Synthesis of Hazard-Free Multi-level Logic under Multiple-Input
Changes from Binary Decision Diagrams

Bill Lin®*

Srinivas Devadas??

“IMEC Laboratory, B-3001 Leuven, Belgium, Email:billlin@imec.be
*Department of EECS, MIT, Cambridge, MA, Email:devadas@mit.edu

Abstract — We describe a new method for directly synthesiz-
ing a hazard-free multilevel logic implementation from a given
logic specification. The method is based on free/ordered Bi-
nary Decision Diagrams (BDD’s), and is naturally applica-
ble to multiple-output logic functions. Given an incompletely-
specified (multiple-output) Boolean function, the method pro-
duces a multilevel logic network that is hazard-free for a spec-
tfied set of multiple-input changes. We assume an arbitrary
(unbounded) gate and wire delay model under a pure delay
(PD) assumption, we permit multiple-input changes, and we
consider both static and dynamic hazards. This problem s
generally regarded as a difficult problem and it has important
applications in the field of asynchronous design. The method
has been automated and applied to a number of examples. The
results we have obtained are very promising.

1 Introduction

The design of correct asynchronous circuitry is a difficult task
since an asynchronous circuit can malfunction (i.e. produce
unexpected behavior) during execution if it is not free of haz-
ards, which correspond to undesired glitches in a circuit. This
is in contrast with synchronous design styles where the prob-
lem is avoided by the use of a global clocking scheme that
coordinates and synchronizes all collective activities.

In this paper, we focus on a particular class of hazards —
namely hazards in combinational logic. Hazard-free combina-
tional logic is critical to the correctness of most asynchronous
designs. Our goal in this work is to develop a method that can
synthesize combinational logic that avoids all combinational
hazards under a specified set of multiple-input changes. This
is a general combinational synthesis problem which arises in
many asynchronous sequential applications. For example, the
problem arises in the current synthesis trajectories for asyn-
chronous finite state machines [13, 17]. In this work, we as-
sume that gates and wires can have arbitrary delays, which
means we do not require bounded delay assumptions for cor-
rect operation or the use of delay elements to fix or filter out
glitches. We also assume a pure delay (PD) model, which
means we do not assume the presence of slow inertial delays
to insure correctness.

The two-level minimization version of the problem has
been addressed by a number of researchers in the past
[15, 7, 2, 3]. More recently, Nowick [14] has developed an exact
two-level minimizer that combines a number of previous ideas
on this problem. A limitation of the two-level implementation
approach is that it is not always possible to find a two-level
cover that can insure freedom from all static and dynamic
hazards even though a hazard-free multilevel implementation
may exist.

In this paper, we describe a new framework based on Bi-
nary Decision Diagrams (BDD’s) for synthesizing a hazard-

*Supported in part by the European Commission under the ES-
PRIT Project No. 6143 EXACT.

tSupported in part by the Defense Advanced Research Projects
Agency under contract N00014-91-J-1698 and in part by a NSF
Young Investigator Award with matching funds from Mitsubishi
and IBM Corporation.

Permissionto copy without fee al or part of this materia is granted,
provided that the copies are not made or distributed for direct commercia
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice isgiven that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires afee and/or specific permission.

free multilevel logic implementation directly from a logic de-
scription. A Binary decision diagram is a directed acyclic
graph representation of Boolean function. BDD’s have gained
widespread use in the areas of formal verification and logic
synthesis due to the canonical and easily manipulable nature
of a class of BDD’s [4]. Our framework is based on the use of
both free as well as ordered BDD’s and is naturally applicable
to multiple-output logic functions. We permit multiple-input
changes, and we consider both static and dynamic hazards,
which means the resulting framework is general and power-
ful. In particular, we show that a multiplexor logic network
derived from a reduced free or ordered BDD by replacing each
node in the BDD by a two-input multiplexor is free of all
static logic hazards. For dynamic logic hazards, we have de-
veloped the Trigger Signal Ordering Requirement (or T.SO-
Requirement for short) on the BDD variable ordering that, if
satisfied, will lead to a multiplexor logic network that is also
free of all dynamic logic hazards for the given set of allowable
input transitions. The resulting multiplexor logic network is
proved to be fully hazard-free under arbitrary gate and wire
delays. While it is not always possible to generate hazard-free
implementations using our technique, even if an implementa-
tion theoretically exists, in many cases we are able to generate
hazard-free multilevel implementations when hazard-free two-
level implementations cannot be found.

We have also developed safe replacement strategies that
can replace a multiplexor by a functional equivalent sum-of-
products representation which preserves the hazard-free prop-
erties. We provide a characterization on when such replace-
ments are possible. The part of the network that can be safely
replaced by AND- and OR- gates can be further optimized us-
ing non-hazard-increasing logic transformations, such as the
ones discussed in [9].

Our combinational logic synthesis method can be applied
directly to the synthesis of hazard-free logic for asynchronous
state machines that operate under the fundamental mode as-
sumption [13, 17]. Further, it can be generalized to the ex-
tended burst-mode state machine case [18]. We have auto-
mated our method and have applied it to a number of exam-
ples. The results we have obtained are very promising.

