A Formal Basis for Design Process Planning and
Management*

Margarida F. Jacome
Electrical and Computer Engineering Dept.
University of Texas at Austin
Austin, TX 78712

ABSTRACT

In this paper we present a design formalism that
allows for a complete and general characterization of
design disciplines and for a unified representation of
arbitrarily complex design processes. This formalism
has been used as the basis for the development of several
prototype CAD meta-tools that offer effective design
process planning and management services.

1 Introduction

CAD tools should not simply aid designers in
solving specific synthesis, analysis, and/or optimization
design (sub)problems but, in addition, they should aid
designers in planning and managing the increasingly
complex design process. In order to achieve this goal we
need a means of representing designs more ‘abstractly
than is required for detailed design. More specifically,
we need a design formalism that explicitly represents the
fundamental intentions, strategies, and mechanisms in
design, i.e., the content or the semantics of design. (As
opposed to having such an information “buried” or hid-
den in' the syntactical idiosyncrasies of the design
“form”.) Observe that through the realization of such a
syntactically transparent and semantically rich design
formalism, it becomes possible to articulate the essential
concepts of design and model both, the design of arti-
facts and the process of design, across the design disci-
plines, in a coherent and precise way. A design
formalism with the above characteristics is immediately
useful in guiding the development of general purpose,
highly effective design process planning and manage-
ments meta-tools. Observe that such meta-tools, by
being capable of capturing the fundamental strategies for
controlling complexity embed in traditional design
methodologies, and by intelligently making use of such
strategies throughout the design process, allow for the
creation of a new generation of powerful CAD environ-
ments.

In this paper we present such a formalism of

* This work is supported in part by the Engineering Design Research
Center, Carnegic Mellon University, under contract no. EEC-
8943164.

516

Stephen W. Director
Electrical and Computer Engineering Dept.
Carnegie Mellon University
Pittsburgh, 15213

design. Our formalism allows for a complete, and general
characterization of design disciplines and for a unified
representation of design processes taking place inthé
context of these disciplines. [1] This formalism has been
used as the basis for the development of several prototype
CAD meta-tools, such as Minerva [2] and Clio [3], that
offer highly effective design process planning, manage-
ment, and decision support services.

The remainder of this paper is organized as fol-
lows. First we discuss the main issues involved in prop-
erly planning and managing complex design processes.
Then, in Sections 3 to 7, we introduce our formal charac--
terization of design processes. Some conclusions are
given in Section 8.

2 The Design Process Planning and
Management Problem

The design process is fundamentally a search pro-
cess that takes place in a “solution space” for an object
that meets a desired “initial specification.” Since the solu-
tion space associated with most design problems is of
high dimension, and since the effort for generating and
evaluating a possible solution to a design problem can be
extremely large, the search process must be efficient. To
achieve such efficiency, problem decomposition is often
employed to derive sub-problems, each of which is less
complex than the original problem. This decrease in com-
plexity translates into a problem that has a lower dimen-
sional solution space, and is presumably easier to search.
However, these subproblems-cannot always be solved
independently of each other [4], since design decisions
made during the solution of one sub-problem may impact
decisions that need to be made while solving other sub-
problems. As a consequence, there is information that
must be shared among sub-problems and consistency
checks must be made during their solution. Choosing
which methods and strategies to use for problem decom-
position during active problem solving, and then properly
applying them for the solution of a design problem, while.
guaranteeing that consistency is preserved, constitutes the
essence of what we call design process planning and
management.

©1994 ACM 0-89791-690-5/84/0011/0616 $3.50

In the process of solving each of the sub-problems
that resuit from problem decomposition, heuristics are
typically employed to further prune the associated search
space. Since such heuristics do not always work, design-
ers sometimes reach an impasse. In such a situation
designers may need to backtrack to (i.e., to revisit) previ-
ous design states in order to reconsider those design deci-
sions that proved to be inadequate. Another possibility is
that the designer may conclude that a given set of require-
ments for the object under design is infeasible and may
have to backtrack to a previous design state in order to
consider alternative trade-offs for such requirements.

3 The Design Space

Development of a design process planning and
management meta-tool that effectively addresses the
needs outlined above requires a syntactically transparent,
problem-based, representation of the design process.
Such a representation would unify, at an adequate con-
ceptual level, all of the different levels and stages of a
design process. It would also allow a uniform and direct
representation of problem decomposition and dependen-
cies among the resulting sub-problem, as well as imple-
mentation of both local and global, backtracking
mechanisms. (Global backtracking mechanisms are those
that impact different phases and/or stages of the same
design.) In order to provide such a unified, problem based
design process representation with the necessary seman-
tic content, we also need to be able to characterize the
design disciplines in which the design processes take
place. The formalism which we now describe achieves
these goals.

