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Abstract To obtain the trade—off curves, one could calculate a lot of points

The gate sizing problem is the problem of finding load drive capa-by repeatedly “S"_‘g a single—poi_nt optirr_liz_ation algorithm. This is

bilities for all gates in a given Boolean network such, that a given not only _compL_JtatlonaIIy EXPENSIVE, bUt. itis a_Iso not easy to deter-
delay limit is kept, and the necessary cost in terms of active ared'"€ which points are “eeded to make linear |nterpolat|0n b_etwee_n
usage and / or power consumption is minimal. This paper describeéhem an accurate estimation of the real trade—off curve. Itis just this

a way to obtain the entire cost versus delay trade—off curve of atask that our circuit simulator with variable integration step size

combinational logic circuit in an efficient way. Every point on the performs very efficiently. By introducing a time-dependent delay,

resulting curve is the global optimum of the corresponding gate siz-(part of) the t_rade—off curve Is visited_ during the simulation.
ing problem. The problem is solved by mapping it onto piecewisé?’ecause the different solutions for two slightly different delays are

linear models in such a way, that a piecewise linear (circuit) simu- usually close to each othe_r, the new solution can be calculated with
lator can do the job. It is shown that this setup is very efficient, andOnly a few updates. We will show that the LP problem of [1] can be

can produce trade—off curves for large circuits (thousands of gates)mapped onto piecewise linear models, which can be solved with the

in a few minutes. Benchmark results for the entire set of MCNC ,glplecewise linear simulatecato. As we shall see in the results sec-
two—level exambles are given tion, the PL simulator setup can calculate entire trade—off curves in

) about the same amount of CPU time as it takes to solve one LP prob-
1 Introduction lem for one solution point.

The problem treated in this paper is the problem of gate sizing. lSetup of this paper

can be defined as assigning load drive capabilities to the gates inia section 2 we will discuss the LP formulation of the gate sizing
Boolean network such, that a given delay limit is obeyed, and theproblem, summarizing [1] and [3] chapters 4 and 6. In section 3 we
total cost in terms of active area and / or power consumption of thewill introduce the piecewise linear simulatarTo. In section 4 we
circuit is minimal. The problem is very similar to the transistor siz- will discuss the mapping of the gate sizing problem onto piecewise
ing problem. The main difference is that in gate sizing all transistorsinear models suitable feLato. In section 5 we will present results

in a logic gate are sized simultaneously, whereas transistor sizingor all MCNC 91 benchmark examples, comparing the [1]
sizes single transistors. The main reason we focus on gate sizing igproach with the performancerafato. In section 6 we will dis-

the fact that we want to be able to optimize large circuits. Our ideaguss some numerical aspects of optimizing very large circuits. In
are, however, also applicable to transistor sizing. section 7 we will give some conclusions and directions of future
Previous work work. _ o

In the past, several algorithms have been proposed to solve the trar%— LP formulation of gate sizing
sistor sizing problem. There are a number of heuristic or combined3asic delay model of a gate

algorithmic/heuristic optimizers [15] [9] [8] [10] [6] [18] which  To describe the way we have modeled the gate sizing optimization
solve the problem but cannot guarantee optimality of the solutionproblem for the PL simulator, we will introduce a simple gate level
More recently a number of solutions which use efficient forms of delay model, as introduced in [1]. This is a model which uses the
solving a nonlinear programming problem [11] [12] [16] [17] have worst case delay of a logic gate, both with respect to inputs as with
been published. They prove that in many cases the heuristic solu€spect to rise- or fall time, as delay value. Although this kind of
tions stay far from the global optimum. The most important prob- model can give quite accurate delay estimations for large circuits,
lems in these nonlinear programming approaches are usually thiis not very accurate for many small circuits. Itis, however, impor-
run time, which becomes too long for large examples, and the contant to realize that any convex delay model can be used with our
vergence. In [1] and [3], a solution to the gate sizing problem wasgate sizing method. In [6] the important class of distributed RC
proposed using linear programming (LP), and piecewise linearmodels is proved convex.