2 Background
2.1

A transition cube is a cube with a start point and an end
point. Given input states A and B, the transition cube [A, B]
from A to B has start point A and end point B and contains all
minterms that can be reached during a transition from A to B.
It can be represented by the smallest cube that contains both
A and B. The open transition cube [A, B) from A to B is
defined as [4, B] — B. A multiple-input change or input
transition from input state A to B is described by transition
cube [A, B]. We will use the notation A = B to denote the
the input transition from A to B. Input variables are assumed
to change simultaneously. Equivalently, since inputs may be
skewed arbitrarily by wire delays, inputs can be assumed to
change monotonically in any order and at any time. Once a
multiple-input change occurs, no further input changes may

Basic Definitions

[0 1994 ACM 0-89791-690-5/94/0011/0542 $3.50

occur until the circuit has stabilized. An input transition from
state A to B for a Boolean function f is a static transition
if f(A)= f(B); it is a dynamic transition if f(A) # f(B).
In the case of an incompletely specified function, we assume
that f is fully defined for every specified static and dynamic
transition; that is, for every X € [A, B], f(X) € {0,1}.

2.2 Circuit Delays

We assume gates and wires in a combinational circuit can have
arbitrary finite delays. A pure delay model is assumed.

2.3 Function Hazards

A function f which does not change monotonically during
an input transition is said to have a function hazard in the
transition.

Definition 2.1 A Boolean function f contains a static
function hazard for input transition from A to C iff (1)
f(A) = f(C), and (2) there exists some state B € [A, C] such

that f(A) # f(B).

Definition 2.2 A Boolean function f contains a dynamic
function hazard for input transition from A to D iff (1)
f(A) # f(D), and (2) there exists a pair of states B and C
(A # B,C # D) such that B € [A,D] and C € [B, D] and
f(B) = f(D) and f(A) = f(C).

If a transition has a function hazard, no implementation
of the function can avoid a glitch on the transition, assuming
arbitrary gate and wire delays [7, 3].

2.4 Logic Hazards

Definition 2.3 A combinational circuit for a function f con-
tains a static logic hazard for the input transition from A
to B iff (1) f(A) = f(B), and (2) for some delay assignment,
the circuit’s output changes momentarily during the transition
interval.

Definition 2.4 A combinational circuit for a function f con-
tains a dynamic logic hazard for the input transition from
A to B iff (1) f(A) # f(B), and (2) for some delay assign-
ment, the circuit’s output 18 not monotonic during the trans:-
tion interval.

3 BDDs and Multiplexor Networks

3.1 Binary Decision Diagrams

In this section, we will restate from [4] the definitions for
free Binary Decision Diagrams and reduced ordered Binary
Decision Diagrams.

Definition 3.1 (BDD) A Binary Decision Diagram is a
rooted, directed acyclic graph with vertex set V containing two
types of vertices. A non-terminal verter v has as attributes
an argument index index(v) € {1,...,n} and two children
low(v), high(v) € V. A terminal vertex v has as attribute a
value value(v) € {0,1}.

The correspondence between BDD’s and Boolean functions is
defined as follows:

Definition 3.2 A Binary Decision Diagram G having root
vertex v denotes a function f, defined recursively as: If v s
a terminal vertez, then f, = value(v), which may be 0 or 1.
If v is a non-terminal verter with index(v) = i, then

f’u(xla R xn) = x_i'flow(v)(xla R xn)‘i'xi'fhigh(v)(xla e

z; 15 called the decision variable for verter v.

,mn)

(@) (b) (c)

Figure 1: (a) A BDD. (b) The derived multiplexor multilevel
network. (c) Simplification of multiplexors by constant prop-
agation.

We require the following additional properties in Binary De-
cision Diagrams: (1) When traversing any path from a termi-
nal vertex to the root vertex we can encounter each decision
variable at most once. (2) A reduced BDD is one in which
low(v) # high(v) for any vertex v and no two subgraphs in
the BDD are identical.

From Definition 3.1, a canonical form called a reduced
ordered Binary Decision Diagram [4] (or simply ordered
BDD) can be derived if the following restrictions are im-
posed: for any non-terminal vertex v, if low(v) is also a
non-terminal, then we must have index(v) < index(low(v));
and if high(v) is also a non-terminal, then we must have
index(v) < index(high(v)).

A reduced free Binary Decision Diagram (or simply
free BDD) is a BDD where we require that we encounter each
variable at most once in any path in the BDD and that the
BDD is reduced, but do not require a strict variable ordering
restrictions on BDD’s. That is, different paths may have a dif-
ferent variable ordering as long as each variable is encountered
at most once along any path.

3.2 Deriving a Multiplexor Network

A multilevel logic network can be derived directly from a
BDD by replacing each BDD vertex with a two-input MUX-
ELEMENT. An example is shown in Figure 1. A BDD and
its corresponding derived multiplexor multilevel network are
shown in Figure 1(a) and (b), respectively. The multiplexor
network can be simplified by means of constant propagation.
That is, the MUX-ELEMENTS can be replaced by simpler gates
if one or more of its inputs is a constant. This propagation
can be carried out topologically from inputs to outputs. The
simplified network is shown in Figure 1(c).

4 Static Hazard-Free Synthesis

The hazard-free synthesis problem can be stated as follows.
Given a (possibly incompletely specified) Boolean function
f, and a set, T of specified function-hazard-free (both static
and dynamic) input transitions of f, find a multilevel logic
implementation that is free of logic hazards for every input
transition t € T

In this paper, we propose synthesis procedures from BD-
D’s that can produce hazard-free multilevel logic implementa-
tions. Let us first consider a simple procedure that transform
an incompletely specified function f to a multiplexor network.
If the function is incompletely specified, then some preprocess-
ing is required as follows: in the case of an incompletely spec-
ified function, the don’t-care minterms contained inside some
specified transition ¢ € T' must be assigned properly so that no

Figure 2: A transistor-level implementation of a hazard-free
multiplexor.

functional hazards can occur. The other don’t care minterms
can be used for optimization, for example using techniques
described in [6] (cf. the restrict and the generalized cofactor
operators). So for all practical purposes, we only need to con-
sider completely specified functions. Once this preprocessing
step 1s performed, the synthesis procedure is as follows:

1. Construct a BDD G for the Boolean function f. The
BDD here is meant to be either an ordered or a free
reduced BDD, where each variable can appear at most
once along any path.

