Automatic Test Program Generation for Pipelined Processors

Hiroaki Iwashita, Satoshi Kowatari, Tsuneo Nakata, and Fumiyasu Hirose

Fujitsu Laboratories Ltd.
1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan

hirocaki@flab.fujitsu.co. jp

Abstract

Simulation-based verification has both advantages and
disadvantages compared with formal verification. Our de-
mand is to find a practical way to verify actual micro-
processors. This paper presents an efficient test program
generation method for simulation-based verification using
techniques developed for formal verification. Our test pro-
gram generator enumerates all reachable states of a pro-
cessor pipeline and generates instruction sequences for ev-
ery reachable test case. The program covers complicated
test cases that are difficult to cover with random instruc-
tions and impossible to cover with conventional test pro-
gram generation methods. Our test program generator also
works for larger microprocessor designs than formal veri-
fiers have done.

1 Introduction

Logic simulation is still widely used to verify that an im-
plementation conforms with its specifications, while var-
ious formal verification approaches have also been pro-
posed in recent years. High-speed scalar and superscalar
microprocessors use highly sophisticated pipelining[1, 2].
Pipeline complexity increases the number of possible de-
sign errors, and also makes design verification more diffi-
cult. It is difficult for formal verification methods proposed

to handle the entire designs of today’s complex pipelined

Processors.

Microprocessors are verified by running test programs
through a logic simulators for an implementation and for a
specification, and comparing the results. Since exhaustive
logic simulator is impossible, it is very important to gener-
~ ate such test programs that is executable in terms of length
and reliable in terms of verification coverage.

Some papers have presented test program generation
methods for pipelined processor verification[3, 4, 5]. These
methods focus on pipeline hazards[1] and can automatically
generate effective test programs for target cases. Pipeline
behavior when and after a hazard is detected is not consid-

580

ered, so these methods cannot cover cases reachable only
after a hazard has occured. Moreover, they cannot avoid
unexpected hazards that prevent reaching the target cases.
This paper presents a new approach to generating test pro-
grams for any processor state.

2 Microprocessor verification

First, we compare characteristics of simulation-based
verification and formal verification, and then consider how
to incorporate formal verification features into simulation-
based verification.

2.1 Simulation-based verification against formal
verification

Successful works have been done in validating logic
circuits using formal verifiers. Much academic atten-
tion has recently been directed to formal verification for
microprocessors{6, 7, 8]. The methods proposed, however,
are still weak in manipulating large circuits and have dif-
ficulty in handling the entire designs of a today’s complex
pipelined processors. :

Even if formal verification becomes applicable to actual
microprocessors, we prefer logic simulation to formal ver-
ification in an early design stage with many design errors.
Verification and debugging can be repeated in a short cycle
by logic simulation without changing test programs. For-
mal verification is very expensive for repeated use, since
formal verification for a large design generally needs an ab-
stracted version of the implementation to reduce complex-
ity. When a design error is found in a original implementa-
tion, it is only required for simulation-based verification to
modify the implementation, while we also have to modify
the abstracted verification for formal verification.

Both formal verification and simulation-based verifica-
tion sacrifice completeness to reduce computation com-
plexity. In formal verification, complexity is reduced by
focusing on a target mechanism to simplify the implemen-
tation. Logic simulation, in a sense, also reduces the com-
plexity by restricting input sequences, while it can handle

©1994 ACM 0-89791-690-5/94/0011/0580 $3.50

Processor), Manual
model /"™ i
I programming
i ' program
' inite state Automatic
generation Input
sequences

machine

states

Figure 1: Automatic test program generation

a large scale of microprocessor design as it is. We have to
make clear what a test program verifies and what it neglects
to choose a verification method properly.

2.2 Simulation-based verification criteria

We make two assumptions for considering simulation-
based verification criteria.

o Independent processor mechanisms can be verified
separately.

e A design error in a processor mechanism is detected
by a large percentage of those input sequences that ac-
tivate the mechanism.

Many formal verification techniques also make the first as-
sumption. The second is introduced for simulation-based
verification. It is valid when the processor mechanisms
are classified precisely enough considering the remaining
errors. On these assumptions, the most important factor
for reliable verification is to classify processor mechanisms
properly and activate all of them with test programs.

2.3 Test program generation

A situation examined by a test program is called a test
case. Test program generation is a process for finding in-
struction sequences that cause the microprocessor to en-
counter the test cases. Designers who create test programs
manually know how the processor works. They traces in-
struction flow in the processor and constructs instruction
sequences for test cases.

We suggest a method to automate such manual jobs (Fig-
ure 1). The processor model is written as a finite state ma-
chine (FSM). The test cases are translated into sets of states
on the FSM. Once these model translations are completed,
various conventional techniques, especially techniques for
formal verification, become applicable. A test program is
composed of a series of input sequences that satisfy the test
cases.