(PL) approximations of the nonlinear delay formulas. This proved We use the following symbols: delay of a gateC: capacitance

to be fast and, therefore, feasible for large circuits. value, c: constant,S: speed factor

We start with the widely used basic model:

Why compute the entire trade—off curve?
Tgate = Tinr T C X CIoad (1)

All of the above approaches can find one point in the solution space
of the problem per invocation of the program. Very often, however, Cpag = Cpire + Cir (2)

a designer is interested in (part of) the trade—off curve, to be ab'@vherecw,,eis the wire capacitance ai@), is the sum of the capaci-

to compare the advantages and disadvantages of several possilighces of the connected gates. Because we are dealing with sizeable
implementations. If we examine typical trade—off curves as in Fig-gates, we introduce trepeed factorS . of a gate:

ure 3 it is immediately apparent that most designers will want to

avoid using solutions in the leftmost parts of the curves, where 7., =7, S
small gains are made at large costs. gate

®)
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BecauseS,. is implemented in the physical layout by multiply- _ \ﬁdd
ing the width of the transistors, the gate capacitances grow linearlyPgae = fsw X > X Cload
with it, and we get:

Cv= Z Si Cini (4) = X Cload
i€ fanout(gate)
Combining (2), (3) and (4) leads to a complete (nonlinear) delay = Cp X (Cyjre + Cy)
model:
Cwire + z si Cin,i =Cp X (Cwire + Z Si x Cin,i)
i i€ fanout

®)
Sgate The total power consumption of a circuit is the sum of the power
To use this delay model in a LP environment, it has to be linearizedconsumptions of the individual gates:

To obtain the desired accuracy, we can use a piecewise linear fip _ Z p.

with as many pieces as desired. In [3] it is shown, that 3 pieces is !
enough for above delay model, if we linfitto the range [1, 3]. Fig-

ure 1 shows a typical case of a 2—input nand gate ineCIVES _ o
process under various load conditions. = D G X Cureit D, Cpi D, S;X Ciy ®

Tgate = Tint +CcX

i€ gates

i€ gates i€ gates JE fanout

The first summation of (8) is constant for our optimization problem,
12N S =30 — — — fanout = 10 the second summation is linear in the speed factors.
N fanout = 3 To obtain the average switching frequencies, one must either per-
I Z Sp=10 form logic simulations with appropriate input vectors or apply sta-
8 ~ >~ - tistical methods, as in [7] and [13].
I ~ . . .
?nes?y ] S~ Te—_ LP formulation of the gate sizing problem
6- 2 S;=9 T — T = The linear program is now composed as follows: Firstly, we define
4’ T; to be the schedule time; the delay ands; the speed constant
i of gatei. For the primary input$ is the arrival time of the signal.
2 The total delay of the circuit is:
T T T T T T T T T T T T T T T T T T T
10 12 14 16 18 20 22 24 26 28 30 Imax= _ max T, )

i€ primary outputs

S Now, for every gate in the circuit the following constraints are
Figure 1 delay of a nand gate under different loads versus its defined:

speed factor 1. Thenlinearized delay models (a PL implementation of (5)):
Delay of a logic circuit Tgate = C11 — C1Sgae + C1s z S;Cin;
We model the total delay of a logic circuit by calculating the longest | i (10)

path in the Boolean network [4]. To be able to do this, we introduce

the symbolT ., theschedule timef a gate. It is defined as the Tgate = Cn1 ~ Cn2Sgate T Cns 2 SiCin,i
worst case time after which the output of the gate will become o !

stable on an input transition. The arrival times of the primary input2-  S'is limited:

signals are assumed to be known. The schedule time of agate can S, < Sgue < Spax (11)

be expressed in the schedule times of its input signals and its oWl bofinitions of schedule times (implement (6)):

delay: Vv T =T -
Tga[e = Tgate + max T; (6) JE fanin(gate) gate = j+ rgate ( )

i€ inputs(gate) L. A . . o
Both the summation and tineax function can easily be expressed 4, Def.InItIOI’IS for maximum schedule time of circuit (implement
in LP terms. (9)):

The wire capacitanc€ ., in (2) and (5) is estimated based on sta- If the gate is a primary output:

tistical data from actuglreia i Tmax = T gate (13)
yout. See [3] for detalils. g
The total active area of a circuit 5. The objective function is a linear combination Af P and
Because the transistor sizes in the gates are adapted in just one Trmax:
dimension with changing speed factor, the total active area of acir- CaA + CpP + Crl'max (14)
cuitis a linear combination of the speed factors, where the constants the circuit has a Boolean network representation witrertices
c; reflect the relative contribution to the active area of gate (one for every gate) anff edges (one for every connection), we
A= Z ¢S 7) can calculate the LP problem size. The number of constraints is
iomes = |E| + (2 + n)|V| + 4 (1for every predecessor relation, 2 per ver-

