

