
On Error Correction in Macro-Based Circuits

Irith Pomeranz and Sudhakar M. Reddy +

Electrical and Computer Engineering Department
University of Iowa

Iowa City, IA 52242

Abstract
We consider the problem of correcting errors in a macro-based
circuit. Our formulation of the problem allows the correction of
errors that arise both in the context of design error correction,
before the circuit is realized, and in the context where a physical
circuit needs to be corrected. Two error classes are defined,
namely, component errors and line errors. Both single and multi-
ple errors are considered. Accurate correction procedures are
given for single errors. Heuristics are given for correcting multi-
ple errors. Experimental results are given to demonstrate the
correction procedures presented.

1. Introduction
A macro is a logic block implementing a specific function. A
macro-based circuit is constructed by interconnecting macros to
perform a given function. A macro-based circuit is obtained as a
result of technology mapping [1]. During technology mapping,
an abstract description of a circuit, e.g., a gate-level description,
is translated into a hardware representation using a given set of
macros in a specific technology.

The problem we address in this work is that of correcting
errors in a macro-based circuit. Our formulation of the problem
allows the correction of errors that arise in two different con-
texts. The first context is design error correction [2-6]. Here,
correction addresses errors that occur due to bugs in the technol-
ogy mapping procedure, or due to manual changes made to
improve the area or performance of the macro-based circuit.
Correction in this case is done on a computer representation of
the macro-based circuit, before it is realized as a physical circuit.
The second context we address is error correction in a physical
macro-based circuit. Errors in the physical circuit can result from
errors in the process of customizing a programmable circuit or
from manufacturing defects [7,8]. In the case where (field) pro-
grammable components are used and the errors result from
incorrect programming, it is possible to correct errors in the phy-
sical circuit by reprogramming the erroneous parts. Hence the
importance of error correction in this context. For errors that
result from manufacturing defects, the goal of error correction
may only be to identify where in the physical circuit the errors
occur and what their effects are. This information can then be
used to improve the manufacturing process. In both contexts
(design error correction and physical circuit correction), correc-
tion is done using the following two circuit representations. (1)
A computer representation of the macro-based circuit, where it is
possible to simulate input patterns and observe and control pri-
mary outputs as well as internal lines. We denote this circuit by
hhhhhhhhhhhhhhhhhhhhh
+ Research supported in part by Motorola Semiconductor Products Sector,
Semiconductor Systems Design Technology, by NSF Grant No. MIP-
9220549, and by NSF Grant No. MIP-9357581

CM . (2) Another circuit representation, where it is only possible
to simulate input patterns and observe primary output values. We
denote this circuit by CIO . At least one of the circuits, either CM
or CIO , is an error free representation of the required function.
The goal of error correction is to discover the errors in terms of
CM . For example, an error E 1 may consist of an erroneous output
produced by macro i of the macro-based circuit CM when input
combination c is applied to this macro. This is related to the dif-
ferent flavors of the error correction problem as follows.

If correction is done to fix design errors that occurred dur-
ing the technology mapping process that resulted in CM , then CIO
is a higher level description of the circuit, from which CM was
obtained. In this case, CIO is error free, and errors introduced
during the derivation of CM are corrected, so that the function
implemented by CM would be equivalent to the function of CIO .
For example, to correct E 1 above, the output produced by macro
i for input combination c in CM has to be complemented.

If correction is done to identify physical programming
errors or manufacturing defects, CM is a computer representation
of the error free macro-based circuit. CIO is the (possibly errone-
ous) physical circuit for which only input/output behavior can be
determined. The errors are identified in terms of CM , i.e., we
find the changes that need to be made in CM , so that it would be
equivalent to CIO . The reverse changes can then be used to
correct CIO . For example, if we find that the output of macro i
for input combination c has to be changed to 1 in CM to make it
equivalent to CIO , then we conclude that the error in CIO is that
macro i produces output value 1 (instead of 0) in response to c.

Two error models for macro-based circuits are considered
in this work, and error location procedures for them are
described. These error models include errors in the functions
implemented by the macros of the macro-based circuit, and
errors in their interconnections. The error location procedures
described in this work are based on simulation of a given set of
input patterns and comparison of the responses of CM and CIO .
The input patterns can be generated randomly, or by using a test
generation process. We do not address the test generation prob-
lem in this work. Rather, we concentrate on the analysis of cir-
cuit responses that leads to error location.

We point out that in macro-based circuits implemented
using Field-Programmable Gate Arrays (FPGAs), special
hardware may be placed in the physical circuit, that helps in
diagnosing it. For example, in Xilinx FPGAs, programming of
an FPGA is done by scanning in certain bit strings that determine
the macro functions and their interconnections. Diagnosis in this
case can be done by scanning in and scanning out the appropriate
bit strings. However, this hardware may not be present in all
macro-based circuit designs. Even when it exists, the test sets for
diagnosis through scan can be very large. In addition, such a
facility is not useful in design error diagnosis.

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0568 $3.50

Design error correction procedures in combinational cir-
cuits described at the gate-level were proposed in [3-5]. How-
ever, the special structure of macro-based circuits and the special
nature of the errors that can occur in them call for special error
location tools. For example, the procedures of [3-5] rely on the
fact that there is a small number of errors associated with every
gate and every line in the circuit [2]. However, a mapping error
even in a single macro can result in any one of 2(2K)−1 functions,
where K is the number of macro inputs. Even for small values of
K, this number is too large to enumerate all the erroneous func-
tions. An error location procedure specifically targeting macro-
based circuits is proposed here. An error correction procedure
for FPGAs was proposed in [6]. The method of [6] uses Boolean
equations associated with lines in the circuit. The solutions give
the correct functions of these lines. The solution is based on the
use of BDDs. Consequently, the complexity of this method is
higher than the method proposed here, which is based on simula-
tion. In addition, only errors in the macro functions are con-
sidered in [6], and the errors are limited to clusters of macros at
the same level of the FPGA, due to the complexity issue. The
method proposed here is applicable to any distribution of errors.