. . tex for limitation of Sy, N per vertex for the piecewise linear
CMOS dynamic power consumption delay model, 1 to express the total delay,, 1 to express the total
If we definef,, to be the average switching frequency of a gate, theactive aread, 1 to express the total power consumpt@and 1
dynamic power consumption of a single CMOS gate can bemore to limit7,). The number of variables3V| + 3 (per ver-
expressed as: tex S, 7, andT, and for the global networK .., A andP).



Because in practical Boolean networks both the fanin and the fanintegration. If an entry in either vector becomes negative during the
out of a gate are limited, implyindE| < c¢|V| for some constant integration, the Van de Panne algorithm is started to change the
¢ > 1, the size of the LP problem is effectively linear in the num- state of the LCP. The path that the simulator follows can be pictured
ber of gates in the circuit. as a piecewise continuous path (in time) through the space, mixed
3 The PL simulator PLATO with (possibly discontinuous) steps. The continuous path is driven

) ) ] o ) ) ) by the integration in time, while the (discontinuous) steps are gov-
The simulatopLaTo [5] is a piecewise linear simulator, primarily  erned by the Van de Panne algorithm.

intended for simulating electrical and logical circuits. The compo- L .

nent relations are described by a matrix, relating linear, dynamic4 Moqe“”g in the PL simulator )
and complementary variables and equations. The complementary® obtain the Area—Delay trade—off curve, the LP problem will be
variables and equations together form a Linear Complementaritys0!ved for a constrain?’nac < f(£) with f(f) continuous. The
Problem (LCP), which is the following problem: given a matfix ~function £(£) may be non—-monotone, but it is simpler to choose a

and a vectoy, determine vectors andz satisfying function f(t) = a — bt, with b > 0 anda larger thanT (0),
the valueT o, assumes for. S minimal (the valuel,,,4(0) can be

w=Mz+q determined easily from inspection of the circuit). Then the solution
w=0,z20, wz=0 (15) at t = 0O is feasible, and a list of solutions for different values of
T max is generated, until no solution can be found. This dynamic

The equation w = 0 is considered componentwise, i.e. Problem cannot be integrated easily into the used LP solver. How-
V., w; = 0. The complementary variables and equations model theEVer, the problem can be Fransformed into an LCP, as will _be shown
piecewise linear behavior of the components. Due to this piecewisé the next paragraph. This LCP, together with the dynamic behav-
linear modeling, electrical, logical and macro models can be usedor. is solved by the simulatetAro.

in one circuit description and simulation run. To support these dif-An LP problem is converted into an LCP in the following way. Let
ferent models, two types of connections (nets) are available: electhe LP problem be: findmin { p’z; }.

trical, with voltage and current variables satisfying the Kirchhoff Az =b

relations, and signal, which have only a voltage—like variable. TheApply the (Karush—)Kuhn-Tucker relations to find the system:
connections of a component to the nets, called terminals, also have w, o ATl/z p

one of these types. All kinds of components can be used by the sim- (W2> = [ A0 ](Zz) (b)

ulator: it has no built-in models but uses a mixture of user—supplied

models and library models. To solve the system efficiently, the fol- z w, z,\ [ w,
lowing methods are repeatedly employed: (Zz) = 0, (WZ) = 0, (Zz) (Wz) =

— The linear equations, determining the values of voltages, cur-

rents and signals, are separated from the component descrif 5 solution to this problem exists, the vecmris the solution of
tion. These equations are solved with an LU decomposition.ihe original LP. For an LCP with a matrix as given in equations (16),
Because of the sparse nature of the linear equations (connectiofie van de Panne algorithm will always find a solution if it exists.
matrix), a sparse data structure is used. If the linear equationsghis problem could be entered in a straightforward way into the cir-
change, the update of the LU matrices is calculated efficiently ¢yt simulator by creating one large component with this system.
with an algorithm that visits only those elements of the matricesgyt the problem can also be represented as the original circuit, with
that change. some additional special components. In this way, the sparsity of the
— The LCP is solved by a path—following algorithm devised by network can be employed and the simulation will take much less
Van de Panne [14]. This algorithm follows the same path as thecomputer time and resources. In the next section, the conversion of
well-known Lemke algorithm, but only employs complemen- the LP as given in the equations (10) — (14) into a circuit with
tary (block—diagonal) pivots. The internal data structure is alsoappropriate components is discussed.
block—diagonal, which is the reason why the performance ofconyerting an LP into an LCP circuit
the Van de Panne algorithm is much better than the Lemke algo- < Dy
rithm inpLATO. During the algorithm, the linear equations may
change.