581

MEM:

NOP: FETCH
ETC ALl B INT: FETCH—>ALU-WB
w LD : FETCH—ALU 2 MEM-WB
FP : FETCH-FPU-~WB

Figure 2: Processor P1

3 Test program generator for pipelined pro-
Cessors

We concentrated on verifying the pipeline control parts
of processors and have developed an automatic test pro-
gram generator. The modeling method and algorithm are
shown in this section.

3.1 Test case

Pipeline control mechanisms are activated in cases of
pipeline hazards, so the test cases for pipeline control parts
are pipeline hazard situations. Although there are numerous
hazard cases for an actual microprocessor, they can be enu-
merated automatically from a simple description that con-
tains pipelining information for each instruction. We have
presented the method in previous papers(4, 5].

A hazard case can be represented by conflicting instruc-
tions and their locations immediately before causing the
hazard. It does not matter what instructions are in the rest
of the places, because they do not affect whether the tar-
get error appears or not. Therefore, a hazard case generally
contains multiple states.

3.2 FSM for processor pipelines

The processor model can be simplified as long as it keeps
the instruction flow information and it can represent the test
cases. On verifying pipeline control parts, we do not have
to care how operand data and result data are processed in the
functional modules. Thus, we simplify processor hardware
to a set of pipeline units. A pipeline unit corresponds to a
hardware block which can hold an instruction for one clock
cycle. A hardware block that produces results in one cycle,
such as an integer ALU, is modeled as a pipeline unit, and
a hardware block that produces results in n clock cycles,
such as a FPU, is divided into n sub-blocks and modeled as
a series of n pipeline units.

If two kinds of instructions behave equally from the
standpoint of the verification, we treat them as the same
instruction type. Register addresses are also taken into ac-
count for distinguishing between instruction types when we
consider data hazards{1]. A pipeline unit that can hold %
different instructions has k + 1 states, i.e., k states when it
holds an instruction, plus one state when it holds nothing.
A state of the whole FSM is defined by states of all pipeline

Read an input description
and construct state transition functions;
Enumerate test cases 17, ..., T,;
Let C be the set of the initial state;
while (C # ¢) {
foreachT; i =1,..
if (CNT; # ¢){
Add a set of input sequences
that satisfy C N T; to S;;
Exclude C N T; from T3;
}

}
Advance the time and update C to the image of C;

Exclude the states already enumerated from C;

n){

}
foreach S; i =1,...,n) {
Choose user-specified number of input sequences
randomly from S;;

}

Figure 3: Basic procedure for automatic test program
generation

units. If the unit 4 can hold k; kinds of instructions, the FSM
has J](k; + 1) states.

Figure 2 shows an example of a simple processor, P1. Its
pipeline units are FETCH, ALU, FPU, MEM, and WB. P1
has four types of instructions: NOP, INT, LD, and FP. Data
hazards are not considered in this example. FETCH can
hold four kinds of instructions, ALU can hold two kinds,
FPU and MEM can each hold one kind, and WB can hold
three kinds. Thus, the FSM forP1 has5x3x2x2x 4 = 240
states.

3.3 Automatic generation algorithm

The FSM is represented by Boolean state variables and
state transition functions. We use reduced ordered bi-
nary decision diagrams (ROBDD’s)[9] to represent func-
tions and sets.

Our basic procedure is shown briefly in Figure 3. The
initial state is a empty pipeline, or the state after executing
a long NOP sequence. The procedure enumerates reachable
states from the initial state. Efficient state enumeration al-
_ gorithms have been proposed for formal verification[10].
When one or more reachable states are included in a test
case, a set of input sequences that satisfy the states is calcu-
lated. The set is calculated by recursive substitution of the
state transition functions.

The techniques required are already common in formal
verification. However, this test program generator can work

582

IFQ
NASS

Hazard states

Figure 4: Hazard-free-first state enumeration

for larger microprocessor designs than formal verifiers have
done. While formal verifiers handle an FSM that corre-
sponds to the implementation, the FSM for the test program
generator can be much more simplified as long as it keeps
the instruction flow information and it can represent the test
cases.

We reduced memory requirement for the basic procedure
by optimizing the state enumeration order. State enumera-
tion from pipeline hazard states is not performed until af-
ter that from hazard-free states ends. We named this the
hazard-free-first procedure (Figure 4). Since state transi-
tions from hazard-free states are simple for a pipelined pro-
cessor, the BDD size can be kept small by using the hazard-
free-first procedure.

