
Computing the Entire Active Area / Power Consumption versus Delay Trade–off
Curve for Gate Sizing with a Piecewise Linear Simulator

Michel R.C.M. Berkelaar1,2, Pim H.W. Buurman2 and Jochen A.G. Jess2

1IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
2Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract
The gate sizing problem is the problem of finding load drive capa-
bilities for all gates in a given Boolean network such, that a given
delay limit is kept, and the necessary cost in terms of active area
usage and / or power consumption is minimal. This paper describes
a way to obtain the entire cost versus delay trade–off curve of a
combinational logic circuit in an efficient way. Every point on the
resulting curve is the global optimum of the corresponding gate siz-
ing problem. The problem is solved by mapping it onto piecewise
linear models in such a way, that a piecewise linear (circuit) simu-
lator can do the job. It is shown that this setup is very efficient, and
can produce trade–off curves for large circuits (thousands of gates)
in a few minutes. Benchmark results for the entire set of MCNC ’91
two–level examples are given.

1 Introduction
The problem treated in this paper is the problem of gate sizing. It
can be defined as assigning load drive capabilities to the gates in a
Boolean network such, that a given delay limit is obeyed, and the
total cost in terms of active area and / or power consumption of the
circuit is minimal. The problem is very similar to the transistor siz-
ing problem. The main difference is that in gate sizing all transistors
in a logic gate are sized simultaneously, whereas transistor sizing
sizes single transistors. The main reason we focus on gate sizing is
the fact that we want to be able to optimize large circuits. Our ideas
are, however, also applicable to transistor sizing.

Previous work
In the past, several algorithms have been proposed to solve the tran-
sistor sizing problem. There are a number of heuristic or combined
algorithmic/heuristic optimizers [15] [9] [8] [10] [6] [18] which
solve the problem but cannot guarantee optimality of the solution.
More recently a number of solutions which use efficient forms of
solving a nonlinear programming problem [11] [12] [16] [17] have
been published. They prove that in many cases the heuristic solu-
tions stay far from the global optimum. The most important prob-
lems in these nonlinear programming approaches are usually the
run time, which becomes too long for large examples, and the con-
vergence. In [1] and [3], a solution to the gate sizing problem was
proposed using linear programming (LP), and piecewise linear
(PL) approximations of the nonlinear delay formulas. This proved
to be fast and, therefore, feasible for large circuits.

Why compute the entire trade–off curve?
All of the above approaches can find one point in the solution space
of the problem per invocation of the program. Very often, however,
a designer is interested in (part of) the trade–off curve, to be able
to compare the advantages and disadvantages of several possible
implementations. If we examine typical trade–off curves as in Fig-
ure 3 it is immediately apparent that most designers will want to
avoid using solutions in the leftmost parts of the curves, where
small gains are made at large costs.

To obtain the trade–off curves, one could calculate a lot of points
by repeatedly using a single–point optimization algorithm. This is
not only computationally expensive, but it is also not easy to deter-
mine which points are needed to make linear interpolation between
them an accurate estimation of the real trade–off curve. It is just this
task that our circuit simulator with variable integration step size
performs very efficiently. By introducing a time–dependent delay,
(part of) the trade–off curve is visited during the simulation.
Because the different solutions for two slightly different delays are
usually close to each other, the new solution can be calculated with
only a few updates. We will show that the LP problem of [1] can be
mapped onto piecewise linear models, which can be solved with the
piecewise linear simulator PLATO. As we shall see in the results sec-
tion, the PL simulator setup can calculate entire trade–off curves in
about the same amount of CPU time as it takes to solve one LP prob-
lem for one solution point.

Setup of this paper
In section 2 we will discuss the LP formulation of the gate sizing
problem, summarizing [1] and [3] chapters 4 and 6. In section 3 we
will introduce the piecewise linear simulator PLATO. In section 4 we
will discuss the mapping of the gate sizing problem onto piecewise
linear models suitable for PLATO. In section 5 we will present results
for all MCNC 91 benchmark examples, comparing the [1]
approach with the performance of PLATO. In section 6 we will dis-
cuss some numerical aspects of optimizing very large circuits. In
section 7 we will give some conclusions and directions of future
work.

