
Area Minimization for Hierarchical Floorplans �

Peichen Pany, Weiping Shiz, and C. L. Liuy

yDepartment of Computer Science zDepartment of Computer Science

University of Illinois at Urbana-Champaign University of North Texas

Urbana, IL 61801 Denton, TX 76203

Abstract

Two results are presented in this paper. First we set-

tle the open problem on the complexity of the area mini-

mization problem for hierarchical oorplans by showing it
to be NP -complete. We then present a pseudo-polynomial

area minimization algorithm for hierarchical oorplans of

order-5. The algorithm is based on a new algorithm for de-
termining the set of nonredundant realizations of a wheel.

The new algorithm for wheels has time cost O(k2 log k) and

space cost O(k2) if each of the (�ve) blocks in a wheel has
at most k realizations | a reduction by a factor of k in

both costs in comparison with previous algorithms. The area

minimization algorithm was implemented. Our experimen-
tal results show that the algorithm is indeed very fast.

1 Introduction

Area minimization (also called oorplan sizing) is a
subtask in the oorplanning phase of VLSI chip design.

It is the problem of selecting a layout alternative for

each subcircuit on a chip so as to minimize the total
chip area after the oorplan (which speci�es the rela-

tive positions of the subcircuits on the chip) has been

determined. This problem has been studied extensively
[2, 7, 8, 9, 10, 12, 13, 14, 15, 16].

In practice, many oorplans are constructed by top-

down partitioning (or by bottom-up clustering). In each
step, a group of subcircuits is selected and partitioned into

at most p subgroups (or the other way around for cluster-

ing). A oorplan obtained this way is called a hierarchical
oorplan (of order-p). For practical reasons, p is usually

con�ned to be a small integer, in most cases p � 5 [3, 6]. A

hierarchical oorplan of order-p can be naturally described
by a p-ary tree which corresponds to the partitioning pro-

cess. (Note that p is a constant. Although a hierarchy can

always be extracted from any oorplan [2], the correspond-

ing tree will have unbound degrees in general.)

In this paper we study the area minimization problem

for hierarchical oorplans. Of particular interest is hierar-
chical oorplans of order-5 since higher order hierarchical

oorplans are rarely used in practice. The complexity of

the area minimization problem for hierarchical oorplans

�Research of Peichen Pan and C.L. Liu was partially sup-

ported by the National Science Foundation under grant MIP-

9222408. Research of Weiping Shi was partially supported by

the National Science Foundation under grant MIP-9309120.

was a long-standing open problem. In this paper we settle

this problem by showing it to be NP -complete. Next, we

present a new pseudo-polynomial area minimization algo-
rithm for hierarchical oorplans of order-5.

The remainder of this paper is organized as follows: Sec-

tion 2 introduces some de�nitions. Section 3 shows the
NP -completeness of the problem. Section 4 presents the

new area minimization algorithm. Section 5 lists our ex-

perimental results. Finally, Section 6 concludes the paper.

2 Preliminaries
A oorplan is a dissection of an enveloping rectangle

by horizontal and vertical line segments into rectangular
(basic) blocks. Given a set of partitioning patterns P , we

can construct a corresponding set of hierarchical oorplans

by recursively partitioning a block according to one of the
patterns in P , starting with a single block. A slice is a

partitioning pattern with two blocks. There are only two

di�erent slices as shown in Figure 1. When P consists of
only the two slices, the corresponding hierarchical oor-

plans are called slicing oorplans. A wheel is a non-slicing

partitioning pattern with �ve blocks. There are two dif-
ferent wheels as shown in Figure 1. When P consists of

the two slices as well as the two wheels, the correspond-

ing hierarchical oorplans are called hierarchical oorplans
of order-5 1. Figure 2 shows an example illustrating the

construction of a hierarchical oorplan of order-5.

B4

B

B
B

B1
2

3
5

(a) (b) (c) (d)

Figure 1: (a) Vertical slice, (b) Horizontal slice, (c)

Left wheel, (d) Right wheel.

