Generating Instruction Sets and Microarchitectures from Applications

Ing-Jer Huang and Alvin M. Despain
Department of Electrical Engineering — Systems
University of Southern California
Los Angeles, CA 90089-2561
ijhuang@usc.edu, despain@usc.edu

Abstract—The design of application-specific instruction set pro- ASIP-based embedded systems, consisting of three subproblems
cessor (ASIP) system includes at least three interdependent taskbiLS, ISS, and ISM, with a single formulation: a simultaneous
microarchitecture design, instruction set design, and instructionscheduling/allocation problem with an integrated instruction for-
set mapping for the application. We present a method that unifiednation process. As shown in Figure 1, our method accepts appli-
these three design problems with a single formulation: a modifiedcations expressed as dependency graphs of micro-operations

. . : ; : : —(MOPs), an objective function, design constraints, and an archi-
scheduling/allocation problem with an integrated instruction for tecture template, and generates the microarchitecture by allocat-

ma_tlon process. Mlcro_-operatlons (MOPs) rep_resentmg the appll'ing resources to the given architecture template, the application-
cation are scheduled into time steps. Instructions are formed a”@pecific instruction set, and the assembly code for the given appli-
hardware resources are allocated during the scheduling procesgations. The design space of instruction sets consists of many fea-
The assembly code for the given application is obtained automattures in modern pipelined processors, including parallel MOPs,
ically at the end of the scheduling process. This approach consideperand (field) encoding, delay load/store/branch, and conditional
ers MOP parallelism, instruction field encoding, delay load/store/ execution of MOPs. The architecture templates that we consider
branch, conditional execution of MOPs and the retargetability toare pipelined microarchitectures with a data stationary control
various architecture templates. Experiments are presented tghodel [6].

show the power and limitation of our approach. Performance In this formulation, MOPs are scheduled into time steps, sub-

improvement over our previous work [4] is significant. ject to instruction word width, dependency and timing con-
. straints. While MOPs are scheduled into time steps, hardware
1. Introduction resources are allocated, and instructions are formed at the same

time. Note that instruction formation has effects on resource allo-
flexibl dl t solution f bedded svst ith i cation as well. The assembly code is obtained from the schedule

exible and low cost solution for embedded Systems WIth SpECHliC,gqr the jnstruction set is finalized. The method has been imple-
complex algorithms or control intensive applications [3][12]. AS & \apteq in our design automation system ASIA (Automatic Syn-
result of the progress in design automation, it is now possible Ohesi . :

) h hesis of Instruction-set Architecture).
synthesize ASIP-based embedded systems automatically. The .))
synthesis of ASIP systems is an complex design problem which ~ The rest of the paper is organized as follows. Section 2 sum-
basically consists of three subproblems: microarchitecture designMarizes the basic problem formulation in our previous work [4]
instruction set design and instruction set mapping, which haveof which our current method is an extension. Section 3 describes
been addressed by many people from different research areas. the extension to accommodate microarchitecture design. Section
High Level Synthesis (HLS), e.g., [7][9][10], generates 4 Presents some experiments. Section 5 concludes this paper with

microarchitectures at the RTL level from behavior specifications, discussions on the achievements, limitations, and future direc-
which, in the context of ASIP design, are the instruction set spectons-

ifications; Instruction Set Synthesis (ISS), e.g., [1][2][3][4], gen- . _
erates instruction sets from given descriptions of (ks Objective Functiof | Arch. Template
microarchitectures; Instruction Set Mapping (ISM), e.g.,
[13][17][18], compiles the given applications to assembly code,

Application specific instruction-set processors (ASIPs) offer a

based on the given instruction set, so that the applications can b
efficiently executed on the microarchitecture. Clearly, these prob- h :
lems arenot independent ones. The need to closely examine the Sgheduling / \nstruction

problems of HLS, ISS and ISM for instruction set processors has
been noted by researchers, e.g., [2] and [12]. To investigate th
interactions between these subproblems, most current approache
e.g., [14][15][16], rely on manually controlled iterations between
various synthesis tools. Instruction Se Micro-Architectur

This paper presents a method which expresses the synthesis

t. This work was supported by the ARPA under contract Figure 1. The scheduling/allocation process with an inte-
No. Rutgers 4-26385. grated instruction-formation process

