
Design of heterogeneous ICs for mobile and personal

communication systems

Gert Goossens Ivo Bolsens Bill Lin Francky Catthoor

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract { Mobile and personal communication systems
form key market areas for the electronics industry of the
nineties. Stringent requirements in terms of
exibility,
performance and power dissipation, are driving the de-
velopment of integrated circuits into the direction of het-
erogeneous single-chip solutions. New IC architectures
are emerging which contain the core of a powerful pro-
grammable processor, complemented with dedicated hard-
ware, memory and interface structures. In this tutorial we
will discuss the real-life design of a heterogeneous IC for an
industrial telecom application : a recon�gurable mobile ter-
minal for satellite communication. Based on this practical
design experience, we will subsequently discuss a methodol-
ogy for the design of heterogeneous ICs. Design steps that
will be addressed include : system speci�cation and re�ne-
ment, data path and communication synthesis, and code
generation for embedded processor cores.

1 Introduction

The mobile and personal communication systems market
imposes a number of severe requirements on the IC design
process. First of all, mobile and personal communicators
are compact portable devices. To make this possible, the
functionality of a complete system (e.g. a complete mo-
bile terminal) has to be integrated on as few as possible
ICs. Secondly, time-to-market is a critical factor in the de-
sign. On the one hand this means that solutions need to
be
exible enough to include late speci�cation changes or
customer-speci�c features. This can be realised by making
part of the chip �eld or mask programmable. On the other
hand, it imposes a modular design style, in which hardware
or software components can be reused successfully.

Last but not least, power consumption and silicon area
are important cost functions. This may necessitate the
design of specialised data paths and memory organisations
for critical functions.

A good compromise between these di�erent require-
ments can be made by designing heterogeneous architec-
tures, which combine di�erent architectural design styles
on a single IC. In order to integrate such complex systems
on a single ASIC, the realisation of powerful design tech-
nology in terms of design methods, macro-cell libraries and
CAD tools is required. In this tutorial we describe a prac-
tical design and outline the problems and directions of a
design methodology for the envisaged domain of applica-
tions.

The demonstrator application and its characteristics are
described in Section 2. This leads to the de�nition of a het-
erogeneous IC architecture as explained in Section 3. The
concept of a design environment for heterogeneous ICs is
proposed in Section 4. The requirements for speci�c CAD
components are elaborated in Sections 5 and 6 respectively.

Vert. RS
encoding

Hor. RS
encoding

Convolut
encoding

Formatter
 CDMA
Spreader

 QPSK
Modulator

 QPSK
Demod.

DLL

 CDMA
 Despr.

PLL
AFC

Deform. Viterbi
decoding

 Acquisition
Function

Hor. RS
decoding

Vert. RS
decoding

Voice
Encoding

Voice
Decoding

DSP system
management

 Tracking
Function

Figure 1: Block diagram of the mobile terminal system.

2 A recon�gurable mobile terminal for

satellite communication

The demonstrator application discussed in this tutorial is a
recon�gurable mobile terminal for satellite communication,
that forms a key component in theMobile Services Business
Network (MSBN) and the Micro LEO Messaging System
(MLMS), initiated by the European Space Agency [53].

MSBN will provide continental voice and data transmis-
sion between �xed and mobile earth stations, using a GEO
stationary satellite. MLMS is a world wide bi-directional,
store and forward messaging system, using LEO satellites.

The terminal is able to operate in a wide range
of modulation and demodulation schemes : CDMA
(code division multiple access) or non-CDMA, syn-
chronous/asynchronous, QPSK, BPSK (quadrature or bi-
nary phase-shift keying).

The functional block diagram of the complete system is
shown in Figure 1. It can be divided into three main parts,
discussed next.

2.1 Low-throughput signal processing

This part includes the voice encoding, channel encoding
and formatting functions in the transmission path, and
the corresponding de-formatting and decoding functions in
the receiver path. The functionality of this part is pro-
grammable, as indicated by the switches in Figure 1.

The mobile terminal can process both voice and data
signals. In the former case, the voice coder compresses the
input signal rate (64 kbit/s) up to a factor of 40. In the
latter case, channel coding is applied to recover from trans-
mission errors. Convolutional coding is used, optionally
preceded by block coding (vertical and/or horizontal Reed-
Solomon algorithms). The formatter organises the signal
stream by inserting headers, synchronisation sequences and
closing frames. The formatting of the signal stream is
strongly in
uenced by the transmission mode. The typi-
cal output rate of the formatter is 10 kbit/s.

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0524 $3.50

Accelerator
data path

Accelerator
data path

Glue logic

RAM

RAM

fixed
(hardware)

programmable
(software) memory

Master control

DSP core

Interface

Micro-sequencer

Figure 2: Components of a heterogeneous IC architecture.

2.2 High-throughput signal processing

This part includes the spread-spectrum modulator and de-
modulator and the up conversion to an intermediate fre-
quency (IF). These functions operate at high throughputs
up to 160 Mbit/s. However, the required
exibility within
the envisaged application domain is low.

A direct-sequence CDMA spreading technique is used
based on Gold codes, with a code length varying between
1 and 1023. Modulation/demodulation uses a QPSK or
BPSK scheme. This part contains various functions like
chip matched �ltering, correlation and noise estimation.
Up conversion is performed through a complex multiplica-
tion; the sine and cosine waveforms are generated with the
Cordic algorithm. The IF is application dependent.