We begin the discussion of the formal representa-
tion of the design process by defining the design space,
which is the problem space where design takes place. The
design space contains a knowledge component and a
data component. The knowledge component explicitly

characterizes the design discipline and the data compo- -

nent characterizes the design process.

Space precludes us from presenting a detailed dis-
cussion about the two fundamental components of the
design space. (A complete definition of the design space
can be found in [thesis].) However, we will introduce and
briefly discuss some of the key concepts and fundamental
abstractions in these two components. As will be shown
below, design disciplines, and thus the knowledge com-
ponent of the design space, are characterized in terms of
abstract classes of design objects, consistency con-
straints, design objectives, and operators. Abstract
classes of design objects may be organized in a discipline
hierarchy and are characterized by specifications. As will
also be shown, the design process, and thus the data com-

517

ponent of the design space, can be fully characterized in
terms of the design state and the design history, i.e., the
sequence of design states that led to the current design
state.
4 Characterizing Design Objects

A design object is an abstraction of a physical
device or process and is characterized by a set of inputs, a
set of outputs, and a set of propertles that describe it,

An abstract class of design objects is a set of
design objects characterized by the same set of abstract
properties. Each abstract property specifies a particular
feature that can be described in characterizing a particular
design object of the set. The abstract specification for an
abstract class of design objects is thus the set of all
abstract properties which are (or may be) necessary for
characterizing each design object in the particular
abstract class. As an example, consider the abstract class
of design objects known as adders. An abstract property
for this class is “<adder> _has_ _word-length_
_equal_to_ <val>”,

A property instance, or simply a property, is a
statement derived from an abstract property. It describes
the feature specified by the abstract property for the
object under design. An example of a property derived
from the previous abstract property, and used for charac-
terizing the design object “MY_ADDER” is
“MY_ADDER _has_ _word-length_equal- to_ 16 bit”.
Finally, a specification is as a set of properties character-
izing a particular design object.

4.1 Design Object Properties

The abstract specification of an abstract class of
design objects (and also the specification of a design
object), can be partitioned into two general categories:
behavioral sub-specifications and structural sub-specifi-
cations.! Behavioral specifications contain the properties
that define how the design object should “behave” or
function. Structural specifications, on the other hand,
define how the design object should actually be ‘real-
ized’. Each of these specifications may be further parti-
tioned into three categories: requirements, restrictions,

and descriptions.

Behavioral and structural requirementl are prop-
erties that define the “givens” of the design problem, in
other words these are the properties that the object under
design must meet when design is complete. Behavioral
requirements are frequently the initial specification for a
given system, either when the intended behavior for the
system has “ideal characteristics”’? or when the complete

1. For simplicity purposes, in what follows we will refer to these sub-
specifications simply as specifications.

behavioral description of such a system is too complex
to be directly managed, at least during the initial stages
of the design process. Slew rate is an example of a
behavioral requirement for operational amplifiers.
Examples of structural requirements are area and dissi-
pated power.

Behavioral and structural restrictions are proper-
ties that are employed by the designer to prune the
design space in order to reduce design complexity.
Designers typically derive restrictions during the cone
ceptual design phase of the design process. Examples of
structural restrictions are fabrication technology, layout
style, and circuit topology.

Finally, behavioral and structural descriptions are
properties that, respectively, fully define the behavior
and the structure of a given design object. Specifically,
behavioral descriptions indicate, via mathematical
equations or behavioral description languages, how a
design object reacts, or should react, to specific sets of
stimuli applied to its inputs. Behavioral descriptions can
be specified using the fundamental connectives and/or
constructs of these mathematical formalisms and/or
behavioral description languages or, alternatively, a
behavioral description can be specified in terms of a set
of assumed behavioral sub-descriptions. A behavioral
sub-description is said to be “assumed” in a particular
behavioral description, if such a sub-description is not
explicitly represented in the behavioral description (in
terms of the fundamental connectives and/or constructs
of the mathematical formalisms and/or behavioral
description languages that characterize the particular
abstraction level of the design discipline -- see Section
4.3). Each of the assumed behavioral (sub)descriptions
can, thus, be seen as a “non-primitive behavioral build-
ing block”.