— The dynamic equations, a set of linear differential equations,
are solved with an integration method. Which method is
employed, depends on the problem; usually an implicit linear
multi-step method is used. To exploit the sparsity and latency
of most circuits, the integration method is employed in a multi—
rate scheme, where the circuit is divided dynamically in clus-
ters, and the components in one cluster have the same integra- 3 ? A
tion step size, differing from the step size in other clusters.
However, if the solution is linear in time, the much simpler and
more efficient Forward Euler integration method is used. (a) Boolean network (b) circuit for optimization#pato

The simulator follows a path in the complex space of linear,
dynamic and LCP variables. The starting point is determined first
by applying the Van de Panne algorithm. The LCP variables and
equations determine (convex) regions in the space of linear andhe LP problem of equations (10) — (14) is based on the subdivision
dynamic variables. So the state of the LCP, the zero—nonzero partf the logic circuit into connected components. To use the sparsity
tion of thew andz vectors, remains valid for some time during the of the interconnections, the related LCP problem is converted into

Boolean value Schedule time Speed factor

Figure 2 "Circuit” to perform optimization in the simulator



a network. Instead of logic values, the schedule times and spee@ihe components in the circuit are created according to the equa-
factors are passed between the components. As will be shown in thiéons above, and the connections between them are laid out accord-
next paragraphs, it is simpler to use electrical nets: not only schedng to the connections of the original circuit. The extra component
ule times or speed factors are passed over a net, but also extfar determining and changing the maximum schedule time is con-
information needed to solve the optimization problem. Figure 2nected to the output gates of the circuit. The total number of LCP
shows the basic conversion step. variables is2((4 + n)|V] + |E] + 2), the number of linear (cir-

Each component has two output terminals, one with its schedul@Uit) variables ist| V] + |E]. Notice that there is no special compo-
time as signal/voltage value, the other with its speed factor. FurtherD€nt connected to all gates for guiding the optimization process.
more, the schedule times of the components in the fanin set of 4"e gates “know” themselves when their speed factors must
component must be known, so the respective nets each have the&ihange, as is explained in the next section.

own input terminal. For the same reason, the nets related to thEinding the LCP solution

speed factors of the components in the fanout set are connected §g¢ | Cp solution is found by combining the Van de Panne algo-
input terminals. The matrix of one component is constructed froMjthm with an integration in time. By using the inequality
three submatrices, each related to one group of inequalities. Tmax < @ — bt the relation between S and the time is found.

The inequalitiesS,,;,, = S; = Spax (equation (11)), together with  Then it is trivial to find the relation betwedh,., and>. S. Using

the optimization requirement c;S; minimal (equations (7) and  a linear function for the time, the numerical integration is as exact
(14)), are transformed, according to (16), into the following equa-as possible and will give no problems. But first an initial solution

tions: must be found. This is rather straightforward, when starting from
the basic pointz = 0. This impliesS; = S, for all /, and the
0 1|(A + Ci (W internal delays; have the values related to theSe So only the

-1 0|\ 2 Smax = Spin | — \ W2 (17) schedule timed’; and the corresponding LCP variables must be

determined. This is done easily by the Van de Panne algorithm. If
the schedule time minus the delay of a component is less than the
schedule time of one of its predecessors, the correspongiisy
negative. By performing a block pivot, and due to the form of the
equations, the correspondimg, and z, both become zero. In net-
work terms, the schedule time is set to the schedule time of the pre-
The second group of inequalities, decessor plus the internal delay. If the initial solution is found, and
T;=max{T;|j€ fanin(i)} +7; (equation (12)), is trans- the forced schedule time at this time pomtis larger tharl may,
formed into system (18). For simplicity, the example gate has only|| currents are zero at the starting point. The other case, that a faster
two inputs with delayd’; and 7’,. initial solution is sought, will follow from the discussion in the next
paragraphs. Because it is a feed—forward network, the calculations

S/‘ =2 + Sm/n

The equationsz; = 0 andw, = 0 determine the minimum and
maximum bounds o8&;, while the valuec; in the constant vector
denotes the value in the objective function.