A layout alternative of a subcircuit is called a realization

of the corresponding block in the oorplan. A realization

of a oorplan is obtained by selecting a realization for each
block and arrange them according to the oorplan. A real-

ization (of a block or a oorplan) has two dimensions, the

1Since wheels are the only non-slicing patterns with �ve or

fewer blocks, this de�nition is the same as if P consists of all

patterns with �ve or fewer blocks.

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0436 $3.50

width and height of the smallest rectangle that can accom-

modate it. To simplify the presentation, in this paper when

we say a realization we always mean the corresponding rect-
angle. Adding the information on how each realization is

composed to our discussion is straightforward but it will
unnecessarily complicate the presentation.

Figure 2: Construction of an order-5 oorplan.

The area minimization problem can be formally stated

as follows: Given a oorplan F and a set of realizations for

each of its (basic) blocks, determine a realization of F which
has the minimum area. In this paper we are interested in

the case in which F is a hierarchical oorplan. We also

assume that the width and height of any realization of a
block are non-negative integers.

Let r be a realization, we use w(r) and h(r) to denote

the width and height of r, respectively. For two realiza-
tions r1 and r2, r1 is said to dominate r2 if the conditions

w(r1) � w(r2) and h(r1) � h(r2) are satis�ed. For a set of

realizations, a realization in the set is said to be redundant if
it is dominated by another realization in the set. Otherwise,

the realization is said to be nonredundant. A set of nonre-

dundant realizations obviously has the following properties:
(i) no two realizations in the set have the same width or

height, and (ii) if the realizations are sorted in increasing

order according to one dimension, they will be arranged in
decreasing order according to the other dimension. These

properties suggest the following simple algorithm for com-

puting the set of nonredundant realizations from a given
set of realizations: Sort all realizations in the set in in-

creasing order according to the width (if two realizations

have the same width, delete the one with larger height),
then inspect the realizations in this order one by one and

retain only those which keep the height in decreasing or-

der. We shall use L(F) to denote the set of nonredundant
realizations of F (either a block or a oorplan).

Obviously, L(F) contains all the minimum area realiza-

tions of F . We also have the following simple fact.

Fact 1 Suppose F1 is a sub-oorplan2 of F . Let F 0 be the
oorplan obtained from F by replacing F1 by a basic block

B and L(B) = L(F1), then L(F) = L(F 0).

3 An NP -completeness result
In this section, we shall show that the area minimization

problem for hierarchical oorplans is NP -complete. This

result is built upon the following theorem. Its proof is
omitted due to space limitation.

Theorem 1 The area minimization problem for hierarchi-

cal oorplans of order-5 is NP -complete. 2

2A sub-oorplan is a set of blocks which form a rectangular

superblock.

With the above result, we can now show the NP -

completeness of the area minimization problem for hierar-

chical oorplans. It was shown in [11] that any nonslicing
partitioning pattern contains a wheel-type structure. (See

Figure 3(a).) In Figure 3(a), if we assume all unshaded
blocks have only one realization (0; 0), the resultant pattern

is equivalent to a wheel formed by the �ve shaded blocks

as far as the area is concerned. Theorem 1, therefore, im-
plies that the area minimization problem for hierarchical

oorplans constructed by any set of partitioning patterns

with at least a nonslicing pattern is NP -complete. In other
words, slicing oorplans are the only type of oorplans for

which area minimization can be accomplished in polyno-

mial time, assuming P 6= NP .

(a) (b)

Figure 3: (a) A partially drawn nonslicing partitioning

pattern, (b) The oorplan used in EX1 to EX5.

4 An area minimization algorithm
In this section we present an area minimization algo-

rithm for hierarchical oorplans of order-5. The algorithm

employs a hierarchical approach [2, 12], in which a fast algo-
rithm for determining the set of nonredundant realizations

of a wheel plays an important role.

