
Abstract

A simple extension of the critical path method is pre-
sented which allows more accurate optimization of circuits
with level-sensitive latches. The extended formulation pro-
vides a sufficient set of constraints to ensure that, when all
slacks are non-negative, the corresponding circuit will be
free of late signal timing problems. Cycle stealing is
directly permitted by the formulation. However, moderate
restrictions may be necessary to ensure that the timing
constraint graph is acyclic. Forcing the constraint graph
to be acyclic allows a broad range of existing optimization
algorithms to be easily extended to better optimize circuits
with level-sensitive latches. We describe the extension of
two such algorithms, both of which attempt to solve the
problem of selecting parts from a library to minimize area
subject to a cycle time constraint.

1 The critical path method and timing-driven
design

When a circuit must be designed to satisfy stringent
timing constraints, we say that the design istiming-driven.
Researchers have described a wide variety of timing-
driven design problems: logic synthesis, retiming, transis-
tor sizing, part selection, input ordering, and placement
and routing. Despite the range and variety of these prob-
lems, each approach is derived from a common framework
for representing and enforcing timing constraints: the Crit-
ical Path Method (CPM) [1].

The application of CPM and a related technique called
PERT to digital circuits was first described by Kirkpatrick
and Clark [2] and later by Hitchcock, Smith, and Cheng
[3]. In this paper, circuits are represented by a graph in
which directed arcs represent delays and nodes represent
electrically equipotential regions. Two special nodes, the
source andsink, group circuit inputs and outputs, respec-
tively. The circuit computation time is obtained by making
a single pass through the graph. Beginning with the source

node and proceeding in topological order, anevent time for
each node is calculated:

(1)

 and are the event times for nodes u andv,

 is the delay of arc , and is the set of node

predecessors of nodev. When the event time for the source
node is zero, the event time of the sink node gives the
delay of the circuit.

A critical path is a sequence of arcs that connects the
source and sink nodes and whose delays determine the cir-
cuit completion time. Critical paths can be identified by
computing required timesin a single pass which visits
nodes in reverse topological order.

(2)

 and are the required times for nodesu andv

and is the set of successors of nodev. The required
time for the sink node is set to the time that the circuit cal-
culation must complete. Theslack of a node is defined as:

(3)

A similar quantity,float, is defined for each arc:

(4)

A critical path can be identified as a sequence of arcs hav-
ing the most negative float in the graph.

Originally, critical path methods were applied only to
combinational circuits. Synchronous sequential circuits
were analyzed by first partitioning them into combina-
tional sections whose inputs were driven from edge-trig-
gered flip-flops or primary inputs, and with outputs
connected to primary outputs or edge-triggered flip-flops.
When level-sensitive latches were used, it was necessary
to assume fixed signal departure times, effectively treating
latches as edge-triggered devices. The purpose of this
paper is to relax these assumptions as much as possible.

e v() maxu P v()∈ e u() tu v,+[]=

e u() e v()
tu v, u v→ P v()

r v() minu S v()∈ r u() tu v,–[]=

r u() r v()
S v()

s v() r v() e v()–=

f u v→() r v() e u()– tu v,–=

Optimization of Critical Paths in Circuits with Level-Sensitive Latches

Timothy M. Burks1 and Karem A. Sakallah2

1Systems Technology and Architecture Division, IBM Corporation, Austin, TX
2Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MI

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0468 $3.50

2 CPM-based algorithms for timing-driven
part selection

The timing-driven part selection problem can be stated
as follows: given a netlist of parts and a library containing
a discrete set of implementations for each part, where each
implementation has different drive capability, input load,
and cost (e.g. area or power), select an implementation for
each part to minimize the total cost subject to a fixed con-
straint on circuit timing, typically a minimum cycle time.

A commonly-used delay model gives the delay

through a part as

(5)

 is the intrinsic delay of , is an effective output

resistance, and is the capacitance seen by the part out-

put. Typically, and decrease as the size of is

increased and increases as the sizes of the fanouts of

 increase. This nonlinearity complicates the optimiza-

tion problem, since we cannot guarantee that the fastest
circuit will be the one composed of the largest parts.