2 LP formulation of gate sizing
Basic delay model of a gate
To describe the way we have modeled the gate sizing optimization
problem for the PL simulator, we will introduce a simple gate level
delay model, as introduced in [1]. This is a model which uses the
worst case delay of a logic gate, both with respect to inputs as with
respect to rise– or fall time, as delay value. Although this kind of
model can give quite accurate delay estimations for large circuits,
it is not very accurate for many small circuits. It is, however, impor-
tant to realize that any convex delay model can be used with our
gate sizing method. In [6] the important class of distributed RC
models is proved convex.
We use the following symbols: �: delay of a gate, C: capacitance
value, c: constant, S: speed factor
We start with the widely used basic model:

�gate� �int� c� Cload (1)

Cload� Cwire� Ctr (2)

where Cwire is the wire capacitance and Ctr is the sum of the capaci-
tances of the connected gates. Because we are dealing with sizeable
gates, we introduce the speed factor Sgate of a gate:

�gate� �int�
c� Cload

Sgate
(3)

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0474 $3.50

Because Sgate is implemented in the physical layout by multiply-
ing the width of the transistors, the gate capacitances grow linearly
with it, and we get:

Ctr � �
i�fanout(gate)

Si Cin,i (4)

Combining (2), (3) and (4) leads to a complete (nonlinear) delay
model:

�gate � �int� c�

Cwire��
i

Si Cin,i

Sgate
(5)

To use this delay model in a LP environment, it has to be linearized.
To obtain the desired accuracy, we can use a piecewise linear fit
with as many pieces as desired. In [3] it is shown, that 3 pieces is
enough for above delay model, if we limit S to the range [1, 3]. Fig-
ure 1 shows a typical case of a 2–input nand gate in a 1.5� CMOS
process under various load conditions.

2

4

6

8

10

12

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

S

delay
(ns)

fanout = 10
fanout = 3

�Si � 30

�Si � 10

�Si � 9

�Si � 3

Figure 1 delay of a nand gate under different loads versus its
speed factor

Delay of a logic circuit
We model the total delay of a logic circuit by calculating the longest
path in the Boolean network [4]. To be able to do this, we introduce
the symbol �gate , the schedule time of a gate. It is defined as the
worst case time after which the output of the gate will become
stable on an input transition. The arrival times of the primary input
signals are assumed to be known. The schedule time of a gate can
be expressed in the schedule times of its input signals and its own
delay:

�gate � �gate� max
i�inputs(gate)

�i (6)

Both the summation and the max function can easily be expressed
in LP terms.
The wire capacitance Cwire in (2) and (5) is estimated based on sta-
tistical data from actual layout. See [3] for details.

The total active area of a circuit
Because the transistor sizes in the gates are adapted in just one
dimension with changing speed factor, the total active area of a cir-
cuit is a linear combination of the speed factors, where the constants
ci reflect the relative contribution to the active area of gate i .

A � �
i�gates

ci Si (7)

CMOS dynamic power consumption
If we define fsw to be the average switching frequency of a gate, the
dynamic power consumption of a single CMOS gate can be
expressed as:

Pgate � fsw�
V2

dd

2
� Cload

� cp� Cload

� cp� (Cwire� Ctr)

� cp�	Cwire� �
i�fanout

Si� Cin,i

The total power consumption of a circuit is the sum of the power
consumptions of the individual gates:

P � �
i�gates

Pi

� �
i�gates

cp,i� Cwire,i� �
i�gates

cp,i �
j�fanout

Sj� Cin,j
(8)

The first summation of (8) is constant for our optimization problem,
the second summation is linear in the speed factors.
To obtain the average switching frequencies, one must either per-
form logic simulations with appropriate input vectors or apply sta-
tistical methods, as in [7] and [13].

LP formulation of the gate sizing problem
The linear program is now composed as follows: Firstly, we define
�i to be the schedule time, �i the delay and Si the speed constant
of gate i . For the primary inputs � is the arrival time of the signal.
The total delay of the circuit is:

�max � max
i�primary outputs

�i (9)

Now, for every gate in the circuit the following constraints are
defined:
1. The n linearized delay models (a PL implementation of (5)):

�gate � c1,1� c1,2Sgate� c1,3�
i

Si Cin,i

(10)

�gate � cn,1� cn,2Sgate� cn,3�
i

Si Cin,i

...,

2. S is limited:

Smin � Sgate � Smax (11)

3. Definitions of schedule times (implement (6)):

�
j�fanin(gate)

�gate � �j� �gate (12)

4. Definitions for maximum schedule time of circuit (implement
(9)):
If the gate is a primary output:
�max � �gate (13)

5. The objective function is a linear combination of A, P and
�max :

cA A� cP P� c
�
�max (14)

If the circuit has a Boolean network representation with V vertices
(one for every gate) and E edges (one for every connection), we
can calculate the LP problem size. The number of constraints is
|E |� (2� n)|V|� 4 (1 for every predecessor relation, 2 per ver-
tex for limitation of Sgate , n per vertex for the piecewise linear
delay model, 1 to express the total delay �max , 1 to express the total
active area A, 1 to express the total power consumption P and 1
more to limit �max). The number of variables is 3|V|� 3 (per ver-
tex S, �, and �, and for the global network �max, A and P).

Because in practical Boolean networks both the fanin and the fan-
out of a gate are limited, implying |E | � c |V| for some constant
c � 1, the size of the LP problem is effectively linear in the num-
ber of gates in the circuit.