2. Generate a multilevel circuit C' by replacing each BDD
node with a two-input MUX-ELEMENT.

For the hazard analysis in this section, we will first assume
that the MUX-ELEMENT is an atomic gate with no internal
hazards, and that the MUX-ELEMENT and the wires connect-
ing them can have arbitrary delays. An implementation of a
hazard-free multiplexor is shown in Figure 2. The only con-
straint on the layout of the gate is that the differencein the
delays of the two paths from the control input « that pass
through the buffer and the inverter should be smaller than
the inertial delay corresponding to a transistor turning on or
off.

The logical function implemented by the gateis f = a- fo+
@ - fz. This function is free of all dynamic hazards, but has
a potential static logic hazard on the 0 — 1 transition on «
with f, and fz constant at 1. However, if the path balancing
criterion stated above is met, then the implementation of the
MUX-ELEMENT will not have a static hazard.

We will first analyze static hazard properties of such net-
works assuming the MUX-ELEMENT as a basic hazard-free ele-
ment. We will defer to Section 6 the discussion regarding the
replacement of MUX-ELEMENTs with basic gates, the constant
propagation issue, and possible simplification and resynthesis
steps.

Theorem 4.1 (Static logic hazard-freeness) C is free of
all possible static hazards under any multiple-input change
that does not correspond to a function hazard.

Proof: Without loss of generality we will assume a single
specified static transition A = B. The circuit ' implements
the Boolean function f which is free of function hazards for
the specified input transition A = B. Further the circuit C
has been derived using the synthesis procedure outlined.

Assume that the multiplexor driving the output of C' has
@ as its control variable. The data inputs to the multiplexor
corresponds to functions f, and fz, the Shannon cofactors of
f with respect to ¢ and @.

Assume that f is to make a static 1 — 1 transition, i.e.
f(A)=1 and f(B)=1. We will first consider the case when

the input « is at a constant 1. Clearly, if @ is a 1, f will be

free of static hazards if f, remains at a constant 1 and is free
of hazards. We know that f.(A) =1 and fo(B)=1. Further
we know that Vm € [A, B], fa(m) = 1. Otherwise, it implies
that there is a function hazard associated with f. Since f,
can only make a static transition in A = B, clearly f will
be free of static hazards if f, is free of static hazards. One
can recursively apply the analysis above to f, to show that it
is free of static hazards. We will finally reach the base case
where the control variable to the muliplexor is z and both the
data inputs are constants. If both data inputs are the same,
then this multiplexor will not exist in the BDD or the circuit C'
by the reduction rules of BDDs. Otherwise, this multiplexor
reduces to either the literal function z or its negation . Then
the input z is assumed to remain at constant 1 in the case of
z and at constant 0 in the case of T. Otherwise, there is a
function hazard associated with f.

In the case when the input a is at a constant 0, then f will
be free of static hazards if fz is free of hazards. This follows
from similar arguments as above.

Next consider the case when the input ¢ makes a 0 — 1
transition or a 1 — 0 transition corresponding to A = B.
Clearly f will be free of static hazards if both fz and f, are
free of hazards. We claim that both fz(A) = fz(B) =1 and
fa(A) = fa(B) = 1. Further we claim that Vmm € [A, B],
fa(m) = fa(m) = 1. Therefore, both fz and f, can only
make a static transition in A = B. Thus, it is sufficient to
show that they are free of static hazards. Again, this argu-
ment can be recursively applied to fz and f, with the same
base case as above. Since both fz and f, remain at constant 1
and are hazard free, only the control variable a can change at
the multiplexor associated at the output of f. By the assump-
tion that the multiplexor is an atomic gate and is internally
hazard-free, then f is also free of static hazards for the static
transition [A, B].

The proof for the case when f makes a static 0 — 0 tran-
sition follows similarly. O

Theorem 4.1 states that the derived circuit is free of static
hazards for any input transition that does not cause a function
hazard. So we now say that a multiplexor implementation
from either a free or an ordered BDD is free of all function
hazards (by definition) and free of all static logic hazards. An
important corollary is as follows.!

Corollary 4.1 The static hazard-freeness of C is indepen-
dent of the variable ordering chosen for the BDD G. Further,
the BDD G can be a free BDD with different orderings along
different paths.

This means that there are no restrictions on the variable or-
dering for static hazards. This is however not always the case
for dynamic logic hazards, as will be described next.

5 Dynamic Hazard-Free Synthesis

While a multiplexor implementation derived from a reduced
BDD is guaranteed to be free of static logic hazards, it is
not necessarily free of dynamic logic hazards. In this section,
we will first characterize the problem. Then we will present a
method that will ensure the non-existence of dynamic hazards
as well.

5.1 The Problem

Let us consider an example shown in Figure 3. Let us consider
the dynamic input transition

0+ 0%0 =110, where f(000) =1 and f(110) =0.

1Due to space limitations, the proofs to some theorems and
corollaries have been omitted. They can be found in [11].

T2 b J
c=0

T3 T1 ﬂ
T2

Figure 4: BDD implementation with ordering a < b < c.