The area minimization algorithm determines L(F), the
set of nonredundant realizations of a oorplan F . Since

L(F) contains all the minimum area realizations of F ,

determining L(F) also gives the designer the freedom to
choose among all the minimum area realizations of F the

one with a preferred aspect ratio. The area minimization

algorithm can be summarized as follows:

AreaMin(F)

if F has only one block B, return L(B);

F1 a slice or a wheel in F ;
Determine L(F1);

F 0 the oorplan obtained from F by replacing F1

by a basic block B;
L(B) L(F1) ;

return AreaMin(F 0).

AreaMin follows the reverse process in which F was
constructed. At each stage, a slice or a wheel is replaced

by a basic block with the set of realizations of the basic

block being that of the slice or wheel. By Fact 1 this pro-
cess does not change the set of nonredundant realizations.

Thus, when a oorplan with only one block is reached, it

means the set of nonredundant realizations of F has been

determined. AreaMin is actually a general area minimiza-

tion algorithm. It can be used for any hierarchical oor-

plan. In general, the sets of nonredundant realizations of
all partitioning patterns in P should be determined.

In AreaMin the area minimization for hierarchical
oorplans of order-5 is reduced to that of determining the

sets of nonredundant realizations of slices and wheels (de-

termining L(F1) in AreaMin). An e�cient algorithm for
determining the set of nonredundant realizations of a slice

was presented in [8, 10]. What remains is an e�cient algo-

rithm for determining the set of nonredundant realizations
of a wheel. The algorithm we shall present in Section 4.1

has time cost O(k2log2k) and space cost O(k2) if each block

in the wheel has at most k realizations. The time cost is
further improved to O(k2 log k) in Section 4.2 3.

We now determine the time complexity of AreaMin.

Suppose F has n blocks and the dimensions of all realiza-
tions of the blocks are upper-bounded by a positive integer

M . It is easy to see that the number of nonredundant re-

alizations of any sub-oorplan of F is at most nM . Thus,
jL(F1)j � nM . The number of calls to determining L(F1)

is obviously less than n, so the time cost of AreaMin is

O(n(nM)2 log(nM)) = O(n3M2 log(nM)), a polynomial in
n and M . Thus, AreaMin is pseudo-polynomial.

4.1 An algorithm for determining the
set of nonredundant realizations of a
wheel

Because of the obvious symmetry between the two

wheels, we only consider the left wheel. The problem we
shall focus on is: For the left wheel W in Figure 1(c), de-

termine L(W) for given L(Bi), 1 � i � 5.

If r is a realization of W , we use r(Bi) to denote the
realization selected for Bi in r. We also assume the nonre-

dundant realizations of a block are ordered in increasing

width and decreasing height. The t-th realization of block
Bi is denoted (wt

i; h
t
i). Let ki denote the size of L(Bi) and

k be the largest among ki, 1 � i � 5. Previous algorithms

for determining L(W) have time cost O(k3 log k) and space
cost O(k3) [9, 12]. Here, we shall present an algorithm with

time cost O(k2log2k) and space cost O(k2).

We �rst de�ne a procedure BS(S; b; flag), where S =

f(w1; h1), (w2; h2); : : : ; (ws; hs)g and w1 < w2 < � � � < ws,

h1 > h2 > � � � > hs, b is a nonnegative integer, and flag is

either width or height. When flag = width,BS(S; b; flag)
outputs the maximum i such that wi � b (or nil if wl > b

for 1 � l � s); when flag = height, BS(S; b; flag) outputs

the minimum i such that hi � b (or nil if hl > b for 1 �
l � s). Obviously, BS can be implemented in O(log s) time

and O(1) space by using binary search.

Our approach is to generate a superset of L(W) �rst.
Then, redundant realizations are removed from the super-

set to obtain L(W). To generate the superset, there are

two cases according to how the widths and heights of the
nonredundant realizations are determined.

Case 1. The nonredundant realizations the widths or

heights of which are determined by two of the blocks.

3An algorithmwith the same performancewas claimed in [1].