We examine two CPM-based part selection algorithms,
each of which is easily extended to the optimization of cir-
cuits with level-sensitive latches. The first is an adaptation
of the TILOS algorithm [5] for transistor sizing. An itera-
tive procedure, TILOS first identifies the critical path or
paths in a circuit and then selects one transistor from the
path(s) to be resized. The transistor chosen is the one with
the largestsensitivity value, which is defined as the
amount of delay reduction per incremental increase in
area. Although later work showed that the TILOS algo-
rithm may not always produce optimal sizings [6], it is
generally seen to produce good results with moderate run-
ning times. TILOS was originally developed to size indi-
vidual transistors and allowed for a nearly-continuous
range of sizes. However, a similar approach can be used
for the part selection problem, and Lin et. al. developed a
comparable procedure which also used sensitivity infor-
mation to guide sizing [7]. In the version of the algorithm
that we use, each pass computes actual and required times
for each node. The arcs sharing the smallest float are
examined, and from these, the gate with the largest sensi-
tivity is resized. Each iteration runs in time linearly related
to the number of parts. The number of iterations varies
with the number of parts that must be resized to satisfy the
timing constraints.

The second algorithm was based on an algorithm for
optimally sizing a chain of parts developed by Hinsberger
and Kolla, who also developed an algorithm for fanout-
free trees [8] and showed that the general problem of tim-

∆i

Pi

∆i τi R+
i
CLi=

τi Pi Ri

CLi

τi Ri Pi

CLi

Pi

ing driven part selection is NP-complete [8, 9]. To opti-
mize arbitrary circuits, Hinsberger and Kolla proposed
using their sizing algorithms to iteratively resize the most
critical path or tree in a circuit. Iteration stops when the
target cycle time is obtained or when it is impossible to
reduce the delay of the critical path. Experiments in [9]
suggested that iterations of the path-based approach pro-
vided solutions of comparable quality in significantly less
time than iteratively resizing trees. As a result, we use the
simpler algorithm which iteratively resizes chains of parts.

3 Extending CPM for circuits with level-
sensitive latches

The approaches of the previous section were originally

designed to work on combinational logic only1, but they
can be easily extended to optimize across level-sensitive
latches, allowing latch arrival and departure times to move
freely during the optimization. We distinguish this
extended optimization ascross-latch optimizationand
consider it a superset of theinter-latch optimization tech-
niques originally developed using CPM. Inter-latch opti-
mization optimizes logicbetween latches, cross-latch
optimization is able to optimizeacross latch boundaries.

To describe the necessary extensions, we use the latch
timing model developed by Sakallah, Mudge, and Oluko-
tun [10]. Model equations and constraints are listed in
Table 1, where we include only those relevant to the latest
arriving signals. Variables describing clock signals include
the cycle timeTc, phase widthsTp, and ending timesep of

each phase specified in a common frame of reference.

Circuit model parameters include latch setup timesSi, and
the maximum delay between each connected pair of

latches 2. The data input of each latch is modeled by

the latest possible time at which a new signal can arriveAi.
Latch outputs are modeled by the latest times at which
new signals depart from the latchDi. Arrival and departure
times are defined in a frame-of-reference local to the cor-
responding latch. denotes the clock controlling latchi.

A phase-shift operator is used to convert signal

times from the frame-of-reference of latchj to that of latch
i.

In [11], it was observed that the constraints in Table 1
can be represented by a graph, which was used to find the
optimal clock schedule for a circuit. A similar graph for-

1. TILOS allowed optimization across a parameterizable
number of latches but recommended that this number be
kept small, probably to avoid difficulties due to feedback
loops in circuits being optimized.

2. For simplicity, latch delays are omitted. They can be
included by the addition of terms to equation (7) or (8).

Φp

∆j i

pi

Epj p, i

mulation is shown in Figure 1. In theselate signal con-
straint graphs, each latch is represented by a pair of nodes
labeledAi and Di, which correspond to the arrival and
departure times for the latch. A zero-weight arc connects
the arrival and departure time nodes and reflects the arrival
time terms in equation (7). Arcs labeled model individ-

ual gate delays. Arcs labeled connect gates to

latch inputs and complete the representation of equation
(8). All paths through these arcs must come from a

latch controlled by phase , however, fanins of multiple

phases can be accommodated by duplicating sections of
the constraint graph. The clock system and its associated
constraints are incorporated into the constraint graph with
two additional vertices and sets of associated arcs. Clock
distribution is modeled by connecting a source vertexS to
each latch departure time vertex with arcs weighted

. These arcs model the occurrence of the rising

edge of the clock controlling latchi. Arrival time con-
straints are enforced by connecting arrival time vertices to
a sink vertexF with arcs weighted . If necessary,

clock skew parameters can be included in the weights of
these arcs connected to the source and sink nodes. Setting

(6)

(7)

(8)

(9)

Table 1: Timing Model Summary

Ai Tc Si–≤

Di max Ai Tc Tpi
–,()=

Ai maxj FI i()∈ Dj ∆j i Epjpi
–+()=

Epjpi
Tc epj

epi
–() modTc()–=

∆x

E– pj pi,

E– pj pi,

pj

Tc Ti–

Si Tc–

Tc T2–

Example Circuit Constraint Graph

Figure 1: Late Signal Constraint Graph

GA

GB

GC

GD

GE

Φ2

L3

L4

Φ1

L0

L1

L2

Z1

Z0

∆B

∆C

∆B
∆A

∆A

∆C

∆D

∆D

∆E

0

0

0 0

0

E– 2 1,

E– 2 1,

E– 2 1,
E– 1 2,

E– 1 2,

S3 Tc–

Tc T1–

S4 Tc–S2 Tc–

S0 Tc–
S1 Tc–

A3

GE

D0

A2 D2

D3

A4 D4

A1 D1

GD
GC

GB
GA

F

S

A0
Tc

T1
e1

e2

T2
Φ2

Φ1

, if and only if a setup vio-

lation exists in the circuit, and when positive, is the
amount of the largest setup violation in the circuit.

If the circuit contains cycles of latches, we cannot
directly apply the CPM-based techniques of Section 2,
since in cyclic circuits of level-sensitive latches, we must
be careful not to violate constraints imposed by loops of
transparent latches [11, 12]. Each such loop adds a con-
straint of the form , where is the

total delay around the loop and is the time available

for signals to propagate around the loop. Although there is
one constraint for each loop, they can be combined into a
single lower bound on .

Timing-driven design requires slack values to indicate
which specific constraints are violated and how changes to
individual delays affect circuit timing. The late signal con-
straint graphs were formulated so that slack and float val-
ues correspond to the amounts by which times or delays
could be increased without violating a setup constraint, but
there is no similar quantity available to ensure that the
loop constraints are all satisfied. It is not difficult to con-
struct circuits with large setup time slacks but with a criti-
cal loop constraint. For these circuits, increases in delays
based on setup slacks can result in timing errors.

There are a few alternatives for ensuring that loop con-
straints are satisfied. If the optimization is formulated as a
linear or nonlinear programming problem [13], the con-
straints will be enforced implicitly. If we require slack val-
ues, one solution would enumerate all possible cycles in
the graph and calculate loop slacks based on total loop
delays and loop timing budgets. Clearly, however, this is
impractical for general circuits, as the number of loops can
grow exponentially with the number of latches.

e S() r F() 0= = e F() 0>
e F()

∆TOTAL nTc≤ ∆TOTAL

nTc

Tc

Our approach breaks cycles in the constraint graph,
modifying the graph to guarantee that all loop constraints
will be satisfied. We artificially break the cycles in the
constraint graph by fixing the departure times of selected
latches to some maximum value and requiring that their
arrival times be no greater than these fixed departure
times. This ensures that the departure times will be no
greater than the specified values, allowing us to safely
ignore the dependency between arrival and departure
times for this subset of latches. After breaking loops in this
manner, we have an acyclic graph to which we can apply a
wide variety of CPM-based analysis techniques, including
those of Section 2. The approach is conservative, since it
only allows the optimization to cross a subset of latches,
but is easy to implement, and the remaining graph accu-
rately models all the unmodified latches in the circuit and
allows the arrival and departure times at these latches to
vary during the optimization. We may fix the departure
times at breakpoint latches in several ways, including:.

1. ALAP: Signals depart as late as possible. Departure
times are set to their latest possible values.

2. ASAP: Signals depart as early as possible. Arrival
time constraints are tightened to allow this departure.

3. ACTUAL: Signals are assumed to arrive and depart

at times and determined by a preliminary tim-

ing analysis.