We will use ” *” to indicate that the corresponding signal

is excited to change. In this case, the signals a and b are
excitedto make the transitionsa+ and b+. The corresponding
transition cube is

[000,110] = — — 0.

Now suppose we implement an ordered BDD with the variable
ordering ¢ < b < ¢. The corresponding BDD is shown in
Figure 4.

Let us consider a multiplexor implementation translated
from this BDD. This multiplexor implementation can exhibit
a dynamic hazard as follows:

1. Imitially, @« = 0, b = 0, ¢ = 0. This implies 71 = 1,
T2 =1, T3 =0, and F = 1, where the T%’s are the
output of the multiplexors and F' is the output of the
circuit.

2. In the transition 000 = 110, both an a+ and a b+ can
occur concurrently. Recall that under the unbounded
gate/wire delay assumption, either a+ can occur first or
b+ can occur first, but we must consider both transition
orderings. Let us assume b4 occurs first and makes a
0 — 1 transition.

3. Then T2 makes a 1 — 0 transition, but 71 is slow to
change. F makes a 1 — 0 transition.

4. Then let a+ happen, making a 0 — 1 transition, but 71
is still slow to change to 0, meaning it is still at value
1. This will cause F' to change 0 — 1 back to 1.

5. Finally, 71 changes from 1 — 0. This causes F to
change 1 — 0 back to 0. Thus, the transition sequence
1 —0— 1 — 0 has occurred on F, a dynamic hazard
has been manifested.

However, when a+ occurs first, the dynamic transition takes
place without any dynamic logic hazards. This is because
when a4+ occurs first, nothing changes. Then when b4 occurs,
T1 will change, which will cause F' to change, but F only
changes once.

Now consider instead an alternative BDD implementation
using variable orderings b < @ < ¢ or ¢ < b < @, shown in
Figure 5 (a) and (b), respectively.

Let us first consider a multiplexor implementation trans-
lated from the BDD shown in Figure 5 (a). This multiplexor

(A) b<a<c (B) c<b<a

Figure 5: BDD implementation with orderings (a) b < ¢ < ¢
and (b) ¢ < b < a.

implementation is free of dynamic hazards under the transi-
tion 000 = 110. The analysis is as follows.

1. Initially, @ = 0, b = 0, ¢ = 0. This implies 71 = 1,
T2 =0,and F =1.

2. If b+ happens first, then F will change 1 — 0. Then
when a+ occurs, nothing else changes. Hence there is
no dynamic hazard.

3. If a4+ happens first, nothing happens. Then when b+
occurs, F' changes from 1 — 0. Again no dynamic haz-
ard occurs.

Let us now consider a multiplexor implementation trans-
lated from the BDD shown in Figure 5 (b). This multiplexor
implementation is free of dynamic hazards under the transi-
tion 000 = 110. The analysis is as follows.

1. Initially, @ = 0, b = 0, ¢ = 0. This implies 71 = 1,

T2 =1,and F =1.

2. If b+ happens first, then F will change 1 — 0. Then
when a4+ occurs, nothing else changes. Hence no dy-
namic hazard occurs.

3. If a4+ happens first, nothing happens. Then when b+
occurs, F' changes from 1 — 0. Again no dynamic haz-
ard occurs.

From this informal introduction, we will show that the vari-
able ordering in fact plays a very important role in guaran-
teeing freedom from dynamic hazards. Recall that we have
already stated that BDD implementations are free of static
hazards. The removal of dynamic hazards is addressed next.

5.2 Conditions for Dynamic Hazard-Freeness

In this section, we will consider the requirements on the BDD
synthesis procedure in order to produce a multiplexor imple-
mentation free of dynamic logic hazards. We will first consider
this requirement with respect to an ordered BDD implementa-
tion. We will defer to Section 5.4 the discussion regarding the
employment of free or unordered BDD’s to satisfy the same
requirement.

The key to the analysis is the concept of trigger signals.

Definition 5.1 (Context signal) Given an input transi-
tion A = B, a signal q ts said to be a context signal if
it changes its value across A and B. If it remains at a con-
stant value in A and B, then it is said to be a non-context
stgnal.

By the definition of input transition (cf. Section 2.1), a
context signal can only monotonically change once during a
A = B transition.

Definition 5.2 (Excited signal) Given a state X € [A, B]
in the input transition A = B, a signal q is said to be excited
in X of and only of its value in X is equal to its value in A.

Definition 5.3 (Quiescent signal) Given a state X €
[A, B] in the input transition A = B, a context signal q is
said to be a quiescent signal in X if its value in X is equal
to its value in B.

In the example shown in Figure 3, signals a and b are “con-
text” signals in the transition 000 = 110 bcause both are en-
abled to change values, whereas ¢ is a “non-context” signal
in this transition. Signals a and b are “excited” in state 000
because both signals can change. In the state 100, only & is
“excited”; the signal a is “quiescent” in state 100.

Definition 5.4 (Trigger state and signal) A state X €
[A, B] in a dynamic input transition A = B is said to be
a trigger state for A = B if and only if there is an eax-
cited signal q (g4 or q—) such that the state Y € [A, B]
reached by changing q has a different output value from X :
ioc., F(X) # (V).

The signal q 1s called a trigger signal of X in A = B,
and the corresponding transition, either g+ or q—, s called
a trigger transition of X in A = B. In a given trigger
state, an excited signal that will not cause the output to change
is referred to as a non-trigger signal. [Its corresponding
transition is referred to as a non-trigger transition.

The set of mazimally connected trigger states in a dynamic
input transition is called a trigger region.