2.3 Control processing

In addition to the signal processing functions, which op-
erate on signal streams with prede�ned rates, the mobile
terminal contains several control functions that have to
obey less stringent real-time constraints. Examples are :
DSP system management , synchronisation, and the man-
machine interface.

The DSP system management function forms a shell
around the signal processing part, determining the mode
of execution of the signal processing blocks. The synchro-
nisation loop includes acquisition and tracking functions
and carrier, chip and frame synchronisation algorithms.

All control functions can be subject to late speci�cation
changes, e.g. to use the system in di�erent contexts, so that
a
exible implementation is desired.

3 Heterogeneous IC architectures

The above characteristics of the functional components
indicate the need for a heterogeneous IC architecture as
shown in Figure 2 [21]. It combines : a programmable com-
ponent in the form of a DSP- or microprocessor core that
runs an application programme; one or more hardware com-
ponents in the form of accelerator data paths and/or glue
logic; and memory, communication, and peripheral compo-
nents.

3.1 Processor core

This term refers to the data path and the micro-sequencer
of a programmable instruction-set processor , integrated on
the chip. In some cases, local data memories are included.
The content of a core is prede�ned and cannot be changed.

In the case of control dominated systems, a RISC mi-
croprocessor core [2, 24] may be a good solution. For sys-
tems with extensive real-time signal processing, �xed-point
DSP cores [33] are however a better choice. Compared to
RISC microprocessors, DSPs have more arithmetic power
and more specialised instructions.

A DSP core can have two possible origins. A �rst option
is to extract it from a commercial DSP processor . Com-
mercial DSP cores are becoming available from most DSP
vendors. In this case, C-compilers are available to support
the design process. However, for embedded applications,
commercial DSP cores often consume too much power and
silicon area. For these reasons, semiconductor groups in
system industries prefer to develop more specialised DSP
cores for speci�c application domains. These in-house cores
are referred to as application-speci�c instruction-set pro-
cessors (ASIPs). ASIPs result in less hardware overhead
and power dissipation, and reduce the dependency from
external suppliers. The disadvantage is that there is no
commercial tool support for ASIPs.

3.2 Accelerator data paths

These data paths are added to speed up the execution of
time critical functions of the system. This is important as
we consider real-time applications. Accelerator data paths
are constructed by selecting functional building blocks (like
adders, shifters, multipliers) from a hardware library, and
connecting them in a function-speci�c way. Examples are :
dedicated data paths for Viterbi decoding, shaping �lters
and Cordic rotation for trigonometric functions.

Accelerator data paths can be equipped with a local
controller, so that they act as accelerator processors that
execute an algorithm independently from the control
ow
of the core processor. In this case, a run-time synchroni-
sation of the di�erent control threads (of the core and the
accelerators) will be required. Alternatively, the accelera-
tors may be included in the same control thread as the core
processor. In our application, the �rst approach has been
applied.

3.3 Memory, communication, and peripherals

In between the di�erent data path and core processor com-
ponents, hardware blocks are required to facilitate data
communication and synchronisation.

Data communication between the di�erent components
occurs via bus or memory based channels [24]. The commu-
nication band-width is often limited by the available data
ports of the core processor. Depending on its architecture,
the core may communicate via parallel or serial I/O chan-
nels or according to a memory mapped scheme. Commu-
nication can be scalar based, as in audio, voice or simple
data processing, or employ more complex data structures
like video frames or speech frames. In the scalar case, sim-
ple bu�ering by means of registers or small FIFOs is usually
su�cient [44, 31]. For more complex cases, communication
may require large memory based bu�ers [12].

The di�erent components in the heterogeneous IC archi-
tecture may use di�erent clocking schemes with respect to
each other and with respect to the external environment.
Also, the programmable processor core(s) used and the ex-
ternal environment may already have a prede�ned protocol
scheme. Therefore, synchronous and asynchronous I/O in-
terfaces may be required to implement handshaking, pro-

Vert. RS
encoding

Hor. RS
encoding

Convolut
encoding

Formatter
 CDMA
Spreader

 QPSK
Modulator

 QPSK
Demod.

DLL

 CDMA
 Despr.

PLL
AFC

Deform. Viterbi
decoding

 Acquisition
Function

Hor. RS
decoding

Vert. RS
decoding

Voice
Encoding

Voice
Decoding

 Tracking
Function

DSP core

Accelerator data paths

R
A

M
R

O
M

 DSP system
management

Figure 3: Mapping of the mobile terminal system (cf. Fig-
ure 1) on a heterogeneous architecture.

tocol control, and synchronisation functionalities [35, 51].
Finally the chip may contain special peripheral blocks

such as A/D or D/A converters, JTAG interfaces, clock
synthesisers and timers.

3.4 Architecture of the mobile terminal

Our �nal goal is to realise the digital functions of the mo-
bile terminal as one single heterogeneous IC. This design
will be used as an illustration of the heterogeneous archi-
tecture concept. The partitioning of the block diagram into
software and hardware parts, to be implemented on a DSP
core processor and on accelerator data paths respectively,
is shown in Figure 3.

This partitioning is mainly governed by criteria of
throughput and
exibility requirements. The DSP core
will be used to implement most of the low-throughput and
control functions : voice encoding and decoding, acquisi-
tion and tracking, as well as formatting and DSP system
management. The channel encoding and decoding func-
tions, as well as all high-throughput parameterised sig-
nal processing functions will be implemented as acceler-
ator processors with their own local control. The latter
include (de)spreading, chip matched �ltering, correlation,
frequency up/down conversion, noise estimation and clock
synthesis.