3 The PL simulator PLATO
The simulator PLATO [5] is a piecewise linear simulator, primarily
intended for simulating electrical and logical circuits. The compo-
nent relations are described by a matrix, relating linear, dynamic
and complementary variables and equations. The complementary
variables and equations together form a Linear Complementarity
Problem (LCP), which is the following problem: given a matrix M
and a vector q, determine vectors w and z satisfying

�
w � Mz� q
w � 0 , z � 0 , wTz � 0 (15)

The equation w � 0 is considered componentwise, i.e.
�i wi � 0. The complementary variables and equations model the
piecewise linear behavior of the components. Due to this piecewise
linear modeling, electrical, logical and macro models can be used
in one circuit description and simulation run. To support these dif-
ferent models, two types of connections (nets) are available: elec-
trical, with voltage and current variables satisfying the Kirchhoff
relations, and signal, which have only a voltage–like variable. The
connections of a component to the nets, called terminals, also have
one of these types. All kinds of components can be used by the sim-
ulator: it has no built–in models but uses a mixture of user–supplied
models and library models. To solve the system efficiently, the fol-
lowing methods are repeatedly employed:

– The linear equations, determining the values of voltages, cur-
rents and signals, are separated from the component descrip-
tion. These equations are solved with an LU decomposition.
Because of the sparse nature of the linear equations (connection
matrix), a sparse data structure is used. If the linear equations
change, the update of the LU matrices is calculated efficiently
with an algorithm that visits only those elements of the matrices
that change.

– The LCP is solved by a path–following algorithm devised by
Van de Panne [14]. This algorithm follows the same path as the
well–known Lemke algorithm, but only employs complemen-
tary (block–diagonal) pivots. The internal data structure is also
block–diagonal, which is the reason why the performance of
the Van de Panne algorithm is much better than the Lemke algo-
rithm in PLATO. During the algorithm, the linear equations may
change.

– The dynamic equations, a set of linear differential equations,
are solved with an integration method. Which method is
employed, depends on the problem; usually an implicit linear
multi–step method is used. To exploit the sparsity and latency
of most circuits, the integration method is employed in a multi–
rate scheme, where the circuit is divided dynamically in clus-
ters, and the components in one cluster have the same integra-
tion step size, differing from the step size in other clusters.
However, if the solution is linear in time, the much simpler and
more efficient Forward Euler integration method is used.

The simulator follows a path in the complex space of linear,
dynamic and LCP variables. The starting point is determined first
by applying the Van de Panne algorithm. The LCP variables and
equations determine (convex) regions in the space of linear and
dynamic variables. So the state of the LCP, the zero–nonzero parti-
tion of the w and z vectors, remains valid for some time during the

integration. If an entry in either vector becomes negative during the
integration, the Van de Panne algorithm is started to change the
state of the LCP. The path that the simulator follows can be pictured
as a piecewise continuous path (in time) through the space, mixed
with (possibly discontinuous) steps. The continuous path is driven
by the integration in time, while the (discontinuous) steps are gov-
erned by the Van de Panne algorithm.

4 Modeling in the PL simulator
To obtain the Area–Delay trade–off curve, the LP problem will be
solved for a constraint �max � f (t) with f (t) continuous. The
function f (t) may be non–monotone, but it is simpler to choose a
function f (t) � a� bt, with b � 0 and a larger than �max(0),
the value �max assumes for � S minimal (the value �max(0) can be
determined easily from inspection of the circuit). Then the solution
at t � 0 is feasible, and a list of solutions for different values of
�max is generated, until no solution can be found. This dynamic
problem cannot be integrated easily into the used LP solver. How-
ever, the problem can be transformed into an LCP, as will be shown
in the next paragraph. This LCP, together with the dynamic behav-
ior, is solved by the simulator PLATO.
An LP problem is converted into an LCP in the following way. Let
the LP problem be: find min

A z1�b
{ pTz1 }.

Apply the (Karush–)Kuhn–Tucker relations to find the system:

�

�
�

�

�

�
w1
w2
 � 	 0

� A
AT

0
�
z1
z2
� �

p
b

�
z1
z2
 � 0, �

w1
w2
 � 0, �

z1
z2

T

�
w1
w2
 � 0

(16)

If a solution to this problem exists, the vector z1 is the solution of
the original LP. For an LCP with a matrix as given in equations (16),
the Van de Panne algorithm will always find a solution if it exists.
This problem could be entered in a straightforward way into the cir-
cuit simulator by creating one large component with this system.
But the problem can also be represented as the original circuit, with
some additional special components. In this way, the sparsity of the
network can be employed and the simulation will take much less
computer time and resources. In the next section, the conversion of
the LP as given in the equations (10) – (14) into a circuit with
appropriate components is discussed.