Fault location of gate-level circuits was considered in
[7,8]. One of the most common diagnosis methods is based on a
fault dictionary, where the response of modeled faults is stored
and then compared to the response of the circuit-under-
diagnosis. However, the large number of potential errors in
macro-based circuits precludes the use of a dictionary. The error
location procedure proposed in this work can be used instead.

The paper is organized as follows. A review of relevant
concepts and the definition of the error models considered in this
work are given in Section 2. In Section 3 we describe the error
location procedure for errors in the functions implemented by the
macros. Three error multiplicities are considered, including
errors affecting a single input combination of a single macro,
errors affecting multiple input combinations of a single macro,
and errors affecting multiple input combinations of multiple
macros. In Section 4, we consider interconnection errors and
describe an error location procedure for them. We also consider
a combined procedure to locate both macro and interconnection
errors. Section 5 presents experimental results for the two types
of errors considered. Section 6 concludes the paper.

2. Preliminaries
The following example demonstrates a macro-based circuit.
Example : A macro-based circuit composed of three-input
single-output macros is shown in Figure 1. The truth tables of
the macros are shown in Table 1. Figure 1 together with the
truth tables of Table 1 describe the macro-based circuit CM . `

M 4

M 3

M 1

M 2

A
B
C
D

E
g 2

g 3

g 5

g 6

Figure 1: An example of a macro-based circuit

Table 1: Truth tables for the macros of Figure 1
M 1 M 2

B E g 2 g 6 A C g 3 g 5iiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiii

0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 1 1 0 1 1 0
1 0 0 0 1 0 0 1
1 0 1 1 1 0 1 0
1 1 0 0 1 1 0 1
1 1 1 1 1 1 1 1c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

M 3 M 4
B C D g 3 C D g 2iiiiiiiiiiiiiiiiii iiiiiiiiiiiii

0 0 0 1 0 0 1
0 0 1 1 0 1 1
0 1 0 1 1 0 1
0 1 1 1 1 1 c

c
c
c
c
c

0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1c

c
c
c
c
c
c
c
c
c

In this work, each macro is assumed to have a single out-
put, however, the results can be extended to multi-output macros
as well. The number of inputs to a macro is assumed to be small
enough to allow a truth table to be written for it. Complete truth
tables for macros are used throughout this work. Alternatively,
BDDs or Boolean equations can be used to describe a macro.

In our experiments, we consider Berkeley PLA bench-
mark circuits [9], synthesized into multi-level circuits and then
mapped using the procedures of [10] into macro-based circuits.
Two types of mappings are done in [10]. The mapping called bl
uses the number of macros in the mapped circuit as a primary
objective, thus attempting to reduce the area of the macro-based
circuit. The mapping called fc uses testability as a primary
objective. A complete description of these procedures can be
found in [10]. For all macro-based circuits considered in this
work, the number of macro inputs is limited to five. Information
regarding the circuits we use is given in Table 2. After circuit
name, we give the number of primary inputs, the number of pri-
mary outputs, the number of macros in the macro-based circuit
for both types of mappings, and the number of primary input pat-
terns used for error location.

The first error model considered in this work consists of
erroneous macro output values for one or more input combina-
tions (minterms) of one or more macros. Such errors are
referred to as macro errors. An example of a triple error in the
circuit of Figure 1 is the following.

The output of M 1 for input combination 011 is 0 instead of 1.
The output of M 1 for input combination 100 is 1 instead of 0.
The output of M 3 for input combination 001 is 0 instead of 1.

Under the macro error model, we distinguish between
three classes of errors, depending on their multiplicities.

A single erroneous minterm of a single macro.
Multiple erroneous minterms of a single macro.
Multiple erroneous minterms of multiple macros.

The second error model we consider consists of erroneous
interconnections among macros. Such errors are referred to as
interconnection errors. An example of a single interconnection
error in the macro-based circuit of Figure 1 is the following.

The third input of M 2 is connected to the output of M 4
(g 2), instead of the output of M 3 (g 3).

Table 2: Circuit parameters

macros
circuit inp out bl fc patternsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Z9sym 9 1 83 128 512
add6 12 7 23 45 4096
adr4 8 5 10 13 256
alu1 12 8 8 8 4096
alu2 10 8 31 33 1024
alu3 10 8 32 36 1024
co14 14 1 12 30 10000
dk17 10 11 30 36 1024
dk27 8 9 13 13 256
dk48 15 17 37 43 10000
mish 94 34 40 40 10000
radd 8 5 9 15 256
rckl 32 7 48 64 10000
rd53 5 3 3 3 32
vg2 25 8 34 32 10000
x1dn 27 6 28 32 10000
x9dn 27 7 36 31 10000
z4 7 4 7 10 128c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Next, we demonstrate the effects of an error and the reso-
lution that can be expected from the error location process. We
use macro errors in these examples. First, we consider a design
error, causing CM to produce erroneous primary output values. In
this case, CIO is the error free specification of the circuit. Then,
we consider error correction in the physical circuit, where CIO is
the erroneous physical circuit and CM is the error free macro-
based circuit.
Example : Consider the macro-based circuit CM shown in Figure
1. Let CIO be a high level specification of CM . Suppose that in
CM , macro M 3 produces an output 1 instead of an output 0 for
input combination (BCD) = (110). In this case, the value of g 5
in CIO is different from its value in CM for primary input combi-
nations (ABCDE) = (01100) and (01101). In CM , only M 3 and
M 2 affect the value of g 5, therefore, we concentrate on these
macros. Under the given primary input combinations,
(BCD) = (110) implies g 3 = 1 in CM (due to the error in CM ,
g 3 = 1 instead of 0), and (ACg 3) = (011) implies g 5 = 0. The
error can be corrected by changing the output of M 3 in CM for
input (BCD) = (110) from 1 to 0.
No other change will correct the error. For example, we consider
changing the value of g 5 for input combination (ACg 3) = (011).
This does not fix the error in CM , since when input combination
(ABCDE) = (00110) is applied, (BCD) = (011) implies g 3 = 1,
and (ACg 3) = (011) will produce an erroneous value 1. Thus, CM
remains erroneous after changing g 5 to 1 for (ACg 3) = (011). `
Example : Consider the macro-based circuit CM shown in Figure
1. Let CIO be the physical circuit corresponding to CM . Suppose
that in CIO , macro M 3 produces an output 1 instead of an output
0 in response to the input combination (BCD) = (110). In this
case, the value of g 5 in CIO is different from its value in CM for
primary input combinations (ABCDE) = (01100) and (01101).
In CM , only M 3 and M 2 affect the value of g 5, therefore, we
concentrate only on these macros. Under the given primary
input combinations, (BCD) = (110) implies g 3 = 0 in (error free)
CM , and (ACg 3) = (010) implies g 5 = 1. It is possible to make
the output value of CM equal to the (erroneous) output value of
CIO in one of the following ways.