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and thetitle of the publication and
its date appear, and notice isgiven that copying is by permission of the

A iation for C uting Machi LT therwise, or t blish,
requires a fee anclor speaiic permisgion, Y oo O fO TERLRE 0 1994 ACM 0-89791-690-5/94/0011/0391 $3.50

both register accesses refer to the same physical register) and
MO2:r0<-r2+0 MO4:ri<-r2+1 Immed=1 (fixing an operand to a specific value which becomes
MO1:m(r2+0)<-r2+0 MO3:m(r2+1)<-r2+1 implicit) are encoded into the opcode . Encoding operands
saves instruction fields and allows more parallel MOPs to be
packed into a single instruction, at the cost of possibly larger
instruction set size, additional connections and hardwired con-
MOS5: r2<-r2+2 stants in the data path.
\L The semantics of an instruction can be represented by a binary
MO6: PC<-PC+102 tuple <MOPTypelDs, IMPFields> whereMOPTypelDsis a list
of type IDs for the MOPs contained in the instruction, B-

Fieldsis a list of operand fields that are encoded into the opcode.

Figure 2. The dependency graph of MOPs of a simple basic

block For example, the binary tuple for the instruction
; i i add(R1,R2,Immed) IS <[rrai],[|> . The instruction contains one
2. InStrl.JCtlon set dESIQn and mapping as a MOP ‘Ri<-RytImmed’ with the type IDrai , which is repre-
scheduling problem sented by the ligtrai] . Since no operand is encoded, the second

argument of the tuple is an empty list. On the other hand, the
binary tuple for the instruction inc(r) is <[rrai],
[R1=R2,immed=1]> . The list in the second argument of the tuple
pecifies how the operands are encoded: the eleraert uni-
es the register specifiers;Rnd R to the same register, and the
‘elementimmed=1 fixes the immediate value permanently to the
constant of one.

2.3. Instruction formation and mapping

In this section we summarize the basic problem formulation of
our previous work [4] which addresses the problems of ISS and
ISM as a scheduling problem with an integrated instruction for-
mation process. This formulation generates the instruction set an
assembly code for the given application and microarchitecture
The extension to the basic formulation is given in Section 3 to
include the synthesis of microarchitectures.

2.1. Representation of applications
Instructions are formed while MOPs are scheduled into time

An application is represented as a collection of weighted basicsteps by substituting the data values and register indices with gen-
blocks. The weight is defined by the designer, and is usually use@ral field templates. For example, the instruction
to indicate the typical execution frequency or the “importance”, add_store(R1,R2,R3,R4,Immed) ‘Ry<-Ry+Immed; m(R)<-R,
by some measure, of the basic block. The basic blocks are reprg: represents parallelism) is formed when two MOPs ‘r(15)<-
sented by dependency graphs of MOPs that are supported by the11)+4’ and ‘m(r(11))<-r(11)’ are scheduled into the same time
given microarchitecture. Figure 2 shows an example of a basicstep. If the design process decides to encode the instruction oper-
block consisting of six MOPs. The bold labels before the MOPs ands by unifying the register specifiers=Rs=R,, then this
are their IDs. The solid arrows are data-related dependencies. Thstruction becomegush(RL,R4,immed) which is used in Prolog
dashed arrows are control dependencies; the M@Bshanges compilation [19]. This unification saves two register operand
the control flow at the end of the basic block, and hence logicallyfie|ds in the instruction.
follows MOPsmo1-5 The instruction set is derived from the final schedule and
2.2 Instruction set model encoding Qecisions made by the scheduling process. The assem-

bly code is obtained from the schedule and the synthesized

An instruction contains one or more parallel MOPs. MOPs are instruction set.
controlled via instruction fields. The fields belong to some field 2.4. Design constraints
types. The instruction word, consisting of fields, is assumed to be™" ™
of fixed width. The widths of the instruction word and field types ~ MOPs are scheduled into time steps, subject to several con-
are specified by the designer. An example is given in Table 1.straints. First, the data/control dependencies and the timing con-
Each instruction has one opcode field, but the use of other fields istraints (for multi-cycle MOPs) have to be satisfied. If two
constrained only by the total number of bits needed by the operadependent MOPs are required to be separated by certain cycles
tions in the instruction. due to the timing constraint, independent MOP's, if available, or
NOPs (no-operations) are filled in the delay cycles. Second, the