Converting an LP into an LCP circuit

Schedule time Speed factor

Figure 2 ”Circuit” to perform optimization in the simulator

(a) Boolean network (b) circuit for optimization in PLATO

Boolean value

The LP problem of equations (10) – (14) is based on the subdivision
of the logic circuit into connected components. To use the sparsity
of the interconnections, the related LCP problem is converted into

a network. Instead of logic values, the schedule times and speed
factors are passed between the components. As will be shown in the
next paragraphs, it is simpler to use electrical nets: not only sched-
ule times or speed factors are passed over a net, but also extra
information needed to solve the optimization problem. Figure 2
shows the basic conversion step.

Each component has two output terminals, one with its schedule
time as signal/voltage value, the other with its speed factor. Further-
more, the schedule times of the components in the fanin set of a
component must be known, so the respective nets each have their
own input terminal. For the same reason, the nets related to the
speed factors of the components in the fanout set are connected to
input terminals. The matrix of one component is constructed from
three submatrices, each related to one group of inequalities.

The inequalities Smin � Si � Smax (equation (11)), together with
the optimization requirement � ci Si minimal (equations (7) and
(14)), are transformed, according to (16), into the following equa-
tions:

�

�

�

 0
–1

1
0��

z1
z2
��

ci

Smax � Smin
 � �

w1
w2

Si � z1 � Smin

(17)

The equations z1 � 0 and w2 � 0 determine the minimum and
maximum bounds of Si , while the value ci in the constant vector
denotes the value in the objective function.

The second group of inequalities,
�i � max { �j | j � fanin(i) } � �i (equation (12)), is trans-
formed into system (18). For simplicity, the example gate has only
two inputs with delays �1 and �2.

��

��

�

�

�

��
�

�

�

0
0
0
0
–1
0

0
0
0
0
0
–1

0
0
0
0
1
1

0
0
0
0
1
1

1
0
–1
–1
0
0

0
1
–1
–1
0
0

��
�

�

�

�
�
�

�

�

�1

�2
z1
z3
z4
z5

�
�
�

�

�

�
�
�
�

�

�

w�1
w�2
w1
w3
w4
w5

�
�
�

�

�

�i � z3 � �i

(18)

The rows in the matrix related to the variables w�1
, w�2

 and w1
must be added to their respective rows. However, the problem with
this set of equations is that the rows related with w�1

 and w�2
 are

not in this component. These rows are the w3 rows of their respec-
tive components. Therefore the value of z4 respectively z5 must be
transported to these components and added to the relevant row. This
is done conveniently by setting the schedule time explicitly to an
electrical type, with as voltage value the schedule time �1, and as
current value on this connection the value of z4. Because the cur-
rents satisfy the Kirchhoff law, the current on the output � is the
sum of these currents of its successors. By adding one entry in the
matrix in the row related with w3, having the value –1 (incoming
current!), the correct system is created.

The third group of inequalities, �i � PL(Si, Sout) (equation (10)),
has a form comparable to system (18). Therefore, the nets transfer-
ring the speed factors also have a current related to them, and an
extra term occurs in the respective w1 rows. The extra inequality
�max � f (t) will give the same matrix as in equations (17), but
with a right hand side �0, f (t)T. This matrix is embedded in a final
component that determines the maximal schedule time in the circuit
by taking the maximum of the schedule times at the output gates.

The components in the circuit are created according to the equa-
tions above, and the connections between them are laid out accord-
ing to the connections of the original circuit. The extra component
for determining and changing the maximum schedule time is con-
nected to the output gates of the circuit. The total number of LCP
variables is 2((4� n)|V|� |E|� 2), the number of linear (cir-
cuit) variables is 4|V|� |E|. Notice that there is no special compo-
nent connected to all gates for guiding the optimization process.
The gates “know” themselves when their speed factors must
change, as is explained in the next section.

Finding the LCP solution
The LCP solution is found by combining the Van de Panne algo-
rithm with an integration in time. By using the inequality
�max � a� bt, the relation between � S and the time t is found.
Then it is trivial to find the relation between �max and � S. Using
a linear function for the time, the numerical integration is as exact
as possible and will give no problems. But first an initial solution
must be found. This is rather straightforward, when starting from
the basic point z � 0. This implies Si � Smin for all i , and the
internal delays �i have the values related to these Si. So only the
schedule times �i and the corresponding LCP variables must be
determined. This is done easily by the Van de Panne algorithm. If
the schedule time minus the delay of a component is less than the
schedule time of one of its predecessors, the corresponding wk is
negative. By performing a block pivot, and due to the form of the
equations, the corresponding wk and zk both become zero. In net-
work terms, the schedule time is set to the schedule time of the pre-
decessor plus the internal delay. If the initial solution is found, and
the forced schedule time at this time point, a, is larger than �max,
all currents are zero at the starting point. The other case, that a faster
initial solution is sought, will follow from the discussion in the next
paragraphs. Because it is a feed–forward network, the calculations
are easy and the �max with � S minimal is found.
The dynamic solution starts from this initial solution. With increas-
ing time, the schedule time decreases until no faster solution can be
found. The Van de Panne algorithm fails and the simulation stops
with an error message. The dynamic solution will follow the piece-
wise linear trade–off curve exactly, due to the linear form of the
constraint on �max. We will describe the first step of the simulation
process, and explain which actions will in general happen in the cir-
cuit in the subsequent steps. The first step starts at that time point
of the simulation where the inequality in the last component,
bounding the schedule time, just becomes invalid, and a new state
of the LCP must be found.
The rest of this section is intended to give the reader some insight
on the course of the optimization process. It is not mathematically
rigorous, but it should give some feeling how we have constructed
an “auto–optimizing” circuit.
The first step
Let k be the index of the violated inequality, i.e.

wk � 0	
�wk

�t � 0.