By changing the output of M 3 in CM for input
(BCD) = (110) from 0 to 1, or
by changing the output of M 2 in CM for input
(ACg 3) = (010) from 1 to 0.

We can now translate these corrections into the following two
errors in CIO .

The output of M 3 in CIO for input (BCD) = (110) is 1
instead of 0, or
the output of M 2 in CIO for input (ACg 3) = (010) is 0
instead of 1. `

Note that the difference between the two examples is that
in the first one, CM is erroneous and CIO is error free, whereas in
the second one, CM is error free and CIO is erroneous. From here
on, the examples will be given for an error free CM and an
erroneous CIO .

From the previous example it can be seen that if two dif-
ferent errors result in the same input/output behavior, then the
location procedure cannot be expected to identify the actual error
made. The location procedure can be used to find the first error,
or all the errors that can explain the circuit behavior. In some
cases, where certain errors are easier to correct than others,
obtaining more than one candidate error may facilitate the
correction process.

In the following sections, we present the location pro-
cedures. We use the following terminology. We say that the
output of Mi in CM is sensitized by a primary input pattern α if
changing the output value of Mi in CM under α changes the value
of at least one primary output (CM can be error free or erroneous,
depending on the context). We also define sensitization of a
macro input in CM . We say that input j of Mi in CM is sensitized
by a primary input pattern α if changing the value of input j
under α changes the value of at least one primary output of CM .
Here, if input j is a fanout branch of a stem driving more than
one macro, only the value of the branch driving Mi is changed in
order to check whether the input is sensitized.

The error location procedures proposed in this work are
based on simulation of primary input patterns applied to CIO and
CM , and comparison of the primary output responses of the two
circuits. The input patterns used can be random, or can be a
result of a test generation procedure for error detection or for
error location. The set of input patterns should be large enough
to allow accurate error location. Ideally, all input patterns where
erroneous output values are obtained should be known. How-
ever, correction can also be based on a limited subset of input
patterns. The set of input patterns used is denoted by T.

All the examples in this paper are based on the macro-
based circuit shown in Figure 1 under an exhaustive set of input
patterns T that includes all 32 input patterns. In addition, we
assume the context where CM is error free and CIO is an errone-
ous physical circuit.

3. The error location process for macro errors
In this section, we present the error location procedure for macro
errors. We say that an erroneous primary output value is
observed in response to a primary input combination α, when the
output produced by CIO in response to α is different from the
output produced by CM in response to α (depending on the con-
text, the erroneous output value may be that of CIO or that of
CM). We say that error free primary output values are observed
in response to a primary input combination α, if the output
values produced by CIO and the output values produced by CM in
response to α are the same.

3.1 Preprocessing
The first step of the location procedure for macro errors is to col-
lect information relating the erroneous values observed on the
primary outputs with the sensitization of macro output values in
CM . For every macro Mi and every macro input combination β,
the following counts are kept for this purpose.
nes(Mi ,β) is the number of primary input combinations for which

an erroneous output is observed (marked by e), and in CM , β
is applied to Mi and the output of Mi is sensitized (s).

nes
h(Mi ,β) is the number of primary input combinations for which

an erroneous output is observed (e), and in CM , β is applied
to Mi and its output is not sensitized (s

h
).

ne
h
s(Mi ,β) is the number of primary input combinations for which

an error free output is observed (e
h
), and in CM , β is applied

to Mi and its output is sensitized (s).
ne
h
s
h(Mi ,β) is the number of primary input combinations for which

an error free output is observed (e
h
), and in CM , β is applied

to Mi and its output is not sensitized (s
h
).

The following procedure is used to update the counts for a
given set of primary input patterns T.
Procedure 1: Relating erroneous output values and sensitization
of macro outputs
(1) For every input combination β of every Mi , set

nes(Mi ,β) = 0, nes
h(Mi ,β) = 0, ne

h
s(Mi ,β) = 0, and

ne
h
s
h(Mi ,β) = 0.

Set Nerr = 0 (Nerr is used to record the number of primary
input combinations in T, for which erroneous output
values are obtained).

(2) For every primary input combination α ∈ T:
(a) Apply α to CIO and CM . Compute the output

values of CIO and CM . If the primary output
values are equal in both circuits, set ERR = 0.
Else set ERR = 1 and increment Nerr by one.