Today, a �rst prototype of the recon�gurable mobile ter-
minal is available, which essentially still is a two-chips de-
sign. The printed circuit board contains a TMS320C30
DSP processor and a dedicated ASIC [44], as well as some
additional peripheral hardware. The ASIC implements all
high-throughput parameterised signal processing functions
of the mobile terminal. It interfaces with the DSP proces-
sor using memory mapped I/O. The ASIC has been syn-
thesised using the Cathedral-3 high-level synthesis tools
[39]. It contains 400k transistors, operates at 40 MHz clock
speed, and has an area of 186 mm2 in a 1.2 �m technology.
The layout of this chip is shown in Figure 4.

Starting from the existing solution, a further integration
is currently taking place in two steps :

� In a �rst step, the ASIC of Figure 4 is being ex-
tended with an Advanced Risc Machines micropro-
cessor core [2], to execute all control functions of the
mobile terminal.

� The �nal version will include a DSP core, and corre-
sponds to the solution of Figure 3.

4 Design methodology

The complexity of the complete mobile terminal chip will
be between 0.5 and 1 million transistors. Industrial design

Figure 4: Layout of the spread-spectrum modula-
tion/demodulation chip.

times allowed for this kind of applications are typically less
than one year. It is clear that this complexity can only be
mastered by means of adequate design technology.

Based on previous observations and on the experience
with the mobile terminal design, a design environment
for heterogeneous ICs is currently under development at
IMEC. The basic
ow is shown in Figure 5 [9]. The con-
cepts are outlined next.

4.1 Integration of component compilers

Di�erent tools can be used to design individual compo-
nents of a heterogeneous IC (e.g. glue logic, accelerator data
paths, machine code for a core processor, asynchronous in-
terfaces). The design environment should be conceived in
such a way that these component compilers can be plugged
in. This reduces the complexity of the design problem (di-
vide and conquer), and allows to adapt the overall environ-
ment in a dynamic way to an evolving \market" of tools.

Component compilers can be commercial tools. A num-
ber of synthesis technologies are becoming commercially
available and should be used wherever possible. However,
in many cases these tools still lack
exibility and optimal-
ity with respect to relevant cost functions. Moreover, the
abstraction level of their input speci�cation is often too
low to allow for exploration of system alternatives. Due to
these limitations, new research is needed to develop more
powerful component compilers. This will be explained in
Section 6.

4.2 System speci�cation front-end

Component compilers start from a local description of the
component's behaviour. If a designer would only rely on
component compilers, (s)he would have to provide com-
ponent speci�cations without being able to guarantee the
overall consistency of the design. Therefore, a global system

VHDL DFL DFL C

Comm. requirements

CFSM ASIC ASIP + code P + codeµ

Interface modules

Concurrent system specification

System validation,
refinement, optimisation

Software
compiler
(ctrl-SW)

Retargetable
code generator

CHESS
(DSP-SW)

Data path compiler
CATHEDRAL-2/3

MISTRAL-2/3
(DSP-HW)

FSM compiler
(ctrl-HW)

Structure linker

Heterogeneous IC implementation

Interface
compiler

- Protocol selection
- Interface synthesis

Figure 5: Outline of an IC design environment for mobile
and personal communication systems.

speci�cation front-end is needed that de�nes the interaction
between the components.

This front-end should be based on formal models at a
su�ciently high abstraction level, be suited for veri�cation,
and form the basis for re�nement and partitioning over the
components. More details will be provided in Section 5.

4.3 Communication synthesis and linkage

Data and control communication between components have
to be taken into account. Based on the system speci�-
cation, speci�c communication protocols between compo-
nents may be determined, which result in design constraints
for component compilers. After the components have been
synthesised, bu�ers and communication paths can be syn-
thesised. Finally, a linkage of the di�erent hardware com-
ponents into a global netlist, and a linkage of the software
components into a global executable, are required.

In the next sections, we will illustrate the above concepts
in the design of the mobile terminal application. At the
same time we will derive more speci�c requirements for the
di�erent design tools.

5 System speci�cation front-end

5.1 Speci�cation model

The system speci�cation model should allow to express con-
currency, to mix signal processing with reactive control ,
and to express timing constraints.

5.1.1 Concurrency

Existing high-level synthesis systems and software compil-
ers for the signal processing domain usually schedule the
application statically into one single thread of control . This
paradigm is re
ected in the choice of the speci�cation lan-
guage or model, which will only allow to express a restricted
form of concurrency.

For example, Silage (used by the Cathedral and Hy-
per synthesis systems), is a synchronous language in which
all operations are synchronised to basic time frames that
correspond to a \sample period" [19]. Phideo uses a syn-
chronous stream-based model [56]. DFL, used byMistral,
in addition allows to synchronise operations to loop itera-
tions [14]. Software compilers usually start from a sequen-

tial language like C, in which concurrency is either not
allowed or restricted to the internals of a \basic block".

Conceptually, the mobile terminal is partitioned by the
designer in coarse functional entities that can operate con-
currently and autonomously. The behaviour of these en-
tities is very complex; some parts are elegantly described
using a data
ow paradigm whereas others are typically
control dominated. We call the various entities of the sys-
tem \processes". Processes can be implemented using dif-
ferent component targets varying from software to highly
pipelined data paths.

When permitted by timing constraints, concurrent pro-
cesses can sequentialised during the design process. Al-
ternatively, they can also be implemented as concurrent
threads of control . In the case of the mobile terminal we
mostly used the latter option, because of the asynchronous
nature of some processes (e.g. the keyboard monitoring)
and because of unrelated signal processing rates (e.g. of
the correlators and the chip matched �lters).