A structural description, on the other hand, is an
interconnection ‘of ‘a number of structural building
blocks. Such building blocks can be primitive building
blocks, or non-primitive building blocks. A primitive
building block cannot be expressed in terms of other,
simpler, building blocks defined at the same abstraction
level. Before the design process can commence, struc-
tural primitive building blocks must be available for
each abstraction level of the specific design discipline
(see Section 4.3). Furthermore, a behavioral description
-- called a model -- must exist for each structural primi-
tive building block. An atomic physical device or pro-
cess (and thus the primitive building block that
represents it) may have different models depending on

2. “Ideal” in the sense that it has characteristics that are known to be
- physically or technologically impossible to achieve or implement,
but can be approximated by a real design object

518

the operational range in which it will be used and/or the
required accuracy with which we want to reproduce the
real physical process.

4.2 Design Object Decompositions

A description (behavioral or structural) expresses
the (complex) behavior or structure of an entire design
object in terms of less complex (primitive or non-primi-
tive) behavioral or structural “building blocks”, respec-
tively. A behavioral description is said to constitute a
fundamental functional decompeosition if it contains
only primitive behavioral building blocks, otherwise, is
said to constitute a non-fundamental functional decom-
position. Similarly, a structural description is said to con-
stitute a fundamental structural decomposition if it
only uses structural primitive building blocks. Otherwise,
if the structural description uses at least one structural
non-primitive building block, it is said to constitute a
non-fundamental structural decomposition. For
instance, at the circuit level of abstraction, the structural
description of an OPAMP may be defined in terms of
transistors and capacitors, which are among the primitive
building blocks of the circuit level of abstraction for the
VLSI digital design discipline. This structure would, thus,
constitute a fundamental structural decomposition. On the
other hand, the structure of the OPAMP could alterna-
tively be represented, at the same abstraction level, using
non-primitive building blocks, such as current sources,
differential amplifier stages, and voltage gain amplifiers,
which constitutes a non-fundamental structural decompo-
sition.

4.3 The Discipline Hierarchy

Typically, for each given discipline, it is possible
to identify a number of different abstract classes of design
objects. As an example, for the discipline of VLSI Digital
Circuits, we may design ALUs, Multipliers, and Adders.
In this section we introduce the notion of a discipline
hierarchy which organizes the entire set of abstract
classes of design objects associated with a given disci-
pline. ‘
The discipline hierarchy, denoted by A in Figure
1, is defined as a two dimensional structure of ordered
sets of facets, denoted by §;, i = 1, 2,..., each of which are
sets of abstract properties from specific abstract classes of
design objects. As illustrated in Figure 1, the vertical
dimension of the discipline hierarchy is referred to as the
abstraction dimension, and the horizontal dimension is
referred to as the specialization dimension.

The abstraction dimension organizes the design
hierarchy into abstraction layers, denoted by Af , where
“i” identifies the particular abstraction layer. More specif-
ically, the abstraction dimension partitions the abstract

specification of each individual abstract class of design
object, creating an abstract sub-specification for each
abstraction level A ,i= 1, 2,.... The resulting sub-speci-
fications constitute' the facets of the abstract class of
design objects. The design abstraction layer that corre-
sponds to the least abstract level of A is called the
ground abstraction level or simply the ground level,
and is denoted by AG in Figure 1. (Note that the least
abstract layer has the most detail associated with it).[5]
In Figure 1, the direction in which the level of abstrac-

tion increases is indicated.
Specialization

Abstraction

Figure 1 The Discipline Hierarchy A

The specialization dimension (or horizontal
dimension) of the discipline hierarchy serves a dual pur-
pose. First, it discriminates between the different
abstract classes of design objects which may coexist for
the design discipline, and second it allows for the
expression of commonalties among different abstract
classes of design objects defined for a particular design
discipline. In other words, it provides for the representa-
tion of specialization (or conversely, generalization) by
allowing different abstract classes of design objects to
share abstract properties. An example of a possible
design hierarchy for VLSI dlgntal circuits can be found
in [2).

5 Consistency Constraints

Values of properties that belong to the same, or
different, abstraction levels, and to the same, or differ-
ent, abstract classes of design objects, may be con-
strained by arbitrarily complex relations. Examples of
relations among properties that may be defined, for
instance, for a CMOS inverter, at the transistor level of
abstraction would be (assuming Vss = 0):

519

V1L= (3 VDD +3 VTp+ 5 VTN)/8' and

VIH = (5 VDD + SVTP +3 VTN)/S;

where Vi and Vi denote the high and low logic
thresholds, respectively; Vpp denotes the drain voltage
source; and Vrp and Vyy denote the threshold voltages
for the inverter’s p-channel and n-channel MOSFETs,
respectively.