However, the algorithm is incorrect

The nonredundant realizations in this case can be fur-

ther divided into classes according to the blocks which de-

termine the widths and heights of the realizations. The al-
gorithm will generate a superclass for each class. There are

eight classes all together, but we only need to consider two
of them: Class 1: those the widths of which are determined

by B4 and B3 and the heights of which are determined by

B3 and B2, and Class 2: those the widths of which are
determined by B4 and B3 and the heights of which are de-

termined by B4, B5, and B2. A superclass of any of the

other classes can be generated symmetrically since they can
be turned into either Class 1 or Class 2 by rotating W by

90�, or 180�, or 270� clockwise. We consider Class 1 and

Class 2 separately.

Subcase 1.1: Class 1.

For (w4; h4) in L(B4) and (w3; h3) in L(B3), a realiza-
tion of W is called the I-support for (w4; h4) and (w3; h3)

if it is the one with minimum height among those real-

izations r's such that r(B3) = (w3; h3), r(B4) = (w4; h4),
w(r) = w4 + w3, and h(r) = h3 + h(r(B2)). Obviously, a

nonredundant realizations in Class 1 must be the I-support

for some (w4; h4) in L(B4) and (w3; h3) in L(B3). To obtain
a superclass of Class 1, we simply generate the set consist-

ing of all I-supports (there are at most k4k3 of them). We
now describe a procedure for determining the I-support r

for given (w4; h4) and (w3; h3) if it exists. Noticing that

if h3 < h4, there is no corresponding I-support, we as-
sume h3 � h4. Since h(r) = h3 + h(r(B2)), we have

h(r(B5)) � h3 � h4. Let t5 = BS(L(B5); h3 � h4; height).

If t5 = nil, again there is no I-support for (w4; h4) and
(w3; h3). Otherwise, we simply let r(B5) = (wt5

5 ; h
t5
5),

the t5-th realization in L(B5) because it is the one with

minimum width among those realizations in L(B5) whose
heights are less than or equal to h3 � h4. We now search

L(B2) to determine r(B2). Suppose the t-th realization

(wt
2; h

t
2) in L(B2) is currently being considered. We check

whether there is a realization in L(B1) that can be �t into

the slot with width w4 + w3 � maxfwt
2; w

t5
5 + w3g and

height ht
2 + h3 � h4 (this is the space left for B1). This

can be done by considering the t1-th realization (wt1
1 ; h

t1
1)

in L(B1) where t1 = BS(L(B1); h
t
2 + h3 � h4; height). If

w
t1
1 � w4 + w3 �maxfwt

2; w
t5
5 + w3g, obviously (wt1

1 ; h
t1
1)

can be placed in the slot, otherwise no realization in L(B1)

can. In the former situation, all realizations before (wt
2; h

t
2)

in L(B2) can be ignored because r(B2) is the one with

minimum height among all realizations in L(B2) that has

this property. In the latter situation, all realizations after

(wt
2; h

t
2) (itself including) in L(B2) can be ignored simply

because any of them can not leave enough space for B1.

Notice that BS is called once for determining t5 at the be-

ginning and once for testing each (wt
2; h

t
2). If we use binary

search to determine r(B2), the I-support can be found in

O(log2 k) time and O(1) space. (Note that r(B1) is deter-

mined as a by-product of determining r(B2).) By calling
the procedure k4k3 times, all the I-supports can be deter-

mined in O(k2 log2 k) time and O(k2) space.

Subcase 1.2: Class 2

Let r0 be a nonredundant realization in Class 2 with

r0(Bi) = (wi; hi) for 1 � i � 5. Obviously, h5 + h4 � h3.

We can further assume

h3 =maxfh j (w;h) 2 L(B3) and h � h4 + h5g (1)

For otherwise, either r0 is redundant (when w4 + w3 >

w1 +w2), or there is a realization that has the same width

and height as r0 but does not belong to this class (when
w4+w3 = w1+w2). We therefore consider the pair (w4; h4)

and (w3; h3) here only when there is a (w5; h5) such that

(1) is satis�ed.
For (w4; h4) in L(B4) and (w5; h5) in L(B5), Let t3 =

BS(L(B3); h4 + h5; height) 6= nil. A realization of W is

called the II-support for (w4; h4) and (w5; h5) if it is the
one with minimum height among those realizations r's such

that r(B4) = (w4; h4), r(B5) = (w5; h5), w(r) = w4 + w
t3
3
,

and h(r) = h4 + h5 + h(r(B2)). To obtain a superclass

of Class 2, we simply generate the set consisting of all the

II-supports (there are at most k4k5 of them). Let r be
the II-support for (w4; h4) and (w5; h5), if it exists. By

our assumption, r(B3) = (wt3
3 ; h

t3
3). We now search L(B2)

to determine r(B2). The situation is very similar to that
in determining an I-support. A similar procedure can be

designed to determine r in O(log2 k) time and O(1) space.

Thus, all the II-supports can be determined in O(k2 log2 k)
time and O(k2) space.

By putting all the superclasses together, we obtain a

set of realizations of W which contains all nonredundant
realizations in Case 1 in O(k2 log2 k) time and O(k2) space.

Case 2. The nonredundant realizations not in Case 1.

For a nonredundant realization in this case, neither its
width nor its height is determined by two blocks in the

wheel. For any (w1; h1) in L(B1) and (w5; h5) in L(B5), a

realization r such that

r(B1) = (w1; h1)

r(B5) = (w5; h5)

r(B4) = (wt4
4 ; h

t4
4) t4 = BS(L(B4); w1 +w5; width)

r(B3) = (wt3
3 ; h

t3
3) t3 = BS(L(B3); h5 + h

t4
4 ; height)

r(B2) = (wt2
2 ; h

t2
2) t2 = BS(L(B2); w5 +w

t3
3 ; width)

is called the III-support for (w1; h1) and (w5; h5). It can be

shown that a nonredundant realization in this case must

be an III-support. For given (w1; h1) and (w5; h5), the III-

support obviously can be determined by calling BS three

times (according to the de�nition of III-supports). Thus,

all the III-supports (there are at most k1k5 of them) can
be determined in O(k2 log k) time and O(k2) space.

Let R denote the set of realizations of W generated in

both Case 1 and Case 2. By construction we have L(W) �
R and jRj = O(k2). The last step of the algorithm is

to remove the redundant realizations in R. This can be

accomplished by sorting the realization in R according to
their widths and removing all redundant ones as mentioned

in Section 2, which takes O(k2 log k2) = O(k2 log k) time

and O(k2) space. Thus, we have the following result.

Theorem 2 If each block has at most k realizations, the

set of nonredundant realizations of a wheel can be deter-
mined in O(k2 log2 k) time and O(k2) space. 2

4.2 Improvements

The basic algorithm presented in Section 4.1 can be fur-

ther improved. We now show how to improve the time cost

of the basic algorithm to O(k2 log k).

To achieve this, we only need to speed up the proce-
dures for determining the I-supports and II-supports. We

consider the I-supports �rst. For �xed (w3; h3) in L(B3),

let ri denote the I-support for (wi
4; h

i
4) and (w3; h3). (If

it does not exist, let ri = nil.) It su�ces to show that

r1; r2; : : : ; rk4 can be determined in O(k log k) time. The

following lemma is the key observation.

Lemma 1 If ri 6= nil, then ri+1 6= nil and h(ri+1(B2)) �
h(ri(B2)).