These examples show that the system speci�cation
model should support concurrent processes, which are
asynchronous with respect to each other, but which may
communicate data or control information.

5.1.2 Mixed signal processing and reactive control

High-level synthesis has traditionally focussed either on sig-
nal processing (using synchronous data
ow languages) or
on reactive control (using sequential languages), but not on
the interaction between both. This interaction is however
present in any system.

For example, the tracking and acquisition algorithms in
the mobile terminal are modelled as complex �nite-state
machines that monitor the results of the correlator func-
tions, which in turn are most naturally expressed in a data

ow language.

5.1.3 Timing and ordering constraints

A �nal requirement is that timing constraints may have to
be speci�ed. Examples are the speci�cation of a relative
delay between two operations, of a rate constraint for a
process that is executed periodically, or of a response time
to an external event in case of a reactive system. Tim-
ing constraints are often speci�ed as intervals. Also order-
ing constraints between the production and consumption
of complex signals (e.g. video frames) have to be speci�ed
to reduce bu�er costs.

With the mobile terminal design, stringent timing con-
straints occured in the speci�cation. These prevented us
from sharing hardware between the chip matched �lters in
the transmitter and receiver paths.

5.1.4 Existing models

Many system speci�cation languages have originated from
the software community. Asynchronous imperative lan-
guages such as CSP and Occam [25, 29] are well-suited for
describing distributed processes that are loosely coupled.
Esterel and Statecharts [6, 23] are synchronous imperative
languages, dedicated to the description of reactive systems.
Processes are then tightly coupled and deterministic. Each
of the above classes is unable to handle the problems for
which the other class is intended.

Data
ow models have also been used for system spec-
i�cation, as for example in Ptolemy [11], Grape-2 [8],
SPW, Cossap, and the DSP-Station [14].

The usage of hardware description languages, such as
VHDL, for system description has been examined by many
researchers. The main conclusions from these experiments
seem to indicate that VHDL has many syntactical and se-
mantical obstacles to elegantly and unambiguously de�ne
complex systems [50, 41].

Recent work has tried to unify several of the above char-
acteristics [7, 9, 41, 28]. However, further research is re-
quired on system speci�cation in order to arrive at a work-
ing environment for automatic synthesis of complex sys-
tems in software and hardware.

5.2 Validation

Validation of the global system speci�cation is essential as
it is the starting point for synthesis. Two approaches are
of interest : model checking and simulation.

In the case of model checking, a number of properties
can be formally de�ned to check the correctness of the de-
sign (e.g. liveness, maximum bu�er size requirements, etc.).
These properties can then be checked for the given speci�-
cation, independent of input stimuli.

With simulation, the functional behaviour is checked
for speci�c input stimuli only. E�ciency of simulation is
an important concern. In the Ptolemy environment [11],
di�erent simulators, each optimised for a speci�c type of
behaviour, can be combined to gain e�ciency. Ptolemy

has the ability to simulate a heterogeneous speci�cation
that is composed from di�erent \domain-speci�c" speci-
�cation models. The Ptolemy framework has facilities
to permit the interaction between di�erent domain-speci�c
simulators.

The behaviour of the ASIC of Figure 4 has been speci�ed
and simulated using Ptolemy. The composing functions
were described using the synchronous data
ow (SDF) do-
main. In order to model timing concepts such as latency,
the SDF functions were embedded in a discrete event (DE)
domain.

5.3 Architectural re�nement

The purpose of architectural re�nement is to derive the
input speci�cation for each component compiler. This is a
non-trivial process that is not yet well formalised. Below,
two speci�c aspects of the re�nement process are discussed.

5.3.1 Process re�nement

As mentioned in Section 5.1, designers naturally think of
a system in terms of communicating processes, contain-
ing operations that logically belong together. However,
the grouping of operations into processes speci�ed by a
designer, is not necessarily e�cient or even feasible from
an implementation view point. Process re�nement is the
task of reorganising the process structure, in such a way
that each resulting process can be fed separately to a com-
ponent compiler (e.g. a high-level synthesis or a software
compilation tool).

We assume that a component compiler is able to stat-
ically schedule the internals of a process at compilation-
time. This implies that the processes fed to a component
compiler must be fully deterministic. Therefore, during
process re�nement all sources of non-determinism (i.e. re-
active behaviour like wait-loops for external events, global
conditions, preemption of processes) must be isolated at the
interface between processes. The relative scheduling of the

processes with respect to each other is determined at run-
time, depending on external events. Run-time scheduling
can be implemented in various ways, ranging from a hard-
wired handshake circuit between components to a run-time
kernel using interrupt mechanisms implemented in the pro-
cessor core.

Whereas deterministic processes can be sent at once to a
component compiler, the designer may also choose to par-
tition them further into smaller processes which are sched-
uled with respect to each other at run-time. This may be
advantageous in case of large processes, to reduce the com-
plexity of the component compilation process, or to make
the design process more modular.

5.3.2 Component selection and partitioning

A selection of architectural components has to be made
out of a library. The library may contain prede�ned macros
(e.g. DSP cores, memories, interface modules), but also ab-
stract macros of which the content will be synthesised by a
component compiler (e.g. data paths, logic). Furthermore,
the system functions have to be partitioned into parts to
be implemented in hardware and in software.