Then the zk variable can be increased. On circuit level, this means
that a current will flow through a schedule time connection,
towards the predecessor with the highest schedule time. In this pre-
decessor, two actions happen. First, the current forces the schedule
time of this cell to decrease. As in the previous cell, this creates a
current through one schedule time connection towards a predeces-
sor. So each cell on the critical path is activated by a current to
decrease its schedule time. By the same process, the value of w1 in
each of these cells decreases. As soon as in one cell this value

reaches zero, the corresponding z1 may increase. This means that
the speed factor of that cell will increase. This decreases the delay
of this cell, but increases the delay in its predecessors. However, the
total schedule time over this path will decrease, because the global
effect is used, i.e. if it would not decrease, w1 would not decrease.
So a new state of the LCP is found that will be valid for the next part
of the simulation. The newly found state is translated into the linear
equations. These equations can be interpreted by stating that the
speed factor in this cell now depends on the time, and that the total
schedule time only depends on the time by this relation.
Later steps
This process is repeated at each time point where the current state
becomes invalid. This will happen if a speed factor reaches its max-
imum, if another piece of the piecewise linear approximation is
reached, or if another path also becomes critical. In the first case,
this cell is replaced by another cell (if it exists) and the curve can
be tracked further. In the latter two cases, in general it is necessary
to increase not only this speed factor, but also another cell’s speed
factor. Depending on the size of and the freedom in the circuit, in
the latest stages of the simulation many speed factors are manipu-
lated and a large part of all schedule times is changing. Instead of
one gate on one critical path, many gates in a critical subnetwork
are continuously considered.
Up till now, we have suggested that the speed factors will always
increase. However, it may happen (see figure 5) that by decreasing
one speed factor and increasing another at the same time the total
schedule time will decrease. The speed factor may increase again
later in the simulation. It is clear, that the schedule time of cells not
on the critical path(s) may and will increase, whenever some of
their successors become larger and faster.

5 Results

200

250

300

350

400

450

500

20 30 40 50 60 70

duke2

misex3c

apex2
� S

Figure 3 Area–Time trade–off curves for the circuits apex2,
duke2 and misex3c, found by PLATO

Tmax

The results can be divided in three parts:
1. the �max – � S trade–off curve, the actual result of the simula-

tion run,
2. the comparison with the original LP solver, to compare the

results, and
3. the different signal curves, describing the values of voltages

and currents as functions of time. These can give detailed
information on the optimization process, and can, for example,
reveal delay bottlenecks in the circuit.

We have applied both the LP approach from [1] and the new PL
simulator approach to the entire set of two–level examples of the
MCNC benchmark suite [19], and to a group of other circuits.
These other circuits are parameterized versions of a circuit that
checks if a given n–bit number is prime, and, if not so, returns the

smallest divisor. Example prn is the n–bit version of this circuit.
These prime number circuits have proved to be difficult examples
for synthesis and layout software. All circuits were processed by
the EUCLID logic synthesis system [2] until a netlist of basic gates
was obtained. During this processing, the examples Z5xp1 and
Z9sym became equal to 5xp1 and 9sym respectively. Therefore,
Z5xp1 and Z9sym are not listed in the results. All experiments were
performed on a HP 9000/750 workstation, running approximately
22 MFLOPS. The speed factor was limited between 1 and 3, and the
PL approximation of the � – S function had 3 pieces. The constants
ci in (7) and (17) were set to 1.

The �max – � S trade–off curve
The computation of this curve is the main result of this paper. The
curves of three benchmark circuits are given in Figure 3. Other cir-
cuits give the same type of trade–off curves, whose particular shape
will depend on the structure of the circuit. The circuits chosen for
this figure are so complex that the trade–off curves seem smooth,
but they are still piecewise linear. For simpler circuits, the curves
have fewer sections. For more complex circuits, finding the com-
plete trade–off curve is sometimes difficult, because of numerical
problems in finding the left–most part of the curves, i.e. the fastest
solutions with minimal �max. These numerical problems are dis-
cussed in a later section.