4 Experimental results

The test program generator is written in Perl and runs on
a special Perl interpreter linked with a BDD package writ-

Table 1: Execution summary of basic/hazard-free-first
procedures

P1 P2 P3

Pipeline units 5 9 11
Instructions per cycle 1 1 © 2
FSM states 240 190512 | 9.335x 106
Test cases 12 61 497
Reachable FSM states 125 16747 | 1.851x106

— only after hazards 28 7236 | 1.244x10°%
Reachable test cases 8 25 285

— only after hazards 3 9 0
Test program length 271 27 | 127/ 127 | 2289/2516
CPU time (seconds) 10/ 13 83/ 90 495/ 579
Max. BDD nodes 2K/599 | 37K/2658 | 117K/5797

ob1Nest ponest Pirandom .
] P3ftest
80 P2/frandom
g 14 LT
g o] s
=4 | : P3/random .
%’ ol T T
(&} 4
20
0 — v . v —
0 500 1000 1500
Clock cycles

Figure 5: Test coverage by test programs and random
instructions

ten in C. Execution results for three pipelined microproces-
sors P1, P2, and P3 are summarized in Table 1. To con-
struct these test programs, we generated one test sequence
for each reachable test case. CPU times are measured on a
SPARCstation2.

The test program generator enumerated all reachable
pipeline states and distinguished reachable test cases from
unreachable ones. It is difficult to analyze test cases manu-
ally, and impossible for conventional test program genera-
tion methods to distinguish them. The test programs gener-
ated by these procedures covered test cases that are reach-
able only after hazards. These are difficult cases to handle
manually, and cannot be covered by conventional test pro-
gram generation methods.

Results show that computations completed in reasonable
CPU/memory requirements, and also show that the hazard-
free-first procedure is comparable to the basic procedure in
CPU time, and superior in memory requirements.

The system can also analyze reachability of test cases.
The number of test cases expected to be covered by random

instructions in each clock cycle is calculated by the sys-.

- tem. Percentages of reachable test cases covered by the test
programs and random instructions are plotted in Figure 5.
About 360 clock cycles of random simulation is needed for
P1 to guarantee 99% coverage, 9,600 cycles for P2, and
90,000 cycles for P3. Our test programs are 13 to 76 times
smaller than 99% coverage random instructions.

§ Conclusion

We have demonstrated the necessity of an effective auto-
matic test program generator and presented our realization
of it for pipelined processors.

We compared characteristics of simulation-based veri-

583

fication and formal verification, and then considered how
to incorporate formal verification features into simulation-
based verification.

A automatic test program generator for pipelined proces-
sors is implemented by utilizing techniques developed for
formal verification. We also presented the basic procedure
and the improved procedure to reduce memory requirement
called the hazard-free-first procedure.

Our method can generate test programs that are diffi-
cult to code by hand and impossible to generate with con-
ventional test program generation methods. Experimental
results have shown that the hazard-free-first procedure is
much more efficient in memory usage than the basic proce-
dure. Results also demonstrated that while random simula-
tion needs a large number of clock cycles to achieve high
test coverage, our test programs can achieve perfect test
coverage in a small number of clock cycles.

Our automatic test program generation system becomes
more powerful if combined better modeling methods for
processors and test cases.

References

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, Morgan Kaufmann, 1990,

(2

M. Johnson, Superscalar Microprocessor Design, Prentice
Hall, 1991.

D. C. Lee and D. P. Siewiorek, “Functional Test Generation
for Pipelined Computer Implementations,” FTCS21, pp. 60—
67,1991,

H. Iwashita, T. Nakata, and F. Hirose, “Behavioral Design
and Test Assistance for Pipelined Processors,” IEEE The
First Asian Test Symposium, pp. 8-13, 1992,

H. Iwashita, T. Nakata, and F. Hirose, “Integrated Design
and Test Assistance for Pipeline Controllers,” IEICE Trans-
actions on Information and Systems, Vol. E76-D, No. 7, pp.
747-754, 1993.

J. R. Burch and D. L. Dill, “Automatic Verification
of Pipelined Microprocessor Control,” Proc. Conf. on
Computer-Aided Verification, pp. 68—80, 1994,

D. L. Beatty and R. E. Bryant, “Formally Verifying a Mi-
croprocessor Using a Simulation Methodology,” Proc. 31st
DAC, pp. 596-602, 1994,

[8] V. Bhagwati and S. Devadas, “Automatic Verification of
Pipelined Microprocessors,” Proc. 31st DAC, pp. 603-608,
1994,

R. E. Bryant, “Graph Based Algorithm for Boolean Function
Manipulation,” IEEE Transactions on Computers, C-35(8),
pp. 677-691, 1986.

H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, A.
Sangiovanni- Vincentelli, “Implicit State Enumeration of Fi-
nite State Machines using BDD's”, ICCAD-90, pp. 130-133,
1990.

3]

(4]

(3]

(6]

mn

(91

(10}

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