(b) For every Mi in CM:
Check if the output of Mi is sensitized in CM .
Set SENS = 1 if the macro output is sensi-
tized, and set SENS = 0 otherwise.
Let β be the input combination of Mi when α
is applied to CM .
If ERR = 1:

If SENS = 1, increment nes(Mi ,β) by one.
If SENS = 0, increment nes

h(Mi ,β) by one.
If ERR = 0:

If SENS = 1, increment ne
h
s(Mi ,β) by one.

If SENS = 0, increment ne
h
s
h(Mi ,β) by one.

In the following sections, we use the counts computed by
Procedure 1 to identify errors of different multiplicities.

3.2 Single macro, single input combination
Suppose that a single macro is erroneous. Let it be Mi . Suppose
in addition that the error affects a single input combination β of
Mi . Then the only time an erroneous primary output value can be
observed is if a primary input combination α is applied, that
results in β on the inputs of Mi . At the same time, α must sensi-
tize the output of Mi in CM (note that if CM is the erroneous cir-
cuit, then β produces an erroneous output value of Mi in CM , and
if CIO is the erroneous circuit, then β produces an erroneous out-
put value of Mi in CIO . In both cases, we are interested in the
sensitization of Mi in CM as the cause for the different output
values observed). In other words, all Nerr erroneous primary out-
put combinations observed are due to β being applied to Mi

when the output of Mi is sensitized in CM . Using the counts
computed by Procedure 1, we have nes(Mi ,β) = Nerr . In addition,
if the output of Mi is not sensitized in CM when β is applied to
Mi , then error free output values must be observed. Therefore,
nes

h(Mi ,β) = 0. Also, if β is applied to Mi and the output of Mi is
sensitized, then an erroneous primary output value must be
observed. Therefore, ne

h
s(Mi ,β) = 0. We thus have, for an input

combination β of Mi that produces an erroneous value,
nes(Mi ,β) = Nerr , nes

h(Mi ,β) = 0, and ne
h
s(Mi ,β) = 0

These equations can be used to identify an error involving a sin-
gle macro and a single macro input combination.

Note that macro input combinations that are never
obtained under the given set of primary input combinations, or
where the output is never sensitized, have all-zero counts. Thus,
if the macro output is erroneous for such an input combination, it
will not be corrected. The correction process can be completed
in this case by generating additional input combinations, that
assign the remaining macro input combinations, while sensitiz-
ing the macro output.

3.3 Single macro, multiple input combinations
Suppose now that a single macro, Mi , is erroneous, and that the
error affects multiple input combinations of Mi . Let the set of
input combinations affected be B. Then the only time an errone-
ous output can be observed is if a primary input combination α is
applied, that results in an input combination β ∈ B on the inputs
of Mi . At the same time, α must sensitize the output of Mi in CM .
In other words, all Nerr erroneous primary output combinations
observed are due to one of the combinations in B being applied
to Mi when the output of Mi is sensitized in CM . Using the
counts computed by Procedure 1, we have

β ∈ B
Σ nes(Mi ,β) = Nerr ,

β ∈ B
Σ nes

h(Mi ,β) = 0, and
β ∈ B
Σ ne

h
s(Mi ,β) = 0

The search for the subset B is facilitated by the following
property.
Lemma 1: For an error that affects a single macro, Mi , let
B = {β} be the set of input combinations of Mi for which
nes

h(Mi ,β) = 0, ne
h
s(Mi ,β) = 0 and nes(Mi ,β) > 0. Then

β ∈ B
Σ nes(Mi ,β) = Nerr .

Proof: Let B = {β} be the set of input combinations of Mi for
which nes

h(Mi ,β) = 0, ne
h
s(Mi ,β) = 0 and nes(Mi ,β) > 0.

Let B′ = {β′} be the set of input combinations of Mi for which
nes

h(Mi ,β′) = 0 and ne
h
s(Mi ,β′) = 0.

First, we show that B′ contains every input combination of Mi
that produces an erroneous macro output value. To show this, we
show that input combinations γ such that nes

h(Mi ,γ) > 0 or
ne
h
s(Mi ,γ) > 0, which are excluded from B′, do not produce

erroneous output values. Consider an input combination γ of Mi
such that nes

h(Mi ,γ) > 0. This implies that when γ is applied to
Mi , an error is observed on the primary outputs even though the
output of Mi is not sensitized. Thus, Mi cannot be the cause of
the error and another macro, Mj , must contain an error. This con-
tradicts our assumption that all the errors are associated with Mi .
Next, consider an input combination γ of Mi such that
ne
h
s(Mi ,γ) > 0. Then no error is observed on the primary outputs,

although γ is applied to Mi and the output of Mi is sensitized.
This implies that the output value of Mi for γ is error free. Hence,
γ is correctly excluded from B′.
The set B contains every combination contained in B′, except for
the input combinations for which nes

h(Mi ,β) = 0, ne
h
s(Mi ,β) = 0

and nes(Mi ,β) = 0. If nes(Mi ,β) = 0, then either β is never

obtained when the output of Mi is sensitized, or the output value
for β is error free. In either case, β does not contribute to errone-
ous primary output values. Consequently, B contains every input
of Mi that causes an erroneous output value of Mi during T.
If

β ∈ B
Σ nes(Mi ,β) < Nerr , then all the input combinations of Mi that

produce erroneous macro output values are not sufficient to pro-
duce all the erroneous primary output values observed. This is a
contradiction to the fact that errors are present only in Mi . Con-
sequently,

β ∈ B
Σ nes(Mi ,β) ≥ Nerr .

Consider a macro input combination β for which nes
h(Mi ,β) = 0,

ne
h
s(Mi ,β) = 0 and nes(Mi ,β) > 0. Let α be a primary input com-

bination that contributes to nes(Mi ,β). Since β creates an errone-
ous macro output value and the macro output is sensitized in CM ,
an erroneous output value must be produced. Thus, α contributes
to Nerr . Consequently,

β ∈ B
Σ nes(Mi ,β) ≤ Nerr .