Instruction Field Type Number of bits . \ .

o : p ! : instruction word width and the hardware resources consumed by
instruction word 32 the instructions have to be no larger than what are specified by the
opcode 6 designer. Third, the size of the instruction set has to be no more
register (R) than Z)pcode field W|dth
ag (1) ° 2.5. A simulated annealing algorithm
displacement (D) 8
immediate (1) 16 We use a simulated annealing algorithm for the instruction for-
relation (<,=,>%) operator (OP) 2 mati_on _and mapping problem. An initial _sch_edule of the gi\(en

o - - . application, produced by a preprocessor, is given to the algorithm
Table 1: Bit width specification for instruction field types as the initial design state. The algorithm then makes random

The operands of instructions can be encoded to become part ahovement in the design space by applying move operators to
the opcodes. There are two ways to encode operands. First, a spehRange the design state. In each movement, one MOP is selected
cific value can be permanently assigned to an operand andandomly or according to some heuristics, and assigned to a ran-
becomesmplicit to the opcode. Second, the register specifiers domly selected time step. Or, an instruction formation process can
can beunified For example, the instructioic(R) ‘R<-R+1’ is be applied to a time step to transform the semantics of the instruc-
obtained from the general instructiafd(R1,R2,Immed) ‘R;<- tion at the time step. All of these movements are subject to the
R,+Immed’. The facts of R=R, (unifying register specifiers; i.e., timing and dependency constraints.

The move operators which change the design state are groupestage, at the cost of restricting the instructions to single format for

into two classes: register specification such that registers can always be pre-fetched

1. Manipulation of instruction semantics at the instruction-decode stage. On the other hand, the pipeline
Unification: Unify two register operands in the MORplit ‘IF-ID-R-A/M-W’, the case (c), is derived by merging the arith-
Cancel the effect of the ‘unification’ operationplicit value metic stage with the memory stage, at the cost of eliminating the
Bind a register operand field to a specific register, or an displacement addressing mode. The displacements have to be
immediate data field to a specific val@plicit value Can- computed by other instructions proceeding the memory-related
cel the effect of the ‘implicit value’ operatoGeneraliza- instructions.

tion: If the current instruction format of the selected time Figure 4 (a) depicts the data path model of the pipeline in
step contains encoded operands, make these operands geRigure 3 (a). The register files at the top and bottom are the same
eral and become explicit in the instruction fields. register file. They are duplicated for the ease of readability. The

2. Manipulation of MOP's location data path model specifies the topology of modules, i.e., the con-
Interchange Interchange the locations of two MOPs from nection patterns of data path modules. In the figure, there are
different time steps Displacement Displace a MOP to paths R-A-M-W and its subpaths R-A-W, R-A-M, and M-W.
another time stednsertion Insert an empty time step after There also exist paths A-R, M-R, and W-R which are created by
or before the selected time step and move one MOP to thehe bypassing buses. The heavy dots in the figure indicate that the
new time stepDeletion Delete the selected time step if itis number of data path resources are to be instantiated by the algo-
an empty one. rithm.

In addition, there are some designer controllable parameters in - The pipeline is controlled in a data stationary fashion [6]. In
the algorithm. The cooling schedule updates the current temperaghe data stationary control, the opcode flows through the pipeline
ture. The movement accepting rules control the stability of designjy synchronization with the data being processed in the data path.
state at various temperature levels. The heuristics are used t@igyre 4 (b) shows the control path with data stationary model for
select move operators and MOP targets when resolving violationhe pipeline in Figure 3 (a). Opcodes are forwarded to next stages
of design constraints. For example, when the resource usage of & nchronously. At each stage, the opcode, together with possible
time step violates the resource constraint, the move operators Unktatys bits from the data path, is decoded to generate the control
fication, implicit value, interchange, displacement, insertion and sjgnals necessary to drive the data path.

deletion can be randomly selected to be applied to the time step. o .
3. Extension for microarchitecture design zl.;e;'he specification language for architecture tem-