For convenience, we imagine there is a �ctitious 0-th
realization in L(B2) and a �ctitious realization of W r0

such that r0(B2) is the 0-th realization in L(B2). We will

determine r1; r2; : : : ; rk4 one by one in this order. For each
i, the realizations in L(B2) are examined consecutively in

the order of decreasing height to search for ri(B2), started

with ri�1(B2). To examine (wt
2; h

t
2), the t-th realization

in L(B2), we check whether or not there is enough room

left to place a realization of B1 if the (t+ 1)-th realization

in L(B2) is selected for B2 (which can be accomplished by
one call to BS). If there is enough room, we continue to

examine the (t+1)-th realization in L(B2). Otherwise, we

have ri(B2) = (wt
2; h

t
2) and go on to determine ri+1. As can

be seen, in each step we consider either the next realization

in L(B4) or the next realization in L(B2). Hence, the total

number of calls to BS to check whether or not there is
enough room is upper-bounded by k4 + k2. As a result,

r1; r2; : : : ; rk4 can be determined in O(k log k) time.

For II-supports, if we let pi denote the II-support for

(wi
4; h

i
4) and (w5; h5) for a �xed realization (w5; h5) in

L(B5), we have the following observation:

Lemma 2 If pi 6= nil and BS(L(B3); h
i+1
4 +h5; height) 6=

nil, then pi+1 6= nil and h(pi+1(B2)) � h(pi(B2)).

As in the case of I -supports, we determine p1; p2; : : : ; pk4
one by one in this order. By a method similar to that for

I-supports, we can determine p1; p2; : : : ; pk4 altogether in

O(k log k) time.

By the above analysis, we have the following result:

Theorem 3 If each block has at most k realizations, the
set of nonredundant realizations of a wheel can be deter-

mined in O(k2 log k) time and O(k2) space. 2

Finally, we would like to point out whether the above re-

sult can be further improved relates to a long-standing open

problem in Algorithm Theory if the realizations in L(W)
are required to be in sorted order. (To remove redundant

realizations, it seems that the realizations in L(W) must

be sorted.) The problem is called sorting X + Y which
asks whether the sorting of fxi+yj j i; j = 1; : : : ; kg can be

done in o(k2 log k) time [4]. We can reduce sorting X +Y

to our problem in O(k) time.

5 Experimental Results

AreaMin was implemented in C and executed on a

SPARCstation 10. The improvements presented in Sec-
tion 4.2 have not been implemented. We ran the program

on a set of examples, most of them are from the litera-

ture. EX1 to EX5 are taken from [12]. They all use the
oorplan shown in Figure 3(b). For EX1 each block has

three realizations: (4; 1), (2; 2), and (1; 4). For EX2 each

block has four realizations: (6; 1), (3; 2), (2; 3), and (1; 6).
For EX3 each block has �ve realizations: (16; 1), (8; 2),

(4; 4), (2; 8), and (1; 16). For EX4 each block has six re-

alizations: (12; 1), (6; 2), (4; 3), (3; 4), (2; 6), and (1; 12).
For EX5 each block has eight realizations: (24; 1), (12; 2),

(8; 3), (6; 4), (4; 6), (3; 8), (2; 12), and (1; 24). EX6 is the

24-block oorplan together with the sets of realizations4 in
[13] (also see [12]). EX7 to EX12 are derived from EX1

to EX6, respectively. EX7 is constructed by substitut-

ing each of the �ve blocks of a wheel with a copy of EX1.
EX8 to EX12 are constructed in the same way from EX2

to EX6, respectively.

Table 1 lists our experimental results. Under the col-
umn total we list the total number of possible realizations

for each example. Column examined lists the total num-

ber of realizations of the sub-oorplans ever generated by
AreaMin for each example as this number reects the

number of realizations examined by AreaMin. From the

table it is clear that AreaMin ignores a large number
of redundant realizations. For example, although EX11

has 8125 possible realizations, our algorithm examined only

12785 realizations and took only 3.42 seconds. The running
times for the other 11 test examples are all under two sec-

onds as shown in Table 1. The experimental results clearly

indicate that our algorithm is very e�cient.

test # # # time

example blocks total examined (sec)

EX1 25 325 168 0.02

EX2 25 425 365 0.03

EX3 25 525 776 0.13

EX4 25 625 994 0.18

EX5 25 825 2031 0.46

EX6 24 2:03� 1016 441 0.08

EX7 125 3125 865 0.12

EX8 125 4125 1930 0.27

EX9 125 5125 4730 1.05

EX10 125 6125 5723 1.23

EX11 125 8125 12785 3.42

EX12 120 3:45� 1081 2382 1.78

Table 1: Experimental results

4In this example, not all the widths and heights of the realiza-

tions are integers, but our algorithm can handle this situation

without any modi�cation. The integral requirement is mainly

for complexity analysis.