How to formally represent a library of macros with their
behaviour , is an open research issue. Initial work has fo-
cussed on restricted types of macros, such as speci�c hard-
ware blocks [1] or ASIPs [17, 54]. First approaches to hard-
ware/software partitioning have been presented in litera-
ture (e.g. [16, 22, 26]). These papers are concerned with a
generic partitioning problem and use abstract library mod-
els and cost functions. So far, it has been di�cult to eval-
uate their practical use.

On the other hand, designers usually have a good in-
sight in partitioning strategies for particular designs. In
the case of the mobile terminal application, programmabil-
ity requirements and functional characteristics of the dif-
ferent functions naturally lead to the hardware/software
partitioning shown in Figure 3. The hardware functions
were then further partitioned into several accelerator pro-
cessors, synthesised by Cathedral-3. This partitioning
was mainly driven by area and power optimisations. For
example, the correlation calculations in the receiver and the
chip matched �lter require completely di�erent data paths
in terms of complexity and throughput. Therefore, the
hardware of every accelerator processor is tuned towards
the digital functions it has to execute and the through-
put it has to reach. The use of these distributed processors
allows for the reduction of their clock frequencies by match-
ing them to the throughput requirements of each partition.
As a consequence, this reduces the power consumption.

This experience suggests that partitioning be considered
as an interactive task . In such an approach the compila-
tion environment should support interactive speci�cation
of partitioning alternatives, combined with capabilities for
fast evaluation of the quality of a solution [30]. The latter
can be achieved by extending the component compilers in
such a way that they can be called in a \fast" mode, in
which only �rst order optimisations are carried out. This
results in an iterative partitioning strategy with the de-
signer in the loop [28, 41].

6 Component compilers

6.1 High-level synthesis

A number of hardware synthesis technologies are commer-
cially available today. Commercial tools do not address the
system design problem as a whole but rather concentrate
on speci�c sub-problems.

The introduction of logic synthesis [10, 48] has been
very successful. In the context of heterogeneous architec-
tures, logic synthesis is very useful to design custom logic
blocks. However, the technology provides insu�cient hard-
ware sharing and timing optimisation capabilities to suc-
cessfully design accelerator data paths, and the abstraction
level of the input description is still low. High level syn-
thesis [37] is an emerging technology that is being intro-
duced commercially, especially for signal processing appli-
cations [40]. It has raised the abstraction level from the
register-transfer to the architectural level. However, these
environments need further extensions in order to include
sophisticated architectural specialisations required for high
throughput signal processing functions.

High throughput signal processing functions can be
represented by regular computation-intensive signal
ow
graphs, and often contain multi-dimensional signals of large
size and dimensions. The number of operations that have
to be performed per sample period is much larger than the
available number of clock cycles. These characteristics of
the application domain heavily in
uence the choice of an
architectural style and synthesis approach [39, 46, 56].

The following tasks are crucial to e�ciently synthesise
dedicated accelerator data paths, that meet throughput
constraints with minimal hardware cost :

1. Data path optimising transformations : The initial
signal
ow graph can be transformed to improve the
eventual synthesis result [59, 43, 27]. Typical trans-
formations are : the selection of multiple-precision
computation schemes, algebraic laws, control
ow
transformations, etc.

2. Regularity extraction and assignment : In order to
exploit the inherent regularity of the signal
ow
graph, operations can be grouped into clusters.
Di�erent clusters with a high degree of similarity
can subsequently be assigned to the same multi-
functional data path, with a minimal control over-
head [20, 47]. This assignment process typically
utilises compatibility measures between clusters, and
is subject to timing and memory constraints.

3. Data path de�nition : Based on the functionality of
the assigned clusters, the �nal data path composi-
tion is determined, including the realisation of local
controllers [39, 46]. During this optimisation, area
cost is the main objective function. In order to meet
the throughput constraints, bit-level pipelining and
retiming of the resulting data paths, as well as bu�er
tree optimisation are important optimisation tasks.

The Cathedral-3 high-level synthesis system, developed
in our lab, is based on the above concepts. It is targeted
to high-speed real-time signal processing functions, which
have a low potential for time multiplexing [39, 57], and
extends the older Cathedral-2 methodology [52] which
is embedded in the commercial Mistral-2 environment of
EDC/Mentor [40]. Cathedral 3 has been used intensively

in the mobile terminal design. Eight di�erent accelerators
have been synthesised that deal with the high-speed signal
processing functions as de�ned in the previous sections.

6.2 Software compilation

A DSP or microprocessor core is a basic component of a
heterogeneous architecture. For high-performance appli-
cations, a DSP (in particular an ASIP) is preferred over a
microprocessor core. However, software compilers for DSPs
are less developed than for microprocessors. In this section
we will focus on software compilation for ASIP cores.

Ideally, a CAD environment for ASIP architectures con-
sists of three components [42] : an ASIP synthesiser , a re-
targetable code generator , and an instruction-set simulator .
The ASIP synthesiser reads the high-level speci�cations of
a set of representative functions for the application domain
(e.g. in C , Silage, : : :), extracts common features, and pro-
duces an ASIP description in a processor description lan-
guage (e.g. ISPS [5], nML [17], : : :). The retargetable code
generator reads the high-level speci�cation of one applica-
tion as well as the full ASIP description using the processor
description language mentioned previously. It subsequently
maps the application onto the ASIP, producing low-level
assembly or microcode. Finally, the instruction-set simula-
tor allows to simulate a given machine code description on
a DSP speci�ed in the processor description language.