The previous formulation can be extended to synthesize the))
microarchitecture at the same time, with the introduction of the ~ The architecture templates can be abstractly described by

architecture template specification language, resource allocationSPecifying the supported MOPs and a set of timing parameters.
a proper objective function, and design constraints which are dis-'he MOPs describe the pipeline configuration of the instruction

cussed in this section. execution stages, the functionality supported by the microarchi-
. tecture, and the connectivity among modules in the data path. For
3.1. Architecture templates example, in Table 2 is the description of part of the MOPs sup-

Ideally, it is desirable that the design automation system selecPorted by the architecture template in Figure 4. Although not
the most feasible architecture template from a pool of candidatesShown here, conditional execution of MOPs is allowed. Note that
templates and carry out the design details. However, we havén this example, there is no direct connection between the register
adopted a simpler approach for our current method, in order tg'€ad and write ports. Therefore, a direct register move is not pos-
manage the complexity of the problem. In our approach, theSible, which has to be achieved by some dummy arithmetic or
designer gives the architecture template by specifying the pipelodic operations such as adding with zero. The pipeline configura-
line configuration and the general connection patterns of the datdion ‘IF-ID-R-A/M-W" in Figure 3 (c) can be obtained by elimi-

ath. The algorithm then allocates appropriate hardware resource
Fo instantiatg the architecture templg?e. F1)'he resources to be allg | IF |'>| ID |'>| R |'>| A |'>| M |'>| w |'>
cated are register read/write ports, memory ports, and functiona| M Hgion I cton Ry e e onomery Reaister

units. . .
The styles of micro-architectures considered here are pipelined < Instruction Execution =
micro-architectures. The pipeline stages can be partitioned into (a). basic pipeline

two sections: thénstruction fetchstages and thiestruction exe-
cutionstages. The instruction fetch stages are common to all pipe{ | IF H»=liDR [B=| A [l M | W [
line configurations. The instruction execution stages are defined Instruction Instruction Arithmetic/ Memory — Register
by the designer. For example, a basic pipeline, as shown if ~ €" ggcede, Logic Operatiarccess wiite
Figure 3 (a), can be functionally partitioned into stages for read |<)— Instruction —q>|
instruction fetch (IF), instruction decode (ID), register read (R), _ Execution
arithmetic/logic operation (A), memory access (M), and register (b)- variation |

write (W). IF and ID belong to the instruction fetch stages, and R,

A, M, and W belong to the instruction execution stages. Each L |'>| ID |'>| R |'>| AM |'>| w |'>
functional stage may take more than one cycle, and can be furthg '"SgHgtion Instruction R?@ésc}erLé%%ﬁgggéryRﬁ%ger

pipelined. The latencies of the functional stages are design paranmn i
eters which are specified by the designer. <J nstruction =
Other variations can be defined as well. For example, the pipe (c).variation II

line ‘IF-ID/R-A-M-W’, the case (b) in the figure, can be derived
by merging the register-read stage with the instruction-decode Figure 3. Basic pipeline and its variations

nating the MOPg&nd, mrd andmrad from Table 2. pair in Table 4 specifies that there should be one cycle delay
There are three attributes associated with each MOP. (1) Th€tween a memory operation and a succeeding (dependent) arith-
cost of the instruction format is the instruction fields required to MEtIC operation.
operate the MOPs, including register specifiers, function selec Data path module Latency
tors, and immediate data. (2) The hardware cost is the resourc
required to support the MOP. The hardware resources includg
read/write ports of the register file, memory ports, and functional
units. (3) The required instruction execution stages are the pipepMemory access
line stages in which the MOP is active. The third, fourth and fifth | Arithmetic/Logic 1
.CO|U|\I’/|T18; in Table 2 lists these three attributes for the correspondTgple 3: Timing parameters: latencies of data path modules
ing s.

[Register read 1
Register write 1
2

. . Dela) . . Dela
* Inst. Eecution Operation pair cyc|e>; Operation pair cycle);
ID MOP Format | Hardware Cost stage*s* arithmetic-arithmetic (A-A) 0 memory-control (M-C) 1
Cost arithmetic-memory (A-M) 0 control-arithmetic (C-A) 1
ma [Ri<-Ri+R R1 Ry 2R, 1W,1F R,A W arithmetic-control (A-C) 0 control-memory (C-M) 1
rrai | Ry <-Immed + B Ry Ry, | 1R, 1W,1F R,A W memory-arithmetic (M-A) 1 control-control (C-C) 1
rrait |Ry <-Tag™(Immed + