
Abstract
The delay associated with transmission line networks

consists of the exponentially charging time and a pure
propagation delay. This propagation delay, so called time-
of-flight delay, is particularly evident in long lines. When
the time-of-flight is comparable to the input rise-time, it is
difficult to capture the time-of-flight with a finite sum of
exponentials. Therefore the time-of-flight must be captured
explicitly from the transfer function of the circuit. In this
paper, we give a precise definition of the time-of-flight
together with some basic properties, and present an effi-
cient method to capture the time-of-flight for general inter-
connect networks. Based on our scattering parameter
macromodel, we can easily capture the time-of-flight dur-
ing the network reduction while using lower order model to
evaluate the charging delay. By capturing the time-of-flight
delay, the accuracy of system responses can be greatly
improved without significantly increasing computing time.

1. Introduction

Recently, an nth order extension of Elmore delay
model [7] based on Padé approximation, such as Asymp-
totic Waveform Evaluation (AWE) [14], has been devel-
oped to approximate a higher order linear network using
the waveforms generated by its lower order moments.
However, the delay associated with transmission line net-
works consists of the exponentially charging time and a
pure propagation delay representing the finite propagating
speed of electromagnetic signals in the dielectric medium.
This propagation delay, so called time-of-flight delay,
denoted by , is particularly evident in long lines (See
Fig. 1). As the time-of-flight of the signal across the inter-
connect is greater than, or comparable to, the input signal
rise-time (i.e. long interconnects), it is difficult to capture
the time-of-flight delay with a finite sum of exponentials
[2, 13, 15] or an exponentially decayed polynomial func-
tion [5, 10]. The captured time-of-flight is also used as the
lower bound for the delay of the lossy transmission
lines [15].

τf

Hence, the time-of-flight , more precisely the factor
, must be captured explicitly from the transfer function

of the circuit. As we know, a transfer function will be
called ideal if it is of the form . For ,
the magnitude identically equals to one, and the angle is
proportional to the angle frequency . According to the
shifting theorem of Laplace transform, if this ideal network
is excited by a signal , the corresponding response of
the network will be . The response is the same as
the excitation except that it is delayed in time by an amount
of . That is, the response is equal to zero for .
Therefore, the time-of-flight is defined as the maximum
delay during which the output response is zero for any
finite input.  is the corresponding factor in the fre-
quency domain.

Several attempts have been made to capture the time-
of-flight delay. They either require an explicit analytical
expression of the transfer function which is impractical in
general [4] or can only deal with one set of transmission
lines [13, 3, 9]. Although the method proposed by
paper [9] may be extended to general interconnect net-
works, it may not retain the passivity property of the origi-
nal transmission line since the effective time-of-flight is
approximated based on an approximated phase constant of
the equivalent lumped circuit.

In this paper, we present a new method to compute the
time-of-flight for arbitrary interconnect systems, not lim-
ited to one transmission line. The method is based on a
scattering parameter macromodel [10]. The accuracy of
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output responses, due to the capturing of the time-of-flight,
is greatly improved. In the next section, a precise descrip-
tion of the time-of-flight together with some basic proper-
ties are given. The scattering parameters of basic
components and their time-of flight are described in
Section 3. The network reduction process and how to keep
track of the time-of-flight during network reduction are
described in Section 4. Experiment results are given in
Section 5 followed by conclusions.

2. Properties of Time-of-Flight

Recall that the time-of-flight is the maximum delay
during which the output response is zero for a finite input
signal. The computation can be approached from the prop-
erties of transfer function in the frequency domain. The
following theorem precisely describes the time-of-flight.

Theorem 1: For any , there exists positive
constant , such that the time-of-flight  of the transfer
function  satisfies the following

 for all (1)

See [12] for the proof. Notice that the most commonly
used definition of time-of-flight [1, 4]

(2)

may be incorrect for some cases. For example, the
transfer function of the transmission line circuit shown in
Fig. 2 is

(3)

where  and .
Obviously, the time-of-flight is . But according to
(2), it is zero.

Since it is impractical to get an explicit expression of
the transfer function in general, we may not be able to use
Theorem 1 directly to capture the time-of-flight. The fol-
lowing corollaries of Theorem 1 will be used later to keep
track of the time-of-flight during the proposed network
reduction process.