0 o001 0T Way are easy and thE&,,,, with > S minimal is found.

0 0000 1||T; Wa, The dynamic solution starts from this initial solution. With increas-

0 000-1-14fz;) |w ing time, the schedule time decreases until no faster solution can be
J |0 000-1-14fz W3 (18) found. The Van de Panne algorithm fails and the simulation stops

-1 0110 0}fz W, with an error message. The dynamic solution will follow the piece-

0-1110 0|z Wi wise linear trade—off curve exactly, due to the linear form of the

T = 2. +1. constraint oril" ... We will describe the first step of the simulation
L 3 ! process, and explain which actions will in general happenin the cir-

. . , d cuit in the subsequent steps. The first step starts at that time point
The rows in the matrix related to the variables,, w,, andw, of the simulation where the inequality in the last component,

must be added to their respective rows. However, the problem with, \nging the schedule time, just becomes invalid, and a new state
this set of equations is that the rows related with and w,,_ are of the LCP must be found.

not in this component. These rows are therows of their respec-
tive components. Therefore the valuezgfespectivelyz; must be
transported to these components and added to the relevant row. T
is done conveniently by setting the schedule time explicitly to an
electrical type, with as voltage value the schedule fipeand as )
current value on this connection the valuegfBecause the cur- The first step

rents satisfy the Kirchhoff law, the current on the outpus the ~ Let k be the index of the violated inequality, i.e.

The rest of this section is intended to give the reader some insight
Kely the course of the optimization process. It is not mathematically
rigorous, but it should give some feeling how we have constructed
an “auto—optimizing” circuit.

sum of these currents of its successors. By adding one entry in the W,
matrix in the row related withw;, having the value-1l (incoming W, =0 A TR 0.
current!), the correct system is created. Then thez, variable can be increased. On circuit level, this means

The third group of inequalities; = PL(S; S,,) (equation (10)), that a current will flow through a schedule time connection,
has a form comparable to system (18). Therefore, the nets transfetewards the predecessor with the highest schedule time. In this pre-
ring the speed factors also have a current related to them, and afecessor, two actions happen. First, the current forces the schedule
extra term occurs in the respectiwg rows. The extra inequality  time of this cell to decrease. As in the previous cell, this creates a
Tmax < f(t) will give the same matrix as in equations (17), but current through one schedule time connection towards a predeces-
with a right hand sid(ao, f( t))T. This matrix is embedded in afinal sor. So each cell on the critical path is activated by a current to
component that determines the maximal schedule time in the circuitlecrease its schedule time. By the same process, the vadérof

by taking the maximum of the schedule times at the output gateseach of these cells decreases. As soon as in one cell this value



reaches zero, the correspondingmay increase. This means that smallest divisor. Example pis then-bit version of this circuit.

the speed factor of that cell will increase. This decreases the delayhese prime number circuits have proved to be difficult examples
of this cell, but increases the delay in its predecessors. However, ther synthesis and layout software. All circuits were processed by
total schedule time over this path will decrease, because the globahe EUCLID logic synthesis system [2] until a netlist of basic gates
effect is used, i.e. if it would not decreasg,would not decrease. was obtained. During this processing, the examples Z5xp1 and
So a new state of the LCP is found that will be valid for the next partZ9sym became equal to 5xpl and 9sym respectively. Therefore,
of the simulation. The newly found state is translated into the linearZ5xp1 and Z9sym are not listed in the results. All experiments were
equations. These equations can be interpreted by stating that ttgerformed on a HP 9000/750 workstation, running approximately
speed factor in this cell now depends on the time, and that the totédl2 MFLOPS. The speed factor was limited between 1 and 3, and the

schedule time only depends on the time by this relation. PL approximation of the — Sfunction had 3 pieces. The constants
Later steps ¢;in (7) and (17) were set to 1.