Each of the three cycle-breaking methods is illustrated
in Figure 2. ALAP and ASAP arbitrarily fix a departure
time at its latest or earliest possible value, possibly making
a feasible cycle time appear infeasible under the modified
constraints. The third method, ACTUAL, uses times deter-

F

S

DiAi

Tc Ti–

Si Tc–

0

F

S

DiAi

Tc Si–

Si Tc–

F

S

DiAi

Di
*

A– i
*

F

S

DiAi

Tc Ti–

Ti Tc–

Figure 2: Cycle-Breaking Strategies

Ai
*

Di
*

=

0. unbroken subgraph 1. ALAP

2. ASAP 3. ACTUAL

Ai
*

Di
*

mined by a preliminary analysis. If the analysis is per-
formed at a feasible cycle time, the added constraints will
not cause this cycle time to appear infeasible. However,
this requires that all loop constraints be satisfied at the tar-
get cycle time from the outset

When selecting arcs to remove from the constraint
graph, a reasonable goal would be to minimize the effects
of breaking loops on the timing of the circuit being opti-
mized. Since each broken arc adds extra timing con-
straints, it would be natural to seek to break as few arcs as
possible to make the circuit acyclic. This goal reduces to
the problem FEEDBACK ARC SET, a well-known NP-
hard problem [14]. However, a depth-first traversal will
quickly find a sufficient set of arcs to remove that can
make the graph acyclic. We recursively traverse the graph,
marking nodes as they are visited. When a mark is found,
a cycle has been located and can be observed in a stack of
nodes currently being expanded. We can then simply look
back into this stack to find the first arc, which is

removed to break the cycle, and continue until no more
cycles remain.

4 Experiments

Inter-latch and cross-latch variations of the optimiza-
tion algorithms of Section 2 were evaluated using
ISCAS89 benchmark circuits. The original ISCAS89 cir-
cuits were synchronized using edge-triggered devices and
a single-phase clock. To obtain a variety of level-sensitive
circuit structures, we transformed the benchmarks in three
ways:

1. by replacing edge-triggered devices with level-sensi-
tive latches and considering the late signal constraints
only (hold time constraints are ignored). These circuits
have names beginning with the letter “s”, e.g.,s953.

2. by replacing edge-triggered devices with pairs of
level-sensitive latches controlled by alternate phases of
a two-phase clock. The circuits were then retimed to
minimize cycle time using a procedure similar to that of
Ishii et al. [15]. These circuits have names beginning
with the letter “t”.

3. by using a doubling transformation described by
Szymanski [11]. These circuits have names beginning
with the letter “d”.

The circuits used ranged in size from 21 latches and
158 gates (s382) to 1642 latches and 15902 gates (d13207)
Each was controlled by a symmetric clock, and all two-
phase clocks were required to be non-overlapping. Since
the algorithms we consider involve modifying circuit
delays to satisfy a fixed clock schedule, this restriction is a
convenience only and does not affect the generality of the
approach.

Ai Di→

Parts were obtained from the Texas Instruments 1-µ
CMOS standard cell library [4]. During retiming transfor-
mations, each part was assumed to be implemented using
the smallest variant in the library and since existing retim-
ing algorithms do not allow for load-dependent delays, the
retimed examples were obtained by assuming that each
gate drove a constant number of standard loads. All other
analyses included actual loading effects along with stan-
dard TI pre-layout estimators for interconnect capacitance.

We sought to compare results obtained using inter-latch
optimization with those of cross-latch optimizations using
the algorithms of Section 2. Each algorithm was imple-
mented using late signal constraint graphs. The same
implementations performed inter-latch or cross-latch opti-

mization, depending on the presence of arcs in

the graph.
The two part selection algorithms can be used to

explore the relationship between the area and the mini-
mum cycle time of a circuit. Each circuit is capable of
operating at a variety of speeds, depending on the sizing of
its component parts. Assuming all parts are at their mini-
mum size, we can compute a certain minimum cycle time
for the circuit. In many cases it is possible to reduce this
minimum by adding area to the circuit in the form of larger
part variants. As a result, we expect an inverse relationship
between area and minimum cycle time.

Figure 3-a shows the area vs. minimum cycle time rela-
tionship for benchmarkt953 obtained using the TILOS
algorithm. The SIMPLE curve represents simple inter-
latch optimization. The ALAP and ACTUAL curves show
results of cross-latch optimizations breaking loops using
the respective methods. For ACTUAL, initial times were
obtained from a sizing using the SIMPLE strategy to first
reduce latch-to-latch delays as much as possible. The
arrival and departure times at breakpoints were then com-
puted at the minimum cycle time of the presized circuit.
Figure 3-b shows the CPU seconds required by each
approach on a lightly loaded DEC-station 5000/120 (the
ACTUAL curve does not include the constant additional
time required for presizing). CPU times are directly
related to the amount of additional area required; optimi-
zations requiring larger amounts of additional area require
a proportionately larger number of iterations of the TILOS
algorithm.