Referring again to Figure 3, states 000 and states 100 are
“trigger states” since f(000) and f(100) are both equal to
“1”, but there exists a signal transition from either state that
will cause the output to change to “0”.

In the case of 000, both a and b are “excited” to change.
Changing b will cause the output to change to “0”. In this
case, b is a “trigger signal” and b+ is a “trigger transition”.
Changing a first will not cause the output to change (it re-
quires changing b also). In this case, a is a “non-trigger signal”
and a+ is a “non-trigger transition”.

Informally, the basic idea here i1s to construct a BDD such
that “trigger signals” are ordered before “non-trigger sig-
nals”. That is, for every trigger state for a given dynamic
input transition A = B, the BDD variable ordering must be
such that the trigger signals appear in the variable ordering
before the non-trigger signals. This is formalized in the fol-
lowing requirement.

Definition 5.5 (Trigger signal ordering) Given a func-
tion f, an ordered BDD G for f is said to satisfy the Trigger
Signal Ordering (TSO-) Requirement for a dynamic in-
put transition A = B in T if and only if the following two
conditions hold: (1) for every trigger state X € [A, B], the
trigger signal variables in X appear in the variable ordering
before the non-trigger signal variables; and (2) for every trig-
ger state X € [A, B] with multiple trigger signals, the trigger
stgnal variables in X all appear before each of the quiescent
segnal variables, or all appear after each of the quiescent signal
variables. The BDD G is said to satisfy the TSO-requirement
globally if and only if its variable ordering satisfies the TSO-
requirement for every specified dynamic input transition.

The second condition ensures that there is no quiescent signal
“in between” any trigger signals during any specified transi-
tion.

If a strict variable ordering can be found that can satisfy
the TSO-requirement globally, then the derived multiplexor
network is also free of dynamic hazards.

Theorem 5.1 (Dynamic logic hazard-freedom) C s
free of dynamic hazards for all specified dynamic transitions.

Proof: Without loss of generality we will assume a single
specified dynamic transition A = B. The circuit ¢ imple-
ments the Boolean function f which is free of function hazards
for the specified input transition A = B. Further the circuit
C has been derived using the synthesis procedure outlined.
Assume that the multiplexor driving the output of C' has
a as its control variable. The data inputs to the multiplexor
correspond to functions f, and fz, the Shannon cofactors of
f with respect to ¢ and @.
Assume that f is to make a 0 — 1 transition, i.e. f(A) =10
and f(B)=1.
1. We will first consider the case when the input a is at a
constant 1. Clearly, if a is a 1, f will be free of dynamic
hazards if f, is free of dynamic hazards.

2. If a is a constant 0, f will be free of dynamic hazards if
fz 18 free of dynamic hazards.

3. Next consider the case when the input ¢ makes a 0 — 1
transition corresponding to A = B.

(a) Consider the case when fo(A) =0 and fo(B) =
We claim that fz(A) = fz(B) = 0. Suppose fg(A)
1. Then, clearly, f(A) # 0. Therefore, fz(A4) = 0.
Suppose fz(B) = 1. There exists a cube m € [A, B]
such that fz(m) = 1. Clearly the cube m does not
contain the literal a or @ since the cofactor fz is not
dependent on . There are two possibilities. In the first
case fq(m) = 0. If there is such a cube, then we have
a function hazard on f, on the path in the transition
cube [A, B] corresponding to A = @-m = a-m = B,
because f(A) = 0, f(@-m) =1, f(a-m) = 0, and
J(B)=1.

The second case corresponds to fo(m) = 1. Consider
the path in the transition cube A = a-m = ¢-m = B.
We claim that a is a non-trigger signal in state A. If
is a trigger signal in state A, then when a goes 0 — 1
so does f. This means that fo(A) = 1. Obviously since
f(B) =1 and « is making a 0 — 1 transition, fo(B) =
1. Case b below corresponds to fa(A) = fo(B) =1.
Therefore, in state A the signal a is a non-trigger signal.
If only a single signal, call it s, changes from A to @-m,
then s is clearly a trigger signal in A. We clearly have
a violation of Condition 1 of the TSO-requirement with
a non-trigger signal a being before the trigger signal s
in the ordering.

Multiple signals could change from A to @-m. Without
loss of generality consider the case where two signals
s1 and s2 change from A to @-m. We have two paths
corresponding to s1 changing first and s changing first.
Denote these paths A = a-m; = a-mand A = a-m2 =
a-m. If f(@-my)=1(f(@-mz)=1) then s1 (s2) is a
trigger signal in state A. Since a is a non-trigger signal
in state A we have violated Condition 1 of the TSO-
requirement.

Therefore, we require f(a-mi) = f(@-m2) = 0. If
a 1s a non-trigger signal in either state @ - m1 or state
@-mo, then we again have a violation of Condition 1 of
the TSO-requirement, since sz and s; are, respectively,
trigger signals in states @ - mq and @ - mo.

Therefore, a 1s a trigger signal in both states @-m; and
a@-mo. Now, in state @-m1, we have two trigger signals,
namely @ and s2 and a quiescent signal s;. Similarly, in
state @ - m2, we have two trigger signals, namely a and
s1 and a quiescent signal s. The orderings a < $1 < s2
or a < s» < 81 will both cause a violation of Condition
2 of the TSO-requirement. (A quiescent signal appears
in between two trigger signals.)

In all cases, the ordering requirement imposed in the
construction of C has been violated. Therefore fg(A) =

1.

fa(B) = 0. Since fz is itself a circuit derived from a
BDD, by Theorem 4.1, fz is free of static hazards and
will stay at a steady 0 throughout A = B. fz cannot
have function hazards since that would imply a dynamic
function hazard in f on A = B.