This process is repeated at each time point where the current stafehe T, — > S trade—off curve

becomes invalid. This will happen if a speed factor reaches its maxhe computation of this curve is the main result of this paper. The
imum, if another piece of the piecewise linear approximation is cyrves of three benchmark circuits are given in Figure 3. Other cir-
reached, or if another path also becomes critical. In the first casegyjits give the same type of trade—off curves, whose particular shape
this cell is replaced by another cell (if it exists) and the curve canyjjil depend on the structure of the circuit. The circuits chosen for
be tracked further. In the latter two cases, in general it is necessagpis figure are so complex that the trade—off curves seem smooth,
to increase not only this speed factor, but also another cell's speegt they are still piecewise linear. For simpler circuits, the curves
factor. Depending on the size of and the freedom in the circuit, inhave fewer sections. For more complex circuits, finding the com-
the latest stages of the simulation many speed factors are manipyjete trade—off curve is sometimes difficult, because of numerical
lated and a large part of all schedule times is changing. Instead giroblems in finding the left-most part of the curves, i.e. the fastest
one gate on one critical path, many gates in a critical subnetworko|utions with minimalT' ... These numerical problems are dis-
are continuously considered. cussed in a later section.

Up till now, we have suggested that the speed factors will alwaySComparison with the LP solver

increase. However, it may happen (see figure 5) that by decreasinghe solution of the dynamic LCP has to be compared with the LP
t

one speed factor and increasing another at the same time the to | ith t 1o th | fh lution. th i d
schedule time will decrease. The speed factor may increase agaﬁp ver with respect (o the values of the solution, the run imes an
onvergence properties. The results are presented in table 1. For

later in the simulation. It is clear, that the schedule time of cells no ; T iy
goth methods, the fastest solution found is given witRlitS. For

on the critical path(s) may and will increase, whenever some o ] e
their successors become larger and faster. the LCP method, the run time for determining the complete trade—
off curve is given, for the LP method only the run time for determin-

5 Results ing the fastest solution found is given. Furthermore, the number of
50 gates and the number of linear and LCP variables in the simulator
) is given. The last two columns show the gain in speed and cost in
450 misex3c extra area between the slowest (minima$) and fastest solution,
determined from the results of the LCP. A %faster value of 55%
0 apex2 means that the_ circuit after gate sizing has a delay of (100-55) =
S 3504 45% of the original. No circuit can become more than 66.7% faster
when S,,.« is 3. The values in inverted colors indicate solutions
300 duke2 where both methods agree about the fastest solution.
2504 x Several aspects must be noted with respect to the results. The prob-
lem of finding the fastest solution becomes numerically less stable
20 . ‘ [ . the larger the circuits are. Therefore, the LP solver could not always
20 30 40 50 60 70 find this solution. In those cases the fastest solution which did con-
Tmax verge is tabulated in table 1. For a few cases, the solution with mini-
Figure 3 Area-Time trade—off curves for the circuits apex2, mal 2 S could not be found with the LP solver, because the right—
duke2 and misex3c, found lpyato most part of the trade—off curve was too flat. This can probably be

. . ) repaired by a more careful choice of constants in the objective func-
The results can be divided in three parts: . tion of the minimization problem. The simulator has comparable
1. theTma— 2 Strade—off curve, the actual result of the simula- problems with the same circuits. For most circuits, the curve could

tion run, be traced further (sometimes until the end) by changing the values
2. the comparison with the original LP solver, to compare the of some internal numerical control parameters.
results, and Table 1 indicates that both methods agree for most circuits on the

3. the different signal curves, describing the values of voltagesresults. Especially for the smaller circuits there is no doubt that both
and currents as functions of time. These can give detailednethods are equivalent, and only differ by small numerical errors.
information on the optimization process, and can, for example,For the larger examples, it is not always clear which method is bet-
reveal delay bottlenecks in the circuit. ter. Because inLATO the control of numerical errors is more care-

We have applied both the LP approach from [1] and the new PLfully designed than in the LP solver, we supposerfthato gives

simulator approach to the entire set of two—level examples of theslightly more accurate results.

MCNC benchmark suite [19], and to a group of other circuits. The run times of both programs are comparable, although the LP

These other circuits are parameterized versions of a circuit thasolver calculates only one point of the trade—off curve. In figure 4

checks if a givem—bit number is prime, and, if not so, returns the the run times are plotted against the size of the problem (in gates).