From the two inequalities above,
β ∈ B
Σ nes(Mi ,β) = Nerr . `

Based on Lemma 1, for every Mi , we need to add up the
counts nes(Mi ,β) > 0 such that nes

h(Mi ,β) = 0 and ne
h
s(Mi ,β) = 0.

If the sum is equal to Nerr , the macro can explain the erroneous
output values observed. Note that we exclude macro input com-
binations such that nes

h(Mi ,β) = 0 ne
h
s(Mi ,β) = 0 and nes(Mi ,β) = 0

since such combinations do not affect the correctness of the pri-
mary output values. We prefer to exclude them in order to
minimize the error multiplicity. As in the case of single errors in
single macros, erroneous primary output values may be
explained by more than one error.

3.4 Multiple macros, multiple input combinations
Suppose that macros {M 1,M 2, . . . ,Mk} are erroneous. Let the
error affect one or more input combinations of Mi , 1 ≤ i ≤ k. Let
the set of input combinations affected in Mi be Bi . Due to the
existence of multiple erroneous macros, error masking can
occur. An example can be found in [11]. Due to masking,
ne
h
s(Mi ,β) > 0 can be obtained even if input combination β of Mi

produces an erroneous output. Therefore, contrary to the case of
a single erroneous macro, the condition ne

h
s(Mi ,β) = 0 cannot be

imposed when identifying a multiple macro, multiple input com-
bination error. However, anticipating that error masking is rare,
we propose the following procedure for multiple error location.

The procedure identifies the multiple error in steps. At
every step, a macro Mi and an input combination β of Mi are
selected, for which ne

h
s(Mi ,β)+nes

h(Mi ,β) is minimum and
nes(Mi ,β) is maximum. The pair (Mi ,β) is recorded as an error
component. The output value of Mi in CM for input combination
β is then complemented, the values of the various counts are
recomputed, and the next pair is selected. The process terminates
when one of the following conditions is satisfied.
(1) The number of primary input patterns causing erroneous

primary output values, Nerr , is zero. In this case, the error
consists of the recorded pairs.

(2) A predetermined number of pairs has been selected, and
CIO and CM still have different primary output values for
the same primary input combination. In this case, the
procedure terminates without identifying the error.
The following case requires special attention. In some

cases, the error location procedure may select an input combina-
tion β of Mi more than once. After selecting it an even number of
times, the original output value is restored. To prevent the pro-
cedure from going in a loop where β is repeatedly selected, we

restrict the number of times a given input combination of a given
macro can be selected to two. If an input combination is selected
twice, it is not considered as a component of the error. The loca-
tion procedure is given next.
Procedure 2: Location of multiple macro, multiple input combi-
nation errors
(1) Set L = φ and Nmod = 0.

For every Mi and every input combination β of Mi , set
changed (Mi ,β) = 0.

(2) Execute Procedure 1.
(3) If Nerr = 0, stop: the error is located and its components

are stored in L.
(4) Select input combination β of Mi , such that

changed (Mi ,β) < 2, and ne
h
s(Mi ,β)+nes

h(Mi ,β) is
minimum. In case of ties, select β and Mi for which
nes(Mi ,β) is maximum.
If no such input combination exists, stop: correction can-
not be completed.

(5) If changed (Mi ,β) = 0, set L = L∪{(Mi ,β)}.
Else, set L = L−{(Mi ,β)}.
Complement the output value of Mi under input combina-
tion β.
Set changed (Mi ,β) = changed (Mi ,β)+1

(6) Set Nmod = Nmod+1. If Nmod does not exceed a predeter-
mined limit on the number of modifications allowed to
CM , go to Step 2.
Note that Procedure 1 is executed every time a macro out-

put value is changed in CM , to account for the fact that the
number of erroneous output values may change, as well as the
counts. In Section 5, we present experimental results of the loca-
tion procedure. Procedure 2 does not guarantee the location of
an error. To guarantee error location, a search procedure such as
branch-and-bound should be used, that is capable of exploring
more than one way of changing CM , until CM and CIO become
equivalent. The heuristics used in Procedure 2 can be used to
guide the branch-and-bound process. We did not pursue this
possibility in this work, and used only Procedure 2 for multiple
error location of multiple macros. In most cases, Procedure 2
was sufficient to correctly locate multiple errors.

3.5 Summary and extensions
Based on the discussion of the previous subsections, the follow-
ing procedure is proposed for error location of any error multi-
plicity. After obtaining the counts using Procedure 1, the error
location procedure checks whether the error is (or behaves like)
a single macro, single input combination error. If not, it checks
whether the error is (or behaves like) a single macro, multiple
input combination error. Only if the error cannot be identified as
a single macro error, Procedure 2 is applied to identify a multiple
macro, multiple input combination error.

In the previous subsections, we did not consider the fact
that certain macros can only affect certain primary outputs. For
example, in the circuit of Figure 1, M 1 and M 4 can only affect
g 6 and M 2 and M 3 can only affect g 5. Thus, if only g 6 is errone-
ous and M 2 is sensitized with input combination β, then the out-
put response of M 2 to β must be error free (unless error masking
occurred). To accommodate this additional information, it is
possible to compute the counts nes , nes

h, ne
h
s and ne

h
s
h for every pri-

mary output separately. The extended counts are nes(Mi ,β,Oj),
nes

h(Mi ,β,Oj), ne
h
s(Mi ,β,Oj), and ne

h
s
h(Mi ,β,Oj), where Oj is a pri-

mary output. For illustration, we consider next the single macro,

single input combination case under this extension.
Suppose that an error affects a single input combination β

of a macro Mi . Then the only time an erroneous value can be
obtained on output Oj is if a primary input combination α is
applied, that results in β on the inputs of Mi . At the same time, α
must sensitize the output of Mi and propagate it to Oj . In other
words, nes(Mi ,β,Oj) = Nerr(Oj), nes

h(Mi ,β,Oj) = 0, and
ne
h
s(Mi ,β,Oj) = 0. Here, Nerr(Oj) is the number of primary input

patterns for which an erroneous value is observed on Oj . We did
not implement this extension.