(b) Consider the case when fo(A) = fo(B) = 1. Since
fa 1tself is a circuit obtained from a BDD, it is free of
static hazards by Theorem 4.1. Further, if f, has a
function hazard on A = B, then f would have a func-
tion hazard. Therefore f, is function hazard-free on
A = B. If fzis constant at a 0, then by the above ar-
gument fz would be free of static hazards as well. This
means f would be free of dynamic and static hazards.
If fz makes a 0 — 1 transition on A = B then f will
be dynamic hazard-free if fz is dynamic hazard-free. If
either ¢« makes a 0 — 1 transition or if fz makesa 0 — 1
transition then f follows and stays at a 1.

Therefore in all cases, if either f, or fzis free of dynamic
hazards in its 0 — 1 transition then f will be free of
dynamic hazards.

4. A similar argument can be made for the 1 — 0 transi-
tion on @ in A = B to show that f is dynamic hazard-
free if fz or f4 is dynamic hazard-free.

For each of the four possibilities corresponding to a in A =
B, we are guaranteed that if at most one of f, or f3 is free
of dynamic hazards then so is f. We also know that in each
case the particular f, or fgz will be free of function hazards
on A = B. Further the trigger signal ordering requirement
is a global imposition on C, and the change in f is caused by
the particular f, or fz corresponding to each case. Therefore,
one can apply the arguments above at any level in C. We will
finally reach the primary inputs which are dynamic hazard-
free by definition. Therefore, f is dynamic hazard-free.

The proof for the case when f makes a 1 — 0 transition
follows similarly. O

As we have shown already that a BDD implementation is free
of static logic hazards and is free of function hazards by the
problem definition, then C' derived using the above procedure
is fully hazard-free for all hazards under the specified input
transitions.

Theorem 5.2 (Complete hazard-freedom) C is free of
static and dynamic hazards, both function and logical, for all
specified input transitions.

Corollary 5.1 A BDD-based circuit C under any ordering is
free of hazards under all single-input changes.

Corollary 5.2 A Circuit C derived from a BDD G is hazard-
free to all multiple-input dynamic transitions A = B as long
as either VX € (A, B], f(X) is a constant or VX € [A, B),
f(X) is a constant.

Note that this corollary shows that there are no ordering con-
straints generated on “burst-mode” transitions.

A systematic procedure for finding a variable ordering, if
one exists, that satisfies the TSO-requirement is given in [11].

5.3 An Example

To illustrate the ideas, we have an example from Nowick
[12] that was used to illustrate his two-level minimizer. The
Karnaugh map of the example is shown in Figure 6. For
this example, this is a set of four specified input transitions
T = {t1,12,%3,12}. These transitions are:

ab

cd
R
0 |1 1 \‘ 1 1 |
3 | Yat [
01 || o/ 1 \‘ 1 N1 |
— === {5
(. =
11 || 1 1 1o
| gl
t4 i H
10 || 1 1 0 go I 2

Figure 7: Dynamic hazard free BDD implementation with
ordering a < b < ¢ < d.

t1 10%01* = 1100

1-1 static {b+,d—} transition
t, 1010* = 1011 0-

1-

1-

1
0 static {d+} transition

0 dynamic {b—, d+} transition

0 dynamic {a+, b—,d—} transition

ts 01%00* = 0001
t, 0"1711* = 1010

The input transitions are indicated in Figure 6. The start-
ing point of each transition is described by a dot, and its
transition cube is described by a dotted circle.

From Theorem 4.1, the BDD implementation is free of
static hazards, so transitions ¢; and ¢ will not cause a prob-
lem.

For dynamic transitions ¢; and ¢4, we need to analyze the
variable ordering requirements to guarantee that the BDD
implementation is dynamic hazard-free for these two specified
transitions. Indeed, the variable ordering a < b < ¢ < d will
ensure the satisfaction of the TSO-requirements for dynamic
transitions t; and t4. Therefore, the resulting BDD implemen-
tation is also free of dynamic hazards. The BDD is shown in
Figure 7.

It has been shown that it is not always possible to produce
a hazard-free two-level SOP cover. For example, if we add the
following specified transition to the above example (shown in
Figure 6), then it can be shown that no hazard-free two-level
SOP cover exists [14].

ts 110"1 = 1111 1-1 static {c+} transition

However, with the BDD approach, the above BDD imple-
mentation is also free of hazards for this transition (since it is
a static transition), as well as the other specified transitions.

5.4 Synthesis from Free BDD’s

Although in the example shown in Section 5.3 we can find a
variable ordering that satisfied all ordering requirements, it is
not always possible to find such a strict variable ordering in
the general case.

It 1s possible to have “cyclic” ordering constraints that can-
not be satisfied using a strict variable ordering. For example,
it could be that in one specified dynamic input transition, z is
required to appear before y; but in another specified dynamic
input transition, y is required to appear before z. In this case,
we have a cyclic constraint.

Cyclic constraints can frequently be resolved by using free
BDD’s where different variable orderings may be used along
different paths. (Note that a free BDD still has the constraint
of a variable appearing at most once along any path.)

Recall that each “path” in a reduced BDD corresponds to
a “cube” in a disjoint cover. In this sense, a “path” covers a
set of states contained in the cube. Intuitively, we can derive
“local” ordering requirements for each specified dynamic input
transition A = B separately. Then we derive a free BDD
where the ordering constraints are respected for each dynamic
input transition A = B.

A procedure for finding a free BDD, if one exists, that
satisfies the T'SO-requirement is given in [11].

6 Replacement and Resynthesis
6.1 Replacement Circuits

It is worthwhile to replace the multiplexors with primitive
gates so non-hazard-increasing logic transformations (e.g., [9])
can be applied on the network to further reduce the area or
improve the performance.

Each MUX-ELEMENT f = a - fo + @ - fz in the synthesized
circuit C' will have the following conditions at its inputs by
Theorem 5.1.

1. If the control input is constant at 1, f, and fz can both
change 0 — 1 or 1 — 0.

2. If the control input is constant at 0, f, and fz can both
change 0 — 1 or 1 — 0.

3. If a makes a transition, we have at most one of f, or fz
making a transition.

We consider the characteristics of three primitive gate re-

placement circuits for the MUX-ELEMENT.

At f=a-futT fx
This circuit has a static logic hazard on the 0 — 1
transition on a with f, and fz constant at 1. It is free
of all dynamic hazards.

B: f=(a+fo) fota fo
This is free of all static hazards but has dynamic haz-
ards for the case where ¢ = 0, and f, and fz make
opposite polarity transitions.

C: f=a-fot(@+ fo) f5
This is free of all static hazards but has dynamic haz-
ards for the case where ¢ = 1, and f, and fz make
opposite polarity transitions.

Our replacement strategy is as follows:

o If the MUX-ELEMENT has the conditions 1) and/or 2) at
its inputs, but not 3), we use replacement circuit A.

o If the MUX-ELEMENT has the conditions 1) and/or 3) at
its inputs, but not 2), we use replacement circuit B.

o If the MUX-ELEMENT has the conditions 2) and/or 3) at
its inputs, but not 1), we use replacement circuit C.

o If the MUX-ELEMENT has the conditions 1), 2) and 3) at
its inputs, we do not replace it.

In the majority of the cases, the multiplexor circuit can
be transformed into one consisting entirely of primitive gates.
The transformation depends on the input conditions at each
multiplexor in the network. Note that if we are successful
in replacing all multiplexors with the primitive gate imple-
mentation A, then we can convert the network into a disjoint
two-level cover? that also satisfies the hazard freedom require-
ments. However, the two-level network may be considerably
larger than the multiplexor-based network.

6.2 Constant Propagation

Since some of the MUX-ELEMENTS are connected to constant 0
and 1 values, they can be simplified. This simplification does
not change the hazard characteristics of the circuit. After
replacement, the primitive gate circuits can be simplified if
they have constant inputs. For example the primitive gate

circuit
f=l+f3) fata fz
simplifies to
f=afz
if f. is connected to logical 0.

6.3 Handling Cyclic Constraints Using Replacement

In some cases, when cyclic ordering constraints exist that can-
not be satisfied even using a free BDD implementation it may
be possible to simplify certain multiplexors in the circuit to
produce a hazard-free realization.

Assume that the TSO ordering requirement produces a
cyclic ordering graph. We discard a minimal number of
constraints so as to produce an acyclic ordering graph. In
particular, we discard constraints generated by Condition 2
of the TSO-requirement. Then, we generate a BDD and a
multiplexor-based network using an ordering that satisfies the
acyclic set of constraints. Of course, given that we have vi-
olated the T'SO ordering requirement, the resulting network
is not necessarily hazard-free. (It is possible that the result-
ing network obtained under the smaller set of constraints is
hazard-free because the T'SO-requirement is a sufficient, and
not necessary, condition for hazard freedom.)

In some cases, it is possible to simplify multiplexors to
make the network hazard-free. In particular, we check for the
following cases:

1. A dynamic hazard is caused at a multiplexor because
its control input «, and data inputs f, and fz all make
0 — 1 transitions. We check if the logical functions f,
and fz are such that fz =1 = f, = 1. If so, we replace
the multiplexor f=a- fo +a- fz with f =a - fo + fz
This eliminates the dynamic hazard, since when fg goes
0 — 1 the output f goes 0 — 1, and both a and f, have
to go 0 — 1 for the output to go 0 — 1.

2. A dynamic hazard is caused at a multiplexor because
its control input @ makes a 1 — 0 transition, and data
inputs f, and fgz make 0 — 1 transitions. We check if
fo = 1 = fz = 1. If so, we replace the multiplexor
with f = fo+a- fgz. Again, this eliminates the dynamic
hazard.

3. Same as Case 1 except that a, f, and fz make 1 — 0
transitions.

4. Same as Case 2 except that ¢ makes a 0 — 1 transition,
and f, and fz make 1 — 0 transitions.
7 Experimental Results

We have implemented the techniques described in this paper
and have tested them on a number of examples.

2 A disjoint cover is one in which each cube in the cover does not
intersect any other cube.

name in/out | two-level | multilevel
literals literals

vanbekbergen 4/3 15 15
chu-opt 4/3 16 13
dme 5/3 16 12
dme-opt 5/3 20 14
dme-fast 5/3 15 16
dme-fast-opt 5/3 26 27
pe-send-ifc 7/3 87 65
scsi-ctrl 12/5 395 512
q42 5/3 27 24
binary-counter 8/7 110 80
binary-counter-co 9/8 122 88
cache-ctrl 36/20 1016 1379
tsend 16/9 504 583
tsend-bm 12/6 130 88
isend-bm 13/7 256 103
abcs 18/9 292 278
stetson-pl 30/17 542 754
stetson-p2 24/16 232 319

Table 1: Comparison between two-level and multilevel real-
izations when hazard-freedom is required under a specified set
of multiple-input static and dynamic transitions.