The retargetable code generator is a key component of
the system. The user can retarget the code generation pro-
cess to a new architecture by simply changing the ASIP
description. In this way the system designer can quickly
explore the use of di�erent available DSPs for a given ap-
plication. Moreover, a retargetable code generator can also
be called iteratively during the ASIP synthesis process, to
evaluate the impact of a modi�cation of the data path or
instruction set on the code quality for representative func-
tions.

The problem of code generation has been addressed ex-
tensively by the compiler community during the early eight-
ies [18, 38, 3]. Although several basic techniques like code
optimisation, code selection, register allocation, and com-
paction are well understood today, the problem of retar-
getability has not been fundamentally solved.

Moreover, since the mid-eighties, a drastic evolution oc-
curred in terms of processor architectures. On the one
hand, RISC and VLIW processors have developed at a
rapid pace, and are reasonably well supported by compil-
ers today [15, 24]. On the other hand, (�xed-point) DSP
processors have become increasingly popular in the em-
bedded systems community. However, due to the initial
small market share of DSPs, compiler technology did not
support the latter evolution very well. As a result, indus-
trial telecom design groups are today still spending a lot
of time in manual assembly coding. With the advent of
mobile/personal communication and multi-media systems,
an important growth of the DSP market can be predicted,
and high-quality code generators are needed. The following
research issues need to be addressed :

1. Code quality : The main architectural di�erence be-
tween a DSP processor and a microprocessor is in
the register structure : whereas most microproces-
sor cores have a large central general-purpose register
�le, a DSP typically contains a number of distributed
special-purpose registers (or very small register �les).

Recent code generators for ASIPs use sophisticated
register allocation methods which aim at exploiting
these specialised register structures [32, 34]. These
methods are essential to produce high code quality.

2. Retargetability : The key issue in the development
of a retargetable code generator is the de�nition of a
single, formal processor model that can cover a wide
range of di�erent targets, contains all relevant pro-
grammer's information (e.g. instruction-set, register
structure, pipelining, etc.), and can be used in every
phase of the code generation process. Promising ap-
proaches to ASIP modelling have been described in
[36, 17, 54].

3. Multi-tasking : The DSP or microprocessor core can
be used to implement a run-time kernel taking care of
run-time processes scheduling (see Section 5.3.1). A
run-time kernel can perform multi-tasking, without
the overhead of a full operating system. Several run-
time kernels for DSP cores are commercially available
(e.g. [49, 58]). Limitations of these tools are : their
inability to guarantee that hard real-time constraints
will be met, and the lack of automatic retargetability
to di�erent processor cores. Additional research is
needed in this area.

In our lab, a retargetable code generator called Chess is
currently under development, based on the above concepts
[54, 32].

6.3 Storage and communication synthesis

The di�erent hardware and software components in the
heterogeneous IC architecture may interact and communi-
cate with each other and the outside world in complex ways
by transferring information and synchronising on their ex-
ecution. A communication architecture composing of stor-
age components and bus structures must be synthesised
[31]. Several key problems must be solved.

One problem is the allocation of the necessary storage
components needed for data communication between pro-
cesses and for internal data storage within processes. Sim-
ple audio, voice or control algorithms often use scalar sig-
nal types, which can be stored in small register �les or
FIFOs [44, 31]. In more complex algorithms, including
video applications, data exchange requires large memory-
based storage. In this case the memory size and number
of memory transfers can often be reduced by transforming
the original speci�cation, which reduces the area and power
dissipation [55, 12, 4]. In addition to synthesising the stor-
age architecture, the mapping of the data transfers on to
the actual storage locations and busses must be performed.

In the Cathedral environment, memory synthesis
techniques have been developed. These techniques have
been applied to the mobile terminal design, which resulted
in a drastic reduction of the memory usage for the voice
coding/decoding and Viterbi decoding functions.

Another problem is the synthesis of (concurrent) con-
trol behaviours for coordinating the communications. When
programmable processor cores are used, they usually have
already a \built-in" communication protocol and clocking
scheme that may be incompatible with the other compo-
nents in the heterogeneous IC architecture. Moreover, the
outside world may also impose a di�erent communication
protocol and clocking discipline. To implement handshak-
ing, protocol control, and synchronisation functionalities,

synchronous and asynchronous I/O interfaces may be re-
quired [35, 51], or use can be made of a run-time kernel (see
Section 6.2). The correct design of interfaces that satisfy
complex timing requirements constitutes a major design
bottleneck in complex systems.

7 Conclusion

In this tutorial we introduced a methodology for the design
of heterogeneous ICs for mobile and personal communica-
tion systems. The methodology relies on powerful com-
pilers for di�erent components of the IC, complemented
with an interactive front-end for system speci�cation and
re�nement. These concepts have been illustrated with an
ongoing real-life design in the area of satellite communica-
tion.

With abstraction levels increasing, design methodolo-
gies will by nature become more and more application-
driven. This observation, together with the necessity to en-
capsulate existing low-level tools, will lead to an increased
requirement for open design environments.

Acknowledgements The ideas presented in this paper are

the result of ongoing researchwork at IMEC, to whichmany peo-

ple are contributing. We acknowledge contributions from Lieven

Philips, Jan Vanhoof, Stefan De Troch, Karl Van Rompaey,

Dirk Lanneer, Werner Geurts, Filip Thoen, Lode Nachtergaele,

and Chantal Ykman. This work is sponsored by the European

Space Agency through the project Scades-II and by the Euro-

pean Commission through the projects Esprit 2260, 3280, 6143,

and 9138. Finally, we acknowledge the interaction with Carl

Van Himbeeck of SAIT Systems.