6 Conclusions
In this paper, we showed that the area minimization

problem for hierarchical oorplans is NP -complete. This
settled the open problem on the complexity of the area

minimization problem for hierarchical oorplans. We then

presented a fast pseudo-polynomial area minimization al-
gorithm for hierarchical oorplans of order-5. The algo-

rithm is based on a new algorithm for determining the set

of nonredundant realizations of a wheel. The new algorithm
for wheels runs faster and uses less memory than previous

algorithms.

References
[1] C.-H. Chen and I.G. Tollis, \Area optimization of spiral

oorplans," Technical Report, The University of Texas at

Dallas, 1992.

[2] K. Chong and S. Sahni, \Optimal realizations of oor-

plans," in IEEE Trans. on Computer-Aided Design, vol.

CAD-12, no. 6, pp. 793-801, 1993.

[3] W.-M. Dai and E.S. Kuh, \Simultaneousoor planning and

global routing for hierarchical building block layout," in

IEEE Trans. on Computer-Aided Design, vol. CAD-6, no.

5, pp. 828-837, 1987.

[4] M. L. Fredman, \How good is the information theory bound

in sorting?," in Theoretical Computer Science 1, pp. 355-

361, 1976.

[5] M. R. Garey and D. S. Johnson,Computers and Intractabil-

ity, A Guide to the Theory of NP-completeness. Freeman,

San Francisco, 1979.

[6] T. Lengauer, Combinatorial Algorithms for Integrated Cir-

cuit Layout. John Wiley & Sons, New York, 1990.

[7] T. Lengauer and R. Muller, \Robust and accurate hierar-

chical oorplanningwith integratedglobal wiring," in IEEE

Trans. on Computer-Aided Design, vol. CAD-12, no. 6, pp.

802-809, 1993.

[8] R.H.J.M. Otten, \Automatic oorplan design," in Proc.

19th ACM/IEEE Design Automation Conf., 1982, pp. 261-

267.

[9] P. Pan and C. L. Liu, \Area minimization for general oor-

plans," in Digest Int'l. Conf. on Computer-Aided Design,

1992, pp. 606-609.

[10] L. Stockmeyer, \Optimal orientations of cells in slicing

oorplan designs," in Info. and Control, vol. 59, pp. 91-

101, 1983.

[11] K. J. Supowit and E. A. Slutz, \Placement algorithms for

custom VLSI," in Computer Aided Design, vol. 16, no. 1,

pp. 45-50, 1984.

[12] Ting-Chi Wang and D.F. Wong, \Optimal oorplan area

optimization," in IEEE Trans. on Computer-Aided Design,

vol. CAD-11, no. 8, pp. 992-1002, 1992.

[13] S. Wimer, I. Koren, and I. Cederbaum, \Optimal aspect

ratios of building blocks in VLSI," in IEEE Trans. on

Computer-Aided Design, vol. 8, no 2, pp. 139-145, 1989.

[14] D.F. Wong and P.S. Sakhamuri, \E�cient oorplan area

optimization," in Proc. 26th ACM/IEEE Design Automa-

tion Conf., 1989, pp. 586-589.

[15] K. H. Yeap and M. Sarrafzadeh, \An integrated algorithm

for optimal oorplan sizing and enumeration," in European

Design Automation Conf., 1993, pp. 29-33.

[16] G. Zimmermann, \A new area and shape function estima-

tion technique for VLSI layouts," in Proc. 25th ACM/IEEE

Design Automation Conf., 1988, pp. 60-65.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