10000x or uninteresting (the “currents” in the circuit). A third reason is that
E : :B Izﬁclj”:]dog?isr:gsftastest * . most values show the behavior that is expected from the model, i.e.
10004 4 Icp found fastest * the speed factors increase monotonously, and the schedule times
3 + Icp needed num. adj. . + " show a mixture of increasing and decreasing values, depending on
1004" lcp did not find fastes e m * its place in the network. One of the most interesting features, which
E § o+ & is many times ignored, is that the speed factors may decrease during
cpu 7 o(n?) o * the simulation, because it gives room for other speed factors to
time™ 3 . S o(n) increase and so decrease the total schedule time of the circuit. This
() 7 ok Xx behavior is shown exactly in Figure 5, where the schedule times of
1z T a e the two outputs of the circuit are shown. First drétés on the criti-
] s cal path, later both gates are on it. The speed factor dfgateows
0.1 T T T T T T T T an irregular behavior during the simulation. This can be explained
10 100 10000

number of gate

&000

by the fact that this gate has a low internal delay, so decreasing this

delay is not so interesting. At certain values for the forcing schedule
time, it is therefore advantageous to decrease the speed factor. Fig-
ure 5 shows that for the fastest solution only a small speed factor
This figure suggests that the run times @te?) for this range of  is found, while for some slower solutions a larger speed factor suits
problems. For the LP solver this is made plausible in [3]. Thebetter. Many heuristical approaches to transistor sizing ignore the
estimation of the order of the run times of the simulator is complex,fact that sizes must sometimes decrease during the optimization
because all calculations are performed on sparse data structures, ptocess to stay near the optimal solution.

the density of the linear equations and the connectivity in the sysg  Numerical aspects

tem, and the number of time steps determine the runtime. If the CONy L of the important conclusions that can be drawn from the

Eﬁcmtgg?'cicrl?miegfe'tysﬁ?g'ggugiffa igjebgj nl—PorUv%\l/selrmiiatL:an theexperiments is that both solution methods for this type of problems
later part of the simpulétion durir?g the detern.wination oflthe fastestIShOW numerical problems for large examples. We will try to ana-

. ; I . - ze these problems in qualitative terms. The characteristics for the
poss@le splutlon, the connectivity apd densny grow (as W'”.be groblems tlpw)at the meth%ds can not solve are the same, i.e. both the
explained in the nex2t section). This might explain why the run tlmeLP solver an@LATo do not find the fastest solution for (mést) prob-
tends to grow aé_)(n ): . . . ... lems exceeding a size of about 1000 gates. The symptoms are in
The cost and gain of the fastest solution compared with the '”'t'almany cases the same, namely that a pivot can not be performed

slowest solution shovxga wideorange of values. The schedule timgec556 it is too small. Furthermore, the run time increases dispro-
may vary between 16% to 66% faster, while the extra cost in arégyionate when finding a faster solution, so most time is spent in
may differ from 0.4% up to 172%. There is a tendency for small Cirihe left—most part of the trade—off curve.

cuits to have low gain at relatively high costs, while for large cir- __, . . . .
cuits high gains are obtained at low costs. This can be explained bThIS last symptom can be_ explained by the fact that (in the simula-
or) the length of the time interval between two subsequent changes

the fact that in small circuits there is not much freedom, becaus f the state of the LCP shortens and the number of matrix entries
each path in the Boolean network contains only a few gates. Aftel . - S
increases. These facts can be explained by the increasing interde-

a few steps of the simulation, most of the network becomes critical endency between the gates. so more speed factors are changed to
so decreasing the schedule time is only possible by increasing mar& y 9 : P 9

speed factors simultaneously. Larger circuits usually have one o ecrease the total schedule time. . . .
two long paths, so by increasing only the speed factors on thes&here may be two reasons for the numerical problems: the matrix

Figure 4 Run times versus number of gates

paths a faster solution can be found.
Signal curves
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Figure 5 Schedule times of outpt$ andF2 of circuit conl,

and speed factor of gaffd

of the LP/LCP problem may be ill-conditioned, and/or the convex
hull spanned by the inequalities is very flat near the optimal solu-
tion. The first case is not likely, as can be seen from the inequalities
(10) — (13). The coefficients are ali(1), so an ill-conditioned
matrix will occur if two inequalities determine nearly equal hyper-
planes. This is not the case. For the LCP the same reasoning shows
that both the linear equations and the LCP equations are not ill—
conditioned. So itis most likely that the convex hull spanned by the
inequalities is very flat near the optimal solution.