4. Location of interconnection errors
In this section, we consider the location of interconnection
errors. An interconnection error is an error where an input of a
macro, that should be driven from macro or primary input j in an
error free circuit, is driven from a different macro or primary
input in the erroneous circuit. An interconnection error can be
used to model an error where an input of a macro is missing,
assuming that the missing input is constantly 0 or 1. Adding a
dummy line that is fixed at 0 or 1 allows the error to be located.
In addition, multiple interconnection errors can be used to model
errors that interchange lines in the circuit.

4.1 Preprocessing
Similar to the error location procedure for macro errors, we
define four counts to be used for error location. In the case of
macro errors, counts were associated with input combinations of
macros. In the case of interconnection errors, the counts are
associated with macro inputs. Using the definition of input sen-
sitization given in Section 2, we define the following counts for
every input j of Mi . As before, the counts are defined for a given
set of primary input patterns T.
nes(Mi , j) is the number of primary input combinations in T for

which an erroneous primary output value is observed (e), and
input j of Mi is sensitized in CM (s).

nes
h(Mi , j) is the number of primary input combinations in T for

which an erroneous primary output value is observed (e), and
input j of Mi is not sensitized in CM (s

h
).

ne
h
s(Mi , j) is the number of primary input combinations in T for

which error free primary output values are observed (e
h
), and

input j of Mi is sensitized in CM (s).
ne
h
s
h(Mi , j) is the number of primary input combinations in T for

which error free primary output values are observed (e
h
), and

input j of Mi is not sensitized in CM (s
h
).

The procedure for computing the counts above is similar
to Procedure 1, except that β is replaced by input j. We refer to
the procedure for computing the counts for interconnection error
location as Procedure 3. We do not repeat it here, due to its simi-
larity to Procedure 1. In the following sections, we use the
counts computed by Procedure 3 to locate interconnection errors
of various multiplicities. We also consider the relationship to the
macro error location procedure. We point out that the location
procedures proposed for interconnection errors only identify
which macro inputs are erroneously connected. They do not
identify the correct connection. This is different from the loca-
tion of macro errors, where an error associated with input combi-
nation β of Mi can be corrected by complementing the output
value of Mi when β is applied to it. Identifying the correct con-
nection in the case of interconnection errors requires considera-
tion of every possible alternative connection to every error site.
Due to space considerations, we do not consider this method in

detail here, however, we point out that it is similar to the solution
used in gate-level circuits [3,4]. In addition, we do not consider
interconnection errors that create feedback.

4.2 Single interconnection errors
In case of a single interconnection error affecting input j of Mi ,
an erroneous output value can be observed only when input j is
sensitized. Thus, we have in this case nes(Mi , j) = Nerr . In addi-
tion, nes

h(Mi , j) = 0, since an erroneous primary output value can-
not be observed unless input j of Mi is sensitized. However, if
input j of Mi is sensitized, an erroneous primary output value
may or may not be obtained. This depends on whether the macro
or primary input to which input j is erroneously connected pro-
duce the error free value of input j or not. Thus, we have no
requirement on ne

h
s(Mi , j). In addition, no requirements exist for

ne
h
s
h(Mi , j). The following example demonstrates the use of the

counts for error location.
Example : Consider the interconnection error where, in the phy-
sical circuit, input g 3 of M 2 in Figure 1 is connected to the out-
put of M 4, instead of the output of M 3. The number of primary
input combinations with an erroneous output value is 14. The
counts for all inputs of all macros are shown in Table 3. The
only input with nes(Mi , j) = 14 and nes

h(Mi , j) = 0 is input g 3 of
M 1, thus identifying the error location. `

Table 3: Count values

macro inp nes nes
h ne

h
s ne

h
s
hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

M 1 B 5 9 7 11
E 0 14 12 6
g 2 13 1 11 7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

M 2 A 4 10 8 10
C 0 14 10 8
g 3 14 0 10 8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

M 3 B 10 4 10 8
C 6 8 0 18
D 4 10 0 18iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

M 4 C 7 7 5 13
D 5 9 7 11cc

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

4.3 Multiple interconnection errors
In case of multiple interconnection errors involving a subset of
inputs J = { j} of the same macro, Mi , an erroneous output value
is observed in response to a primary input combination α when-
ever an input j ∈ J satisfies the following conditions under α.
(1) Input j carries an erroneous value, and (2) input j is sensi-
tized. In the macro error case, α resulted in a given macro input
combination β whose count nes was then incremented. However,
in the case of interconnection errors, counts of several inputs of
Mi may be incremented due to the same primary input combina-
tion α. Thus, for an interconnection error involving J we have

j ∈ J
Σ nes(Mi , j) ≥ Nerr . No condition can be given for nes

h(Mi , j),

since other inputs may result in an erroneous primary output
value even if input j ∈ J is not sensitized. Similarly, no condi-
tion can be given for ne

h
s(Mi , j), since even when input j is sensi-

tized by a primary input combination α, it may assume its error
free value under α. Since the condition

j ∈ J
Σ nes(Mi , j) ≥ Nerr may

be satisfied by a large number of macros, we add the following
counts, that help to reduce the number of macros that can poten-
tially explain the erroneous output response. For every candi-
date subset J such that

j ∈ J
Σ nes(Mi , j) ≥ Nerr we compute the fol-

lowing counts.

nes(Mi ,J) is the number of primary input combinations in T for
which an erroneous primary output value is observed (e), and
at least one input j ∈ J of Mi is sensitized (s).

nes
h(Mi ,J) is the number of primary input combinations in T for

which erroneous primary output values are observed (e), and
no input j ∈ J of Mi is sensitized (s

h
).