Because of the additional flexibility allowed by trading
time across latches, the area-delay curve for the ALAP and
ACTUAL approaches are below and to the left of the
SIMPLE curve. Because less additional area is required,
the running times for these optimizations are also less than
those for the SIMPLE strategy. Interestingly, the
ACTUAL strategy was superior at small cycle times but
was unable to find minimal areas at large cycle times,
probably because the optimized starting point introduced

Ai Di→

an arrival time constraint that could not be satisfied by the
minimum-area circuit.

Similar curves were found for Hinsberger and Kolla’s
algorithm and are omitted due to space constraints. We
observed Hinsberger and Kolla’s algorithm to be slightly
faster, perhaps because it optimizes an entire path at a
time. The TILOS algorithm found smaller implementa-
tions for a given cycle time, but the difference was small.
Both algorithms show similar improvements when cross-
latch optimizations are used, and both produce better
results when “initialized” with the timing of a pre-sized
circuit.

Table 2 summarizes additional experiments using the
TILOS and Hinsberger-Kolla algorithms. Each benchmark
circuit was optimized with a target cycle time of , the

minimum cycle time reachable using inter-latch optimiza-
tion. For the cross-latch optimizations, loops were broken
using the ALAP method. In the table, the first column
identifies benchmark circuits and remaining columns list
ratios of additional area and optimization time required to
reach the target cycle times for each circuit. In all cases,
these ratios were less than one, indicating that the cross-
latch optimization approaches required less additional area
and less CPU time to reach the same cycle time.

5 Conclusions

We see three general benefits of cross-latch optimiza-
tion. First, it is simple to implement. Each algorithm we
examined was formulated using general CPM networks.

Figure 3: Optimization of t953 with TILOS algorithm

0

1

2

3

4

5

6

7

8

9

9 10 11 12 13 14 15 16 17 18 19

c
p
u

s
e
c
o
n
d
s

cycle time

"SIMPLE"
"ALAP"

"ACTUAL"

1020

1030

1040

1050

1060

1070

1080

1090

9 10 11 12 13 14 15 16 17 18 19

a
r
e
a

cycle time

"SIMPLE"
"ALAP"

"ACTUAL"

a. Area vs. target cycle time

b. CPU time required to reach target cycle time

Tm

The extended formulation incorporates level-sensitive
latch timing behavior and only requires the additional step
of breaking cycles in the constraint graph.

Second, cross-latch optimizationproduces better
results. In all cases examined, the additional flexibility of
cross-latch optimization found solutions of equal or better
quality to those of inter-latch optimization.

Third, cross latch optimizationadds no significant com-
putational cost. The only extra computation required is the
inexpensive loop-breaking step. In all cases examined,
cross-latch optimizations requiredlesstime than compara-
ble inter-latch optimizations. The running times of these
algorithms depend on the difficulty of satisfying timing
constraints; more accurately modeling latch timing eases
these constraints, allowing the algorithms to more quickly
find a feasible solution.

To these we add the following limitation: cross-latch
optimizationrequires a target clock schedule. Traditional
critical path methods minimize cycle time by maximizing
slack, increasing the margin on the setup constraints. This
margin will have a varying influence on the cycle time,
depending on the time budgets of the related paths. Inter-
latch optimization does not necessarily require a target
clock. If the time budgets of all paths are equal, then the
minimum cycle time can be obtained by maximizing slack
regardless of the cycle time target.

a. unavailable ratios are due to running times outside the
measurable range.

circuit

TILOS Hinsberger-Kolla

s382 0.38 0.52 0.32 0.57
s444 0.33 0.51 0.39 0.49
s526 0.26 0.64 0.17 0.35
s953 0.32 0.40 0.38 0.62
s1423 0.42 0.69 0.58 0.22
s9234 0.60 0.74 0.53 0.68
s13207 0.75 0.92 0.62 0.89

t382 0.49 0.71 0.45 0.78
t444 0.32 0.43 0.24 0.57
t526 0.29 0.50 0.24 0.53
t953 0.20 0.29 0.23 0.58
t1423 0.43 0.72 0.58 0.23
t9234 0.58 0.77 0.48 0.70
t13207 0.75 0.99 0.71 1.01
d382 0.26 0.35 0.31 0.56
d444 0.33 0.41 0.37 0.50
d526 0.23 0.42 0.15 0.44
d953 0.29 0.35 0.36 0.64
d1423 0.32 0.56 0.46 0.19
d9234 0.56 N/Aa 0.60 0.60
d13207 0.73 N/A 0.19 0.38
averages 0.44 0.57 0.42 0.56