Comparison with the LP solver
The solution of the dynamic LCP has to be compared with the LP
solver with respect to the values of the solution, the run times and
convergence properties. The results are presented in table 1. For
both methods, the fastest solution found is given with its � S. For
the LCP method, the run time for determining the complete trade–
off curve is given, for the LP method only the run time for determin-
ing the fastest solution found is given. Furthermore, the number of
gates and the number of linear and LCP variables in the simulator
is given. The last two columns show the gain in speed and cost in
extra area between the slowest (minimal � S) and fastest solution,
determined from the results of the LCP. A %faster value of 55%
means that the circuit after gate sizing has a delay of (100–55) =
45% of the original. No circuit can become more than 66.7% faster
when Smax is 3. The values in inverted colors indicate solutions
where both methods agree about the fastest solution.
Several aspects must be noted with respect to the results. The prob-
lem of finding the fastest solution becomes numerically less stable
the larger the circuits are. Therefore, the LP solver could not always
find this solution. In those cases the fastest solution which did con-
verge is tabulated in table 1. For a few cases, the solution with mini-
mal � S could not be found with the LP solver, because the right–
most part of the trade–off curve was too flat. This can probably be
repaired by a more careful choice of constants in the objective func-
tion of the minimization problem. The simulator has comparable
problems with the same circuits. For most circuits, the curve could
be traced further (sometimes until the end) by changing the values
of some internal numerical control parameters.
Table 1 indicates that both methods agree for most circuits on the
results. Especially for the smaller circuits there is no doubt that both
methods are equivalent, and only differ by small numerical errors.
For the larger examples, it is not always clear which method is bet-
ter. Because in PLATO the control of numerical errors is more care-
fully designed than in the LP solver, we suppose that PLATO gives
slightly more accurate results.
The run times of both programs are comparable, although the LP
solver calculates only one point of the trade–off curve. In figure 4
the run times are plotted against the size of the problem (in gates).

cpu
time

lp did not find fastest

number of gates

lp found fastest

lcp found fastest

�(n2)
�(n)

lcp needed num. adj.
lcp did not find fastest

Figure 4 Run times versus number of gates

(s)

10 100 1000 10000
0.1

1

10

100

1000

10000

This figure suggests that the run times are �(n2) for this range of
problems. For the LP solver this is made plausible in [3]. The
estimation of the order of the run times of the simulator is complex,
because all calculations are performed on sparse data structures, so
the density of the linear equations and the connectivity in the sys-
tem, and the number of time steps determine the run time. If the con-
nectivity and density remain bounded, the run time is linear in the
number of time steps, and is expected to be �(n). However, in the
later part of the simulation, during the determination of the fastest
possible solution, the connectivity and density grow (as will be
explained in the next section). This might explain why the run time
tends to grow as �(n2).
The cost and gain of the fastest solution compared with the initial,
slowest solution show a wide range of values. The schedule time
may vary between 16% to 66% faster, while the extra cost in area
may differ from 0.4% up to 172%. There is a tendency for small cir-
cuits to have low gain at relatively high costs, while for large cir-
cuits high gains are obtained at low costs. This can be explained by
the fact that in small circuits there is not much freedom, because
each path in the Boolean network contains only a few gates. After
a few steps of the simulation, most of the network becomes critical,
so decreasing the schedule time is only possible by increasing many
speed factors simultaneously. Larger circuits usually have one or
two long paths, so by increasing only the speed factors on these
paths a faster solution can be found.

Signal curves

8.52

7.04
5.77 6.58

F1

8.07

7.04
5.77 6.58

F2

1.65

1
5.77 6.58

SF2

Figure 5 Schedule times of outputs F1 and F2 of circuit con1,
and speed factor of gate F1

For each circuit all values as function of the simulation time can be
printed. We have chosen to show only three values of the simplest
circuit in the benchmark suite, con1 (Figure 5). The reason is that
many values are trivial (the component’s speed factor remains 1)

or uninteresting (the “currents” in the circuit). A third reason is that
most values show the behavior that is expected from the model, i.e.
the speed factors increase monotonously, and the schedule times
show a mixture of increasing and decreasing values, depending on
its place in the network. One of the most interesting features, which
is many times ignored, is that the speed factors may decrease during
the simulation, because it gives room for other speed factors to
increase and so decrease the total schedule time of the circuit. This
behavior is shown exactly in Figure 5, where the schedule times of
the two outputs of the circuit are shown. First gate F1 is on the criti-
cal path, later both gates are on it. The speed factor of gate F2 shows
an irregular behavior during the simulation. This can be explained
by the fact that this gate has a low internal delay, so decreasing this
delay is not so interesting. At certain values for the forcing schedule
time, it is therefore advantageous to decrease the speed factor. Fig-
ure 5 shows that for the fastest solution only a small speed factor
is found, while for some slower solutions a larger speed factor suits
better. Many heuristical approaches to transistor sizing ignore the
fact that sizes must sometimes decrease during the optimization
process to stay near the optimal solution.