Abstract consistency constraints represent such
dependencies among property values. An abstract con-
sistency constraint is thus defined by an independent
abstract sub-specification, a dependent abstract sub-
specification, and a relation involving the abstract proper-
ties contained in both sub-specifications. For instance, for
the consistency constraints shown above, the set of inde-
pendent abstract properties could be {Vdd, Vp Vinl,
while the set of dependent properties could be {Vy; }, for
the first case, and {Viy]}, for the second case. Observe
that, given a particular relation, defining which abstract
properties belong to which group may be design method-
ology dependent. Note also that an abstract property can
be a member of an arbitrary number of consistency con-
straints and may be listed as a member of the independent
abstract sub-specification for some of these abstract con-
sistency constraints, and as a member of the dependent
abstract sub-specification for the remaining abstract con-
sistency constraints.

An active consistency constraint, is defined by a
relation and by an mdependent sub-specification and a
dependent sub-specification.! For each active consistency
constraint, a predicate can be derived, denoted by “VER-
IFY(constraint)” whose value is “true” if the independent
and dependent sub-specifications verify the relation
defined in the consistency constraint and “false” other-
wise.

6 Organization of Design Objects in a

Design Process

A hierarchy? of design objects is created during a
design process. We define the design process hierarchy
as a two dimensional organization of such design objects.
The vertical dimension of this hierarchy is the same as the
hierarchy of abstraction levels defined in the discipline
hierarchy and is also called the abstraction dimension.

Functional and structural decompositions,
together, define the horizontal dimension of the design
process hierarchy, called the decomposition dimension.

1. In other words, abstract consistency constraints are “templates” while
active consistency constraints are instances of such templates in a
particular design process.

2. Not to be confused with the discipline hierarchy, A, defined earlier. A
is a knowledge-level structure while the design process hierarchy is a
data-level structure.

Decomposition

Sr
Vst VS8

Figure 2 Illustrating the design process hierarchy

Observe that structural and functional decompositions
are the only allowed mechanisms for creating new
design objects and adding them to the design process
hierarchy. When new design objects are incorporated
into a design process hierarchy, at a given abstraction
layer, a set of active consistency constraints, represent-
ing the relations among these new design objects are
also instantiated in the design process. Such constraints
relate the specification of the original design object, or
parent design object, to the specifications of the compo-
nent design objects, also called descendant design
objects.

Figure 2 shows a snapshot of a design process
hierarchy created while implementing the behavioral
description given by d = COND(a, NOR(b, c)).! The
structural primitive building blocks for the logic level
are shown within a square. Observe that the structural
description for the target design object constitutes a non-
fundamental structural decomposition, since it contains
the non-primitive structural building block “COND”.2
The structural primitive building blocks at the circuit
level of abstraction are represented within a circle. As it
can be seen in Figure 2, the structural description for the
target design object, at the transistor level, constitutes
also a non-fundamental structural decomposition, since
the structural building block “COND”, at the transistor
level, is also a non-primitive building block. Note also

1. For simplicity we represent the design process hierarchy in terms of
the structure description property, yet the concepts illustrated for
this particular property are directly applicable to all types of proper-
ties.

2. Note that this is just a possible structural description realizing the
above behavior.

520

the active consistency constraints, denoted c, through cg,
relating properties from the same and from different
abstraction levels.

7 Characterizing Design Activity

Based on the above discussion, we may view
design as the process of deriving a complete ground level
specification for an object, starting with an initial specifi-
cation, i.e., a set of values for some of the properties of
the design object. Let us now formalize the design activ-
ity, once an initial specification has been provided to the
designer.

7.1 Design Objectives and Operators

In general, the consistency constraints among the
properties that characterize the object under design are
highly complex. This complexity precludes the possibil-
ity of completing the design in a single design step. The
design process typically consists of a sequence of genera-
tion design steps and test design steps.