A subset J of inputs of Mi having interconnection errors must
satisfy nes(Mi ,J) = Nerr and nes

h(Mi ,J) = 0.
In case of multiple interconnection errors involving inputs

of more than one macro, it is possible to use an approach similar
to the one we used for multiple macro errors. However, before
such an approach can be considered, a method is required to
correct each error component as it is found. Due to space con-
siderations, we do not pursue this problem here.

4.4 Mixed errors
Since macro errors and interconnection errors are located using
different counts, they can be considered simultaneously as fol-
lows. First, Procedures 1 and 3 are used to compute the counts.
Then, identification of errors involving single macros is
attempted, using the rules derived in Subsections 3.2, 3.3, 4.2
and 4.3. If it turns out that the error involves multiple macros,
then a procedure similar to Procedure 2 is used, where a single
error component (either macro error or interconnection error) is
selected at every step according to the following criteria.

For macro error E involving macro Mi and input combina-
tion β, set C 1(E) = ne

h
s(Mi ,β)+nes

h(Mi ,β) and
C 2(E) = nes(Mi ,β).
For interconnection error E involving macro Mi and input j,
set C 1(E) = nes

h(Mi , j) and C 2(E) = nes(Mi , j).
Select the error E for which C 1 is minimum and, in case of
ties, C 2 is maximum.

The error selected is fixed in CM , and the process continues with
the modified circuit CM .

5. Experimental results
In this section, we present experimental results of error location
in the macro-based circuits of Table 2. For circuits with up to 13
inputs, the set of input patterns T is the exhaustive set of all input
combinations. For larger circuits, the first 10,000 patterns in an
exhaustive set of input patterns was used. In each case, we
injected 100 randomly selected errors. To inject a single macro,
single input combination error, we randomly select a value for i
and β, and inject an error in input combination β of Mi . In case
of single macro, multiple input combination errors, we perform
the following procedure to inject an error of multiplicity M.

(1) Set Nerrors = 0. Select i randomly. Unmark all input
combinations of Mi .

(2) Repeat until Nerrors = M:
Select a random value for β. If input combination
β of Mi is not marked, mark it and set
Nerrors = Nerrors+1.

(3) Complement the output values for the marked input
combinations to obtain the error.

To inject a multiple macro, multiple input combination error of
multiplicity M, we performed the following procedure.

(1) Set Nerrors = 0. Unmark all input combinations of all
macros.

(2) Repeat until Nerrors = M:
Select a random value for i and a random value
for β. If input combination β of Mi is not marked,

mark it and set Nerrors = Nerrors+1.
(3) Complement the output values for the marked input

combinations to obtain the error.
All multiple errors injected in our experiments had multiplicity
five. Next, we describe the results of error correction for the
various error types.

For single macro, single input combination errors, the
correction procedure given in Section 3.1 is complete, i.e., the
procedure is guaranteed to find a modification to CM that will
make it equivalent to CIO . The purpose of implementing the pro-
cedure and presenting its results is to check the number of dif-
ferent ways in which an error can be corrected (recall that it may
be possible to correct a given error in several ways). For this
purpose, we look for all macro input combinations that satisfy
the equalities nes(Mi ,β) = Nerr , nes

h(Mi ,β) = 0, and ne
h
s(Mi ,β) = 0.

For different injected errors, the number of macro input combi-
nations satisfying these equations may be different. In Table 4,
we report the average number of macro input combinations that
satisfy these equations, in two contexts. In the first two columns,
the errors are injected into a physical circuit CIO and CM is an
error free circuit. In the next two columns, the errors are injected
into CM , and CIO is an error free specification of CM . Due to the
similarity between the two sets of results, we report only results
for physical circuit errors in the rest of this section.

Table 4: Single macro, single input combination errors

av.errors
physical circuit design errors

circuit bl fc bl fciii
Z9sym 232.30 43.02 205.34 42.98
add6 14.46 3.83 17.86 3.44
adr4 3.19 1.45 3.83 1.65
alu1 1.00 1.00 1.00 1.00
alu2 17.30 8.58 17.35 9.92
alu3 12.16 6.97 13.23 3.67
co14 17.25 4.71 20.61 4.37
dk17 13.14 1.61 11.37 1.52
dk27 2.15 1.16 2.04 1.16
dk48 19.21 4.66 14.68 4.33
mish 365.89 365.89 361.33 361.33
radd 2.05 1.50 1.90 1.73
rckl 462.85 397.39 462.77 384.70
rd53 3.00 3.00 3.00 3.00
vg2 438.94 294.44 389.56 306.07
x1dn 282.23 300.24 300.87 316.32
x9dn 332.34 281.30 337.15 260.30
z4 3.88 2.13 3.86 2.01c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Similar to single macro, single input combination errors,
the procedure for single macro, multiple input combination
errors is also guaranteed to correctly identify an error. Our
interest is, therefore, in the number of different ways an error can
be corrected, i.e., in the number of subsets B that satisfy

β ∈ B
Σ nes(Mi ,β) = Nerr ,

β ∈ B
Σ nes

h(Mi ,β) = 0, and
β ∈ B
Σ ne

h
s(Mi ,β) = 0.

The average number of subsets B found for the different errors
injected are given in Table 5.