7 Conclusions

The approach to compute trade—off curves for gate sizing with a
piecewise linear simulator has proved to be very effective. Entire
trade—off curves can be computed with about as much CPU time as
it takes to get one point on the curve with the PL approach. There
are some numerical problems with circuits with more than 1000
gates, but it should be noted that for these large circuits still a sub-
stantial part of the trade—off curve is obtained. Because this is from
the designers point of view probably the most interesting part (the

For each circuit all values as function of the simulation time can befight part), these partial results are still useful.

printed. We have chosen to show only three values of the simplesthe topic of numerical stability will be subject of further research,
circuit in the benchmark suite, conl (Figure 5). The reason is thabecause we believe that by careful analysis of the source of the
many values are trivial (the component’s speed factor remains 1jumerical problems we might find a way to avoid them.



Table 1: Results, run times, characteristic sizes and gain / cost
for solving LP and LCP problem

Name LP LCP # # # % |%

gaes |linear |LCP |fase | more

run (s) |run (s) vars vars S

5xp1l 4.1 27| 146 | 721 | 1285 34.1
9sym? 1.1 1.9 82 400| 830 50.2
alugl 126.7 | 54.2 | 589 | 3722 | 287 14.6
apex1! 220.6 | 281.0 [ 1103 | 7639 | 11126 11.7
apex2 20.5| 183 | 253 | 1488 | 2474 39.1
apex3234| 470.8 | 182.9 [ 2131 [10722 [ 20934 |64.5| 0.4
apex42:34]1229.3 | 639.9 | 3622 [ 18551 [ 35911 [66.5 | 1.1
apex512 25.2 | 166.4 | 437 | 2685 | 4289 | 44.3 |39.3
b12 0.5 09| 46| 250 | 444 53.4
bw 1.9 15| 89| 522| 934 25.6
clip 2.1 31| 90| 554| 915 457
conl 0.1 02| 12 62 | 118 127.6
cordic 0.6 09| 61| 316 | 565 72.0
cpst2 70.3 | 1446 | 622 | 4281 ] 6171 20.6
duke2 125 | 10.3| 224 | 1363 | 2209 26.8
€64 8.6 6.7 | 239 | 1330 2174 22.9
ex101023 | 234.9 | 273.7 | 1076 | 7203 | 10424 8.9
ex4 12.2 6.3 | 270 | 1477 | 2669 25.4
ex5 16.4 | 11.8| 233 | 1545 | 2280 19.2
inc 0.5 09| 52| 312 | 543 34.2
misex1 0.3 0.6 34 177 336 62.1
misex21 5.7 3.9 | 165| 940 1543 28.2
misex324 [ 2063.1 | 736.5 [ 4769 | 21818 | 47470 0.8
misex3cl 272 | 56.1| 318 | 1991 | 3285 38.9
064 4.5 49| 157 | 661 | 1388 172.0
pdcl2 11.6 | 35.6 | 310 | 1969 | 3009 28.3
rds3 0.2 03] 19 88 | 210 47.4
rd73 1.1 17| 75| 452 ] 760 316
rds4 1.7 1.7 | 131 | 595 ]| 1334 14.3
sao2 0.9 15| 74| 356 | 758 34.3
seql:2 111.3 | 200.6 | 894 | 6021 | 8878 16.9
spla2 11.7 | 40.8 | 290 | 1870 | 2844 29.0
481 0.3 04| 34| 181| 315 75.3
vg2 2.2 43| 111 | 638 | 1093 44.3
xor5 0.2 02| 15 95 | 168 77.8
pr8 6.1 6.9 | 151 | 953 ] 1590 26.5
pro2.3 37.6 | 117.3| 464 | 2849 | 4377 |45.3|36.0
pr1023 140.0 | 156.0 | 799 | 5754 | 8190 |47.9 | 15.3
pri123 910.0 | 1059.0 | 1609 | 11750 | 16695 | 52.8 | 6.5
pri22.3 5380.0 | 1438.8 | 3569 | 26325 | 37166 [49.2 | 2.2
1 LCP found fastest solution by adjusting numerical control
parameters

2 P could not find fastest solution
3 LCP could not find fastest solution
4 LP could not find slowest solution
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