References
[1] R.P. Ang, N.K. Dutt, \A representation for the binding of

RT-component functionality to HDL behavior",Proc. IFIP
Conf. Hardw. Descr. Lang., pp. 251{266, Ottawa,April
1993.

[2] \ARM7DM data sheet", Doc. No. ARM-DDI-0010-F , Ad-
vanced Risc Machines Ltd., Cambridge,May 1994.

[3] T. Baba, H. Hagiwara, \The Mpg system : a machine-
independent e�cient microprogram generator", IEEE
Trans. Computers, Vol. C-30, No. 6, pp. 373{395, 1981.

[4] F. Balasa et al., \Data
ow-driven memory allocation for
multi-dimensional signal processing systems", Proc. IEEE
Int. Conf. Comp.-Aided Design, Santa Clara,Nov. 1994.

[5] M.R. Barbacci, \Instruction Set Processor Speci�cations
(ISPS) : the notation and its applications", IEEE Tr.
Comp., Vol. C-30, No. 1, pp. 24{40, Jan. 1981.

[6] G. Berry, G. Gonthier, \The Esterel synchronous program-
ming language : design, semantics, implementation", Sci-
ence of Comp. Prog., Vol. 19, No. 2, pp. 87{152, 1992

[7] G. Berry et al., \Communicating reactive processes", Proc.
20th ACM Principles of Prog. Lang., 1993.

[8] G. Bilsen et al., \Static scheduling of multi-rate and cyclo-
static DSP-applications", IEEE Workshop VLSI Signal
Proc., La Jolla,Oct. 1994.

[9] I. Bolsens et al., \User requirements for designing complex
systems on silicon", IEEE Workshop VLSI Signal Proc., La
Jolla,Oct. 1994.

[10] R.K. Brayton et al., \Multi-level logic synthesis", Proc.
IEEE , Vol. 72, No. 2, pp. 264{300, Feb. 1990.

[11] J.T. Buck et al., \Ptolemy : a framework for simulating
and prototyping heterogeneous systems", Int. J. Computer
Simulation, January 1994.

[12] F. Catthoor et al., \Global communication and memory
optimizing transformations for low power signal processing
systems", IEEE Workshop VLSI Signal Proc., La Jolla,Oct.
1994.

[13] G. de Jong, B. Lin, \A communicating Petri net model
for the design of concurrent asynchronous modules", Proc.
31st ACM Design Autom. Conf., pp. 49{55, San Diego,June
1994.

[14] \DSP Architect { DFL { User's and Reference Manual",
EDC/Mentor Graphics Corp., Leuven,1993.

[15] J.R. Ellis, \Bulldog : a compiler for VLIW architec-
tures", MIT Press, Cambridge,1986.

[16] R. Ernst et al., \Hardware-software co-synthesis for micro-
controllers", IEEE Design & Test of Computers, Vol. 10,
No. 4, December 1993.

[17] A. Fauth et al., \Generation of hardware machine models
from instruction set descriptions", VLSI Signal Processing
VI , pp. 242{250, 1993.

[18] M. Ganapathi et al., \Retargetable compiler code gener-
ation", Computing Surveys, Vol. 14, No. 4, pp. 573{593,
1982.

[19] D. Genin et al., \DSP speci�cation using the Silage lan-
guage", Proc. IEEE Int. Conf. Acoustics, Speech and Sig-
nal Proc., pp. 1057{1060, Albuquerque,April 1990.

[20] W. Geurts et al., \Memory and data-path mapping for im-
age and video applications", Application-driven architec-
ture synthesis, pp. 143{166, Kluwer, Boston,1993.

[21] G. Goossens et al., \Integrationof signal processing systems
on heterogeneous IC architectures", Pres. at 6th IEEE Int.
Workshop High Level Synth., Dana Point,Nov. 1992.

[22] R.K. Gupta, G. De Micheli, \Hardware-software co-
synthesis for digital systems", IEEE Design & Test of Com-
puters , Vol. 10, No. 3, pp. 29{41, Sept. 1993.

[23] D. Harel et al., \Statemate : a working environment for
the development of complex reactive systems" IEEE Tr.
Software Eng., Vol. 16, No. 4, April 1990.

[24] J.L. Hennessy, D.A. Patterson, \Computer architecture : a
quantitative approach", Morgan Kaufmann Publ. 1990.

[25] C.A.R. Hoare, \Communicating Sequential Processes",
Prentice Hall, 1985.

[26] T.B. Ismail et al., \Interactive system-level partitioning
with Partif",Proc. European Design & Test Conf., pp. 464{
468, Paris, Feb. 1994.

[27] M. Janssen et al., \A speci�cation invariant technique
for operation cost minimisation in
ow-graphs", Proc. 7th
IEEE Int. Symp. High-Level Synth., pp. 146{151, Niagara-
on-the-Lake,May 1994.

[28] A. Jerraya, K. O'Brien, \Solar : an intermediate for-
mat for system level design and speci�cation",Pres. at Int.
Workshop Hardw./Softw. Co-Des., Grassau,May 1992.

[29] G. Jones, M. Goldsmith, \Programming in Occam 2",
C.A.R. Hoare Series in Computer Science, Prentice Hall.

[30] A. Kalavade, E.A. Lee, \A hardware/software codesign
methodology for DSP applications", IEEE Design & Test
of Computers , pp. 16{28, Sept. 1993.

[31] T. Kolks et al., \Sizing of communication bu�ers for com-
municating signal processors", VLSI Signal Processing VI ,
pp. 426{434, 1993.