In the case of multiple macro, multiple input combination
errors, we are interested in the number of multiple errors that can
be correctly identified by the greedy location procedure pro-
posed. We therefore searched for the first multiple error that can
be used to correct the injected error (and not for all errors, as in
Tables 4 and 5 above). The results for multiple macro, multiple
input combination errors are given in Table 6. After circuit
name, we give the number of multiple errors diagnosed

Table 5: Single macro, multiple input combination errors

av. errors av. errors
circuit bl fc circuit bl fc
iiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiii

Z9sym 3.71 1.47 dk48 2.00 2.98
add6 1.75 2.18 mish 30.24 30.24
adr4 2.02 2.46 radd 2.42 2.50
alu1 1.00 1.00 rckl 22.08 26.90
alu2 1.17 1.16 rd53 3.00 3.00
alu3 1.14 1.36 vg2 21.03 19.69
co14 1.32 1.49 x1dn 16.97 18.88
dk17 1.03 2.53 x9dn 16.50 16.37
dk27 2.41 1.47 z4 1.94 2.15cc

c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

correctly, i.e., errors such that an error free circuit is obtained if
the errors identified by Procedure 2 are corrected. The average
multiplicity of the identified errors, over all correctly diagnosed
errors, is given next. The multiplicity is the number of com-
ponents found by Procedure 2 for a given error. This informa-
tion is given for both types of mappings considered. It can be
seen that in some cases, the greedy approach may not be
sufficient to correctly locate an error. Extensions of Procedure 2
that use branch-and-bound to improve the results are currently
being considered.
Table 6: Multiple macro, multiple input combination errors

bl fc
av. av.

circuit corr multip corr multipiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Z9sym 61 3.26 40 4.05
add6 72 4.38 52 4.40
adr4 85 4.72 94 4.74
alu1 100 5.00 100 5.00
alu2 62 4.18 67 4.54
alu3 64 4.31 61 4.61
co14 53 3.72 70 4.34
dk17 54 4.33 70 4.76
dk27 87 4.80 90 5.00
dk48 57 4.21 62 4.63
mish 91 0.80 91 0.80
radd 93 4.80 80 4.71
rckl 93 1.80 92 2.15
rd53 81 5.00 81 5.00
vg2 92 0.53 98 0.96
x1dn 94 0.94 95 0.98
x9dn 77 1.51 89 1.58
z4 95 4.64 96 4.72c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

The results for single interconnection errors are given in
Table 7. As in the case of single macro errors, complete correc-
tion is guaranteed in this case, and we are interested only in the
number of different modifications that can fix a given error.

Table 7: Single connection errors

av. errors av. errors
circuit bl fc circuit bl fc
iiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

Z9sym 15.13 11.72 dk48 20.81 22.69
add6 14.21 14.24 mish 94.40 94.40
adr4 11.22 11.19 radd 11.01 11.06
alu1 1.11 1.11 rckl 85.10 115.65
alu2 9.86 14.75 rd53 5.48 5.48
alu3 12.99 15.29 vg2 104.76 95.79
co14 7.53 14.07 x1dn 74.84 80.10
dk17 12.03 11.46 x9dn 76.73 70.62
dk27 4.77 5.65 z4 9.63 9.86cc

c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

6. Concluding remarks
We considered the problem of correcting errors in a macro-based
circuit. The problem formulation allowed the correction of errors
that arise both in the context of design error correction, before
the circuit is realized, and in the context where a physical circuit
needs to be corrected. Error correction was done based on simu-
lation of input patterns and comparison of an observed response
from the circuit-under-correction to an expected response. Gen-
eration of input patterns to facilitate correction is currently under
investigation. Two error classes were defined, namely, macro
errors and interconnection errors. Both single and multiple errors
of each type were considered. Accurate correction procedures
were given for single errors. Heuristics were given for correcting
multiple errors. Experimental results were given to demonstrate
the various correction procedures.

References
[1] K. Keutzer, "DAGON: Technology binding and local optimiza-

tion by DAG Matching", in Proc. 24th Design Autom. Conf.,
1987, pp. 341-347.

[2] M. S. Abadir, J. Ferguson and T. E. Kirkland, "Logic Design
Verification via Test Generation", IEEE Trans. on Computers,
Jan. 1988, pp. 138-148.

[3] S.-Y. Kuo, "Locating Logic Design Errors via Test Generation
and Don’t-Care Propagation", 1992 Europ. Design-Autom.
Conf., Sept. 1992, pp. 466-471.

[4] P.-Y. Chung and I. N. Hajj, "ACCORD: Automatic Catching and
Correction of Logic Design Errors in Combinational Circuits",
1992 Intl. Test Conf., pp. 742-751, 1992.

[5] I. Pomeranz and S. M. Reddy, "On Correction of Multiple
Design Errors", 3rd Intl. Conf. on VLSI and CAD, 1993.

[6] Y. Kukimoto and M. Fujita, "Rectification Method for Lookup-
Table Type FPGA’s", in Proc. 1992 Intl. Conf. on Computer-
Aided Design, Nov. 1992, pp. 54-61.

[7] E. J. McCluskey, "Test and Diagnosis Procedure for Digital Net-
works", Computer, Jan. 1971, pp. 17-20.

[8] R. E. Tulloss, "Fault Dictionary Compression: Recognizing when
a Fault May Be Unambiguously Represented by a Single Failure
Detection", 1980 Test Conf., Nov. 1980, pp. 368-370.

[9] R. Brayton, G. D. Hachtel, C. McMullen, and A. L.
Sangiovanni-Vincentelli, Logic Minimization Algorithms for
VLSI Synthesis, Kluwer Academic Publishers, 1984.

[10] I. Pomeranz and S. M. Reddy, "Testability Considerations in
Technology Mapping", 3rd Asia Test Symp., Nov. 1994.

[11] I. Pomeranz and S. M. Reddy, "On Error Correction in Macro-
Based Circuits", Technical Report No. 4-1-1994, ECE Dept., U.
of Iowa.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