A generation design step typically involves the
selection of a particular sub-specification (among those
that have been instantiated in the design process hierar-
chy), the selection of any relevant active consistency con-
straints, and either synthesis or optimization. Synthesis is
the generation of values for those properties that still do
not have specified values, while optimization is the gen-
eration of new values for properties that already have a
specified vaiue. Observe that in order to further overcome
the high complexity associated with some consistency
constraints, generation design steps may only take into
account a subset of the relevant active consistency con-
straints or may assume a simplified version of such con-
sistency constraints. In these situations inconsistent
property values, i.e. property values that violate some of
the active consistency constraints, may be generated. Test
steps are intended to detect such inconsistencies. In par-
ticular, test steps consist of selecting a particular sub-
specification in which all properties have specified val-
ues, selecting all active consistency constraints associated
with this sub-specification, and checking for violation of
consistency constraints. When one or more consistency
constraints are violated, backtracking or optimization
may be considered.

Each design step is a particular solution for a
design (sub)problem. These design (sub)problems are
defined in terms of general design objectives, such as
synthesis, optimization and test. (Design objectives may
be further specialized until the target properties for the
design problem become uniquely determined.) Each
design objective also defines the control knowledge nec-
essary for solving the specific design problem. This
knowledge contains such pieces of information as how

the particular design objective (and thus design problem)
should be decomposed into sub-objectives (i.e., design
sub-problems), in case its complexity is not directly
manageable. Finally, design objectives may also have
their own abstract properties, aimed at conveying prob-
lem-specific additional information. Examples of objec-
tive related properties are stimuli for test (simulation)
objectives and stopping criteria for optimization objec-
tives.

An active design objective is a specific instance
of a design objective in a particular design process.
Since active design objectives are ultimately responsible
for controlling the solution process of the problem they
define, whenever design objective decomposition occurs
the parent design objective has to supervise the set of
active design sub-objectives that were generated from its
own decomposition. Thus, in a design process, active
design objectives are organized in a “parent-to-descen-
dent” tree-like hierarchy.

Finally, design operators are design functions,
implemented by means of algorithms and/or procedures,
aimed at actually solving the design problems defined by
the active design objectives. In other words, design oper-
ators perform the design steps.

7.2 Design State and Design History

A design state is defined in terms of: (1) the
design process hierarchy, i.e., the set of all design objects
instantiated so far in the design process; (2) the set of all
active design objectives currently instantiated in the
design process; and (3) the set of all active consistency
constraints (defined for the properties contained in the
design process hierarchy and in the set of active design
objectives). -

Since each active design objective in the design
state uniquely defines a design problem, the design state
is an organized collection of design problems that mir-
rors the active design- objective hierarchy. Any new
problem (or active objective) added to the design state
will, in principle, remain in the design state until the end
of the design process, eventually reaching “achieved”
status. Backtracking is the only way of removing a prob-
lem from the design state. A design step is thus a transi-
tion from one design state to another. If a design step is
successful, the particular active design objective defin-
ing the problem solved by the design step becomes
“achieved.”

Finally, the history of a design process includes
the ordered sequence of all design states visited so far in
the design process, together with the operators used to
modify such design states. For the complete formal defi-

1. Most conventional CAD tools are examples of design operators.

521

nition of the design space see [1].

8 Conclusions

We have presented a formal basis for explicit char-
acterization of a design discipline and a unified, problem
based representation of the design process. This formal-
ism has proven useful in guiding the development of the
Minerva and Clio meta-tools and in helping designers to
reason about and evaluate the effectiveness of their
design methodologies (for instance, in determining opti-
mal problem decompositions and thus optimal CAD tool
granularity). Moreover, this formalism provides the nec-
essary conceptual infrastructure for the development of a
new generation of meta-tools that offer highly advanced
services, such as automatic learning and automatic
archiving. We note in closing, that while our motivation
for developing this formalism was to specifically address
VLSI design problems, what has resulted is applicable to
design processes in general.

9
(1]

Bibliography
M.F. Jacome. Design Process Planning and Manage-
ment for CAD Frameworks. PhD thesis, Carnegic
Mellon University, Department of Electrical and
Computer Engineering, September 1993.

M.F. Jacome, and S.W.Director. Design Process
Management for CAD Frameworks. In Proceed-
ings of 29th ACM/IEEE Design Automation Con-
Jerence. ACM Press, 1992.

J.C. Lopez, M.F. Jacome, and S.W. Director. Design
Assistance for CAD Frameworks. In Proceedings
of First GI/ACM/IEEE/IFIP European Design
Automation Conference. ACM Press, 1992.

H.A. Simon. The Sciences of the Artificial. The MIT
Press, 1981.

E. D. Sacerdoci. Planning in a Hierarchy of Abstrac-
tion Spaces. Artificial Intelligence, 5:115-135,
1974.

(2]

3]

(4]
(51

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