Corollary 1: If the time-of-flights of the non-zero
functions  and  are , and
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Figure 2. Transmission line circuit.
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respectively, then the time-of-flight of  is
(4)

Corollary 2: If the time-of-flights of the non-zero
functions  and  are , and
respectively, then the time-of-flight of  is

(5)

Corollary 3: If the time-of-flights of the non-zero
functions  and  are , and
respectively, then the time-of-flight of  is

(6)

Later we will show that these corollaries have clear
physical meaning during the network reduction. Let us first
describe the time-of-flight of scattering parameters of basic
circuit components.

3. Time-of-Flight of Scattering Parameters of
Basic Circuit Components

We use scattering parameters (S-parameters) to
describe the components of interconnect systems. Scatter-
ing parameters is a powerful way to describe and model
interconnects. They can be measured directly at high fre-
quencies and they exists for all distributed-lumped circuit
elements including open and short circuits. It can also
describe transmission lines which is important in today’s
high-speed designs. A scattering matrix is employed to
relate outgoing waves to incoming waves of a
multiport [6]. For an  port component, the scattering
matrix of the component can be defined as

(7)

where  is the incoming voltage wave at port  and
 the outgoing wave at port . Let  and  be the volt-

age and the current at port . The wave parameters  and
 relate to the circuit parameters as follows:

 and (8)

where  is the reference impedance. The (7) and (8)
can be used to derive scattering parameters of some basic
components.

The components utilized to characterize a general
interconnect network can be classified into four types [10]:
1) one-port impedance, 2) two-port impedance, 3) multi-
port interconnect node and 4) lossy transmission line (See
Fig. 3).

The first three components (shown in Fig. 3(a-c)) are
lumped components, i.e., electromagnetic waves propagate
across the component virtually instantaneously. Therefore,
the time-of-flights of S-parameters of these components
are all equal to zero.
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For an RLC transmission line shown in Fig. 3(d), the
S-matrix is [6]

(9)

where  is the characteristic
impedance,  the wave propagation con-
stant and  the length of the line. Applying Theorem 1 to
the S-matrix of the lossy transmission line, we find that the
time-of-flights of both  and  are zero, but the time-
of-flights of  and  are .

4. Keeping Track of Time-of-Flight during
Network Reduction

Given the scattering parameters of individual compo-
nents, we have described a systematic reduction
algorithm [10] to reduce a distributed-lumped linear net-
work to a multiport together with sources and loads of
interest, as shown in Fig. 4. We can reduce a general net-

work based on two basic rules: Adjoined Merging Rule and
Self Merging Rule. For scattering parameters of basic com-
ponents, we can find the corresponding time-of-flight
according to the Theorem 1 as described in Section 3. Dur-
ing network reduction, there are only four fundamental
operations: addition, subtraction, multiplication and divi-
sion. The three corollaries we derived in Section 2 are

Figure 3. Four basic components.
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applied to keep the track of the time-of-flight.

Adjoined Merging Rule: Let X andY be two adjacent
multiports, withm ports andn ports respectively. Assume
port k of X is connected to portl of Y, as shown in Fig. 5.

After mergingX andY, the resultant  port has
the following S-parameters:

(10)

Let us take a close look at the case where both port
and port  belong to the same component, sayX, then  is

(11)

 consists of two terms, which implies that there are
two paths for electromagnetic wave to propagate from port
 to port . The first term of (11) represents the first path on

which the wave directly propagates from port  to port .
The second term represents the second path on which the
wave propagates from port  to port  via port  (See
Fig. 6). Obviously, the time-of-flight of the  is the mini-

mal of the time-of-flight of these two paths, since the time-
of-flight is the minimum time at which the output has non-
zero response. This is the physical meaning of the
Corollary 1. The time-of-flight of the second path is the
sum of the time-of-flight of  and , since the path
consists of two sub-paths. This is the physical meaning of
the Corollary 2. Therefore, the time-of-flight of  is

Figure 5. Adjoined Merging.
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(12)

Similarly, if port  belongs toX and port  belongs to
Y, then

(13)

There is only one path for electromagnetic wave to
propagate from port  to port . The (13) shows that wave
propagates from port  to port  of componentX, then
from port  of componentX to port  of componentY, then
from port  to port  of componentY (See Fig. 7). The

time-of-flight of  is

(14)

Self Merging Rule: Let X be anm port with a self
loop connected to port  and port , as shown in Fig. 3.