We present two sets of results. The results in Table 1
correspond to a direct comparison with the two-level hazard-
free synthesis procedure of [14]. Hazard-free two-level and
BDD-based circuits were synthesized using the specified set
of static and dynamic transitions for the benchmark exam-
ples given in [14]. For the BDD-based circuits, a hazard-free
MUX-ELEMENT requiring four literals was assumed. The initial
two-level circuits contained some very large fanin gates which
were decomposed into two-input gates to report the literal
counts. For example, the initial two-level circuit correspond-
ing to scsi-ctrl has a 19-input OR gate. This decomposition
did not alter the hazard properties of the circuits. The literal
counts for the BDD-based realizations are comparable to the
two-level realizations in most examples.

Our BDD-based realizations under any ordering are guar-
anteed to be hazard-free for all static transitions by Theorem
4.1. However, this is not true of the two-level realizations of
Table 1. In order to make a two-level circuit hazard-free for
static transitions, all the prime implicants of the logic function
have to be included in the realization. This results in a sub-
stantially greater number of literals. A comparison between
two-level and multilevel realizations when hazard-freedom is
required for all static multiple-input change transitions is pre-
sented in Table 2. The last three examples in Table 2 are
four-bit, eight-bit and sixteen-bit adder circuits. The BDD-
based realization for circuits such as adders and comparators
is very efficient and is exponentially smaller than the two-level
realization. While there are other asynchronous synthesis tra-
jectories, notably of the self-timed variety, that can implement
circuits such as adders efficiently, we include Table 2 to indi-
cate an extreme case in the comparison between BDD-based
circuits and two-level circuits.

In other design scenarios, hazard-freedom is required under
all single-input changes. By Corollary 5.1, BDD-based real-
izations (under any ordering) are hazard-free under all single-
input dynamic transitions. In order to ensure hazard-freedom
under all single-input dynamic transitions a significant num-
ber of additional prime implicants have to be added to the
larger circuits of Table 1.

The CPU times required for BDD-based synthesis was on

name in/out | primes | two-level | multilevel
literals literals

vanbekbergen 4/3 6 15 15
chu-opt 4/3 4 16 13
dme 5/3 4 16 12
dme-opt 5/3 4 20 14
dme-fast 5/3 5 15 16
dme-fast-opt 5/3 8 26 27
pe-send-ifc 7/3 19 122 65
scsi-ctrl 12/5 147 1125 512
adderd 9/5 135 684 68
adder8 17/9 2519 21692 136
adder16 33/17 * * 272

Table 2: Comparison between two-level and multilevel real-
izations when hazard-freedom is required under a specified set
of multiple-input dynamic transitions and all multiple-input
static transitions.

the order of a few seconds on a DECstation 5000.

Acknowledgements — We would like to thank Alex Kon-
dratyev, Ken Yun, and Dave Dill for providing detailed and
constructive comments to an earlier draft of this work. We
also would like to thank Steve Nowick and Peter Vanbekber-
gen for various helpful discussions on hazard-free synthesis
problems.

References

[1] P.A. Beerel and T. Meng. Automatic gate-level synthesis of speed-
independent circuits. In ITCCAD-1992.

[2] J. Beister. A unified approach to combinational hazards. IEEE
Transactions on Computers, C-23(6), 1974.

[3] J.G. Bredeson. Synthesis of multiple input-change hazard-free
combinational switching circuits without feedback. Int. J. Elec-
tronics, 39(6):615-624, 1975.

[4] R. E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8):677-691,
August 1986.

[5] T-A. Chu. Synthesis of self-timed VLSI circuits from graph-
theoretic specifications. Technical Report MIT-LCS-TR-393, Mas-
sachusetts Institute of Technology, 1987.

[6] O. Coudert and J.C. Madre. A unified framework for the formal
verification of sequential circuits. In ICCAD-90, pages 126-129,
November 1990.

[7] E.B. Eichelberger. Hazard detection in combinational and sequen-
tial switching circuits. IBM J. Res. Develop., 9(2):90-99, 1965.

[8] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and
A. Yakovlev. On the conditions for gate-level speed-independence
of asynchronous circuits. In TAU-1993.

[9] D.S. Kung. Hazard-non-increasing gate-level optimization algo-
rithms. In JCCAD-1992.

[10] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algo-
rithms for synthesis of hazard-free asynchronous circuits. In DAC-
91.

[11] B. Lin and S. Devadas. Synthesis of Hazard-Free Multi-level Logic
Implementations under Multiple-Input Changes from Binary De-
cision Diagrams”. In IMEC Technical Report TR-VSDM-93-11.,
November, 1993. Revised May, 1994.

[12] S. Nowick, 1993. Private communication.

[13] S.M. Nowick and D.L. Dill. Automatic synthesis of locally-clocked
asynchronous state machines. In ICCAD-1991.

[14] S.M. Nowick and D.L. Dill. Exact two-level minimization of
hazard-free logic with multiple-input changes. In JCCAD-1992.

[15] S.H. Unger. Asynchronous Sequential Switching Circuits. New
York: Wiley-Interscience, 1969.

[16] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man. A gener-
alized state assignment theory for transformations on signal tran-
sition graphs. In JCCAD-1992.

[17] K. Y. Yun and D. L. Dill. Unifying Asynchronous/Synchronous
State Machine Synthesis. In JCCAD-93, pages 2565-260, November
1993.

[18] K. Y. Yun, B. Lin, D. L. Dill, and S. Devadas. Performance-Driven
Synthesis of Asynchronous Controllers. In ICCAD-94, November
1994.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