6 Numerical aspects
One of the important conclusions that can be drawn from the
experiments is that both solution methods for this type of problems
show numerical problems for large examples. We will try to ana-
lyze these problems in qualitative terms. The characteristics for the
problems that the methods can not solve are the same, i.e. both the
LP solver and PLATO do not find the fastest solution for (most) prob-
lems exceeding a size of about 1000 gates. The symptoms are in
many cases the same, namely that a pivot can not be performed
because it is too small. Furthermore, the run time increases dispro-
portionate when finding a faster solution, so most time is spent in
the left–most part of the trade–off curve.
This last symptom can be explained by the fact that (in the simula-
tor) the length of the time interval between two subsequent changes
of the state of the LCP shortens and the number of matrix entries
increases. These facts can be explained by the increasing interde-
pendency between the gates, so more speed factors are changed to
decrease the total schedule time.
There may be two reasons for the numerical problems: the matrix
of the LP/LCP problem may be ill–conditioned, and/or the convex
hull spanned by the inequalities is very flat near the optimal solu-
tion. The first case is not likely, as can be seen from the inequalities
(10) – (13). The coefficients are all �(1), so an ill–conditioned
matrix will occur if two inequalities determine nearly equal hyper-
planes. This is not the case. For the LCP the same reasoning shows
that both the linear equations and the LCP equations are not ill–
conditioned. So it is most likely that the convex hull spanned by the
inequalities is very flat near the optimal solution.

7 Conclusions
The approach to compute trade–off curves for gate sizing with a
piecewise linear simulator has proved to be very effective. Entire
trade–off curves can be computed with about as much CPU time as
it takes to get one point on the curve with the PL approach. There
are some numerical problems with circuits with more than 1000
gates, but it should be noted that for these large circuits still a sub-
stantial part of the trade–off curve is obtained. Because this is from
the designers point of view probably the most interesting part (the
right part), these partial results are still useful.
The topic of numerical stability will be subject of further research,
because we believe that by careful analysis of the source of the
numerical problems we might find a way to avoid them.

Table 1: Results, run times, characteristic sizes and gain / cost
for solving LP and LCP problem

Name LP LCP #
gates

#
linear

#
LCP

%
faste

%
more

run (s) run (s)
gates linear

vars
LCP
vars

faste
r

more
S

5xp11 4.1 2.7 146 721 1285 29.6 34.1
9sym1 1.1 1.9 82 400 830 17.6 50.2
alu41 126.7 54.2 589 3722 287 56.9 14.6
apex11 220.6 281.0 1103 7639 11126 44.0 11.7
apex2 20.5 18.3 253 1488 2474 29.6 39.1
apex32,3,4 470.8 182.9 2131 10722 20934 64.5 0.4
apex42,3,4 1229.3 639.9 3622 18551 35911 66.5 1.1
apex51,2 25.2 166.4 437 2685 4289 44.3 39.3
b12 0.5 0.9 46 250 444 22.0 53.4
bw 1.9 1.5 89 522 934 26.2 25.6
clip 2.1 3.1 90 554 915 26.9 45.7
con1 0.1 0.2 12 62 118 17.4 127.6
cordic 0.6 0.9 61 316 565 18.8 72.0
cps1,2 70.3 144.6 622 4281 6171 53.9 20.6
duke2 12.5 10.3 224 1363 2209 36.4 26.8
e64 8.6 6.7 239 1330 2174 31.2 22.9
ex10102,3 234.9 273.7 1076 7203 10424 38.7 8.9
ex4 12.2 6.3 270 1477 2669 28.5 25.4
ex5 16.4 11.8 233 1545 2280 41.4 19.2
inc 0.5 0.9 52 312 543 21.8 34.2
misex1 0.3 0.6 34 177 336 22.2 62.1
misex21 5.7 3.9 165 940 1543 27.1 28.2
misex32,4 2063.1 736.5 4769 21818 47470 66.7 0.8
misex3c1 27.2 56.1 318 1991 3285 46.0 38.9
o64 4.5 4.9 157 661 1388 22.6 172.0
pdc1,2 11.6 35.6 310 1969 3009 38.6 28.3
rd53 0.2 0.3 19 88 210 13.8 47.4
rd73 1.1 1.7 75 452 760 21.3 31.6
rd84 1.7 1.7 131 595 1334 19.1 14.3
sao2 0.9 1.5 74 356 758 18.8 34.3
seq1,2 111.3 200.6 894 6021 8878 56.9 16.9
spla2 11.7 40.8 290 1870 2844 35.0 29.0
t481 0.3 0.4 34 181 315 18.0 75.3
vg2 2.2 4.3 111 638 1093 28.6 44.3
xor5 0.2 0.2 15 95 168 16.5 77.8
pr8 6.1 6.9 151 953 1590 37.3 26.5
pr9 2,3 37.6 117.3 464 2849 4377 45.3 36.0
pr102,3 140.0 156.0 799 5754 8190 47.9 15.3
pr112,3 910.0 1059.0 1609 11750 16695 52.8 6.5
pr122,3 5380.0 1438.8 3569 26325 37166 49.2 2.2

1 LCP found fastest solution by adjusting numerical control
parameters

2 LP could not find fastest solution
3 LCP could not find fastest solution
4 LP could not find slowest solution

Literature
[1] BERKELAAR, M.R.C.M. and J.A.G. JESS, “Gate Sizing in MOS

Digital Circuits with Linear Programming”, Proceedings of
the European Design Automation Conference 1990, pp.
217–221.