[32] D. Lanneer et al., \Data routing : a paradigm for e�cient
data-path synthesis and code generation", Proc. 7th IEEE
Int. Symp. High-Level Synth., pp. 17{22, Niagara-on-the-
Lake,May 1994.

[33] E.A. Lee, \Programmable DSP architectures : Part I &
Part II", IEEE ASSP Magazine, Dec. 1988 and Jan. 1989.

[34] C. Liem et al., \Register assignment through resource
classi�cation for ASIP microcode generation", Proc.
ACM/IEEE Int. Conf. Comp.-Aided Design, San Jose,Nov.
1994.

[35] B. Lin, S. Vercauteren, \Synthesis of concurrent system in-
terface modules with automatic protocol conversion gener-
ation", Proc. ACM/IEEE Int. Conf. Comp.-Aided Design,
San Jose,Nov. 1994.

[36] P. Marwedel, \Tree-based mapping of algorithms to pre-
de�ned structures", Proc. IEEE/ACM Int. Conf. Comp.-
Aided Design, pp. 586{593, Santa Clara,Nov. 1993.

[37] M.C. McFarland et al., \The high-level synthesis of digital
systems", Proc. of the IEEE , Vol. 78, No. 2, pp. 301{318,
Feb. 1990.

[38] R.A. Mueller et al., \Global methods in the
ow graph
approach to retargetablemicrocode generation",Proc. 17th
Microprog. Workshop, pp. 275{284, 1984.

[39] S. Note et al., \Cathedral III : architecturedriven high-level
synthesis for high throughput DSP applications", Proc.
28th ACM/IEEE Design Autom. Conf., pp. 597{602, San
Francisco,June 1991.

[40] S. Note et al., \A low-power, low-voltage dedicated DSP
implementation of a GSM baseband processor with DSP-
Station", IEEE Workshop VLSI Signal Proc., La Jolla,Oct.
1994.

[41] S. Narayan et al., \System speci�cation and synthesis with
the SpecCharts language", Proc. ACM/IEEE Int. Conf.
Comp.-Aided Design, pp. 266{271, Santa Clara,Nov. 1991.

[42] P.G. Paulin et al., \DSP design tool requirements for em-
bedded systems : a telecommunications industrial perspec-
tive", To be publ. in J. VLSI Signal Proc., 1994.

[43] M. Potkonjak, J. Rabaey, \Optimizing resource utilization
using transformations",Proc. IEEE Int. Conf. Comp.Aided
Design, pp. 88{91, Santa Clara,Nov. 1991.

[44] L. Philips et al., \Silicon integration of digital user-endmo-
bile communication systems", Proc. Int. Conf. Communi-
cations, pp. 212{216, Geneva,May 1993.

[45] L. Philips et al., \Silicon synthesis of a
exible
CDMA/QPSK mobile communication modem", DSP Ap-
plications, Jan. 1994.

[46] J.M. Rabaey et al., \Fast prototypingof datapath-intensive
architectures", IEEE Design & Test of Computers, pp. 40{
51, June 1991.

[47] D.S. Rao, F.J. Kurdahi, \Partitioning by regularity extrac-
tion", Proc. 29th ACM/IEEE Design Autom. Conf., pp.
235{238, Anaheim,June 1992.

[48] E.M. Sentovich et al., \Sequential circuit design using syn-
thesis and optimization",Proc. IEEE Int. Conf. Comp. De-
sign, pp. 328{333, Oct. 1992.

[49] \SPOX { The DSP operating system", Spectron Microsys-
tems, Santa Barara,1992.

[50] M.B. Srivastava, R.W. Brodersen, \Using VHDL for high
level mixed mode system simulation", IEEE Design & Test
of Computers, pp. 31{41, Sept. 1992.

[51] P. Vanbekbergen et al., \A generalised state assignment
theory for transformations on signal transition graphs", J.
VLSI Signal Proc., pp. 101{116, Feb. 1994.

[52] J. Vanhoof et al., \High-level synthesis for real-time digital
signal processing" Kluwer Ac. Publ. Boston,1993.

[53] C. Van Himbeeck, \The use of CDMA in European mobile
satellite communication systems", Proc. IEEE Int. Symp.
Spread Spectrum Techn. and Applic., Oulu,July 1994.

[54] J. Van Praet at al., \Instruction set de�nition and in-
struction selection for ASIPs", Proc. 7th IEEE Int. Symp.
on High-Level Synth., pp. 11{16, Niagara-on-the-Lake,May
1994.

[55] M. van Swaaij et al., \Automating high-level control
ow
transformations for DSP memorymanagement",VLSI Sig-
nal Processing V, pp. 397{406, IEEE Press, New York,1992.

[56] W.F.J. Verhaegh et al., \Modeling periodicity by Phideo

streams", Pres. at 6th IEEE Int. Workshop High-Level
Synth., Dana Point,Nov. 1992.

[57] S. Vernalde et al., \Synthesis of high throughput DSP
ASICs using application speci�c datapaths", DSP Appli-
cations, June 1994.

[58] \Virtuoso Classico user manual", Intelligent Systems In-
ternational, Linden,1993.

[59] R. Walker, D. Thomas, \Behavioral transformation for al-
gorithmic level IC design", IEEE Transactions on Comp.-
Aided Design, Vol. 8, No. 10, pp. 1115{1128, Oct. 1989.

[60] C. Ykman-Couvreur et al., \Concurrency reduction trans-
formations on state graphs for asynchronous circuit synthe-
sis", Proc. Int. Workshop Logic Synth., Lake Tahoe,May
1993.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