After eliminating the self loop, the resultant (m - 2) port
has the following S-parameters:

(15)

where

(16)

The similar approach could be applied to the self
merging process where there are five paths for wave to
propagate from port  to port  (See Fig. 9). The time-of-
flight of  is
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For an arbitrary distributed-lumped network described
by the linear components, the Adjoined Merging Rule is
used to merge all internal components, and the Self Merg-
ing rule is applied to eliminate the self loops introduced by
the Adjoined Merging process. As the result, the macro-
model, or the voltage transfer function of the network, can
be characterized by the S-matrix of the multiport compo-
nent resulted from the reduction process, together with the
S-parameters of the loads. From this reduced network, we
can easily get the transfer function. For example, the volt-
age transfer function of the network shown in Fig. 10 is

(18)

where  is the s-parameter of the load. The same
method could also be applied to (17) for transfer function
where there is only one path from the source to the destina-
tion.

(19)

From (10), (15) and (17), we can see that the S-param-
eters in denominators are constants or related to the same
ports, so the time-of-flight of the denominators are always
zero. Thus, the Corollary 3 can be simplified to:

Corollary 3 ′: If the time-of-flights of the non-zero
functions  and  are , and

 respectively, then the time-of-flight of
 is

(20)
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Now, we can accurately compute the time-of-flight of
a general interconnect system. In order to speed up the
reduction process, we expand the S-parameters of compo-
nents by Taylor series, and derive the formulas for manipu-
lating two Taylor series [10]. Finally, we get the transfer
function  in the Taylor series form (that is, the first
several moments) with the time-of-flight . Instead of
matching moments of , we match the moments of

. The corresponding time domain function
 can be obtained by the Padé approximation [14] or

EDPF [5, 10]. Here, we use a mixed exponential function
[11]. We approximate  with the Padé approximation,
and match the corresponding moments of unstable poles
with the EDPF. Since , according to the
shifting theorem of Laplace transform, the time domain
transfer function is

(21)

5. Experimental Results

Two testing circuits are presented here to illustrate the
efficiency and generality of the macromodel with the time-
of-flight captured explicitly. They were executed on a Sun
Sparc 1+ workstation.

The first example is a transmission line circuit which
was one of benchmarks of 1993 IEEE Multi-Chip Module
Conference (MCMC-93) (See Fig. 11). The circuit was

provided by Performance Signal Integrity, Inc. While
SPICE3e2 [8] took more than  minutes to compute the
output waveform , our method took  seconds
including  second for plotting the result. Fig. 12(a) is
the analysis result of the 5th order approximation without
the capturing of time-of-flight compared to the result of
SPICE3e2. The input is a ramp signal with  rise time.
The experiment result shows that the time-of-flight delay is
difficult to be captured with a finite order of exponential.
This deficiency affects matching not only on the flat sec-
tion but also the whole curve. Fig. 12(b) is the result of the
5th order approximation with capturing of the time-of-
flight ( ) compared to the result of SPICE3e2. Using
the same order approximation, the simulation achieves
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Figure 11. MCMC-93 benchmark.
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much higher accuracy by just capturing the time-of-flight,
since it only needs to match the exponentially charging
section of the response curves. The extra computation time
for capturing the time-of-flight is negligible.

Fig. 13 is a lossy transmission line circuit. While
SPICE3e2 [8] took  seconds to compute the output
waveform , our method took  seconds including

 second for plotting the result. Fig. 14(a) is the analysis
results of the 4th order approximation without the captur-
ing of time-of-flight capturing compared with SPICE3e2.
The input rise time is . Fig. 14(b) is the result of the
4th order approximation with the capturing of time-of-
flight ( ) compared with SPICE3e2. Again, the
accuracy of response curves, not only on the flat section,
but also on the whole curve has been greatly improved.

Figure 12. The results of the MCMC-93 benchmark
generated by SPICE3e2 and our method
(a) without the time-of-flight captured
(nonTOF) and (b) with the time-of-flight
captured (TOF).
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6. Conclusions

In this paper, we point out the deficiency of previous
definition of the time-of-flight and give a precise definition
of the time-of-flight together with some properties. Based
on the new definition and the properties of the time-of-
flight, we can easily capture the time-of-flight delay for
general interconnect networks during the reduction while
using lower order model to evaluate the charging delay.
The experimental results show that the accuracy of the
transient analysis, because of capturing the time-of-flight
delay, is greatly improved without significantly increasing
computing time.
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