[2] BERKELAAR, M.R.C.M. and J.F.M. THEEUWEN, “Real Area–
Power–Delay Trade–off in the EUCLID Logic Synthesis Sys-
tem”, Proceedings of the IEEE Custom Integrated Circuits
Conference 1990, pp. 14.3.1–14.3.4.

[3] BERKELAAR, M.R.C.M., “Area–Power–Delay Trade–off in
Logic Synthesis”, Ph.D. Thesis Eindhoven University of
Technology, Eindhoven, The Netherlands, 1992.

[4] BRAYTON, R.K., R. RUDELL, A.L. SANGIOVANNI–VINCENTELLI
and A. WANG, “MIS: A Multiple–Level Logic Optimization
System”, IEEE Transactions on Computer–Aided Design of
Integrated Circuits and Systems, Nov. 1987, Vol. CAD–6, pp.
1062–1081.

[5] BUURMAN, H.W., “From Circuit to Signal: development of a
piecewise linear simulator”, Ph.D. Thesis Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands, 1993.

[6] FISHBURN, J.P. and A.E. DUNLOP, “TILOS: A Posynomial Pro-
gramming Approach to Transistor Sizing”, Proceedings of the
IEEE International Conference on Computer–Aided Design
1985, pp. 326–328.

[7] GHOSH, A., S. DEVADAS, K. KEUTZER and J. WHITE, ‘‘Estima-
tion of Average Switching Activity in Combinational and
Sequential Circuits”, Proceedings of the 29th ACM/IEEE
Design Automation Conference 1992, pp 253–259.

[8] GLASSER, L.A. and L.P.J. HOYTE, “Delay and Power Optimiza-
tion in VLSI Circuits”, Proceedings of the IEEE Design
Automation Conference 1984, pp. 529–535.

[9] HEDLUND, K.S., “Models and Algorithms for Transistor Sizing
in MOS Circuits”, Proceedings of the IEEE International
Conference on Computer Aided Design 1984, pp. 12–14.

[10] KAO, W.H., “Algorithms for Automatic Transistor Sizing in
CMOS Digital Circuits”, Proceedings of the 22nd Design
Automation Conference 1985, pp. 781–784.

[11] MARPLE, D., “Transistor Size Optimization in the Tailor Lay-
out System”, Proceedings of the IEEE Design Automation
Conference 1989, pp. 43–48.

[12] MATSON, M.D., “Optimization of Digital MOS VLSI Cir-
cuits”, Proceedings of the Chapel Hill Conference on VLSI
1985, pp. 109–126.

[13] NAJM, F.N., ‘‘Transition Density, a Stochastic Measure of
Activity in Digital Circuits”, Proceedings of the 28th ACM/
IEEE Design Automation Conference 1991, pp 644–649.

[14] PANNE, C. VAN DE, “A Complementary Variant of Lemke’s
Method for the Linear Complementarity Problem”, Mathe-
matical Programming, 1974, Vol. 7, pp. 283–310.

[15] RUEHLI, A.U., P.K. WOLFF and G. GOERTZEL, “Power and Tim-
ing Optimization of Large Digital Systems”, Proceedings of
the IEEE International Symposium on Circuits And Systems
1976, pp. 402– 405.

[16] SAPATNEKAR, S.S., V.B. RAO and P.M. VAIDYA , “A Convex
Optimization Approach to Transistor Sizing for CMOS Cir-
cuits”, Proceedings of the IEEE International Conference on
Computer Aided Design 1991, pp. 482–485.

[17] SAPATNEKAR, S.S., V.B. RAO, P.M. VAIDYA and S.M. KANG, ‘‘An
Exact Solution to the Transistor Sizing Problem for CMOS
Circuits Using Convex Optimization”, IEEE Transactions on
Computer–Aided Design of Integrated Circuits and Systems,
Vol. 12, No. 11, November 1993, pp. 1621–1634.

[18] SHYU, J., A. SANGIOVANNI–VINCENTELLI, J.P. FISHBURN, and
A.E. DUNLOP, “Optimization–Based Transistor Sizing”, IEEE
Journal of Solid–State Circuits, Vol. 23, No. 2, April 1988,
pp. 400–409.

[19] Yang, S., “Logic Synthesis and Optimization Benchmarks
User Guide Version 3.0”, Report of the Microelectronics Cen-
ter of North Carolina, 1991.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