Table 2: Experiments conducted at

∆AALAP

∆ASIMPLE

CPUALAP

CPUSIMPLE

∆AALAP

∆ASIMPLE

CPUALAP

CPUSIMPLE

Tm

We believe that many other CPM-based optimizations
can be similarly extended to perform cross-latch optimiza-
tion. Other areas for research include evaluation of tech-
niques for loop breaking and development of guidelines
for their use. Better optimization solutions may be found
using iterative approaches that modify breakpoint arrival
and departure times during optimization. Incremental tim-
ing analysis would reduce running times. Finally, since the
loop breaking modifications fundamentally restrict the
solution space, approaches which can be directly used on
cyclic constraint graphs could allow further improvement.

References
[1] K. Lockyer and J. Gordon,Critical Path Analysis and other

Project Network Techniques, Pitman, 1991.
[2] T. I. Kirkpatrick and N. R. Clark, “PERT as an Aid to Logic

Design”, IBM Journal of Res. and Dev., vol. 10, no. 2, p.
135-141, March 1966.

[3] R. B. Hitchcock, Sr., G. L. Smith, and D. D. Cheng, “Tim-
ing Analysis of Computer Hardware”,IBM Journal of Res.
and Dev., vol. 26, no. 1, p. 100-105, January 1982.

[4] Texas Instruments,TSC 700 Series 1-micron CMOS Stan-
dard Cells, SRSS035B-D3857, 1992.

[5] J. P. Fishburn and A. E. Dunlop, “TILOS: A Posynomial
Programming Approach to Transistor Sizing,” inICCAD-
85 Digest of Technical Papers, p. 326-328, 1985.

[6] J. M. Shyu, A. Sangiovanni-Vincentelli, J. P. Fishburn, and
A. E. Dunlop, “Optimization-Based Transistor Sizing,”
IEEE Journal of Solid-State Circuits, 23(2), p. 400-409,
April 1988.

[7] S. Lin, M. Marek-Sadowska, and E. S. Kuh, “Delay and
Area Optimization in Standard-Cell Design,” inProc. De-
sign Automation Conf., p. 349-352, 1990.

[8] U. Hinsberger and R. Kolla, “A Cell-Based Approach to
Performance Optimization of Fanout-Free Circuits,”IEEE
Trans. on Computer-Aided Design, 11(10), p. 1317-1321,
October 1992.

[9] U. Hinsberger and R. Kolla, “Cell Based Performance Op-
timization of Combinational Circuits,” inProc. European
Conf. on Design Automation, p. 594-599, 1990.

[10] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun.checkTc
andminTc: Timing Verification and Optimal Clocking of
Synchronous Digital Circuits, inICCAD-90 Digest of Tech-
nical Papers, p. 552-555, 1990.

[11] T. G. Szymanski, “Computing Optimal Clock Schedules,”
In Proc. Design Automation Conf., p. 399-404, 1992.

[12] T. M. Burks, K. A. Sakallah, and T. N. Mudge, “Identifica-
tion of Critical Paths in Circuits with Level-Sensitive
Latches”, inICCAD-92 Digest of Technical Papers, p. 137-
141, 1992.

[13] W. Chuang, S. S. Sapatnekar, and I. N. Hajj, “A Unified Al-
gorithm for Gate Sizing and Clock Skew Optimization to
Minimize Sequential Circuit Area,” inProc. Design Auto-
mation Conf., p. 220-223, 1993.

[14] R. M. Karp, “Reducability Among Combinatorial Prob-
lems,” in R.E. Miller and J. W. Thatcher (eds.),Complexity
of Computer Computations, Plenum Press, New York, p.
85-103, 1972.

[15] A. Ishii, C. E. Leiserson, and M. C. Papaefthymiou, “Opti-
mizing Two-Phase Level-Clocked Circuitry,” inAdvanced
Research in VLSI and Parallel Systems: Proceedings of the
1992 Brown/MIT Conference, p. 245-264, 1992.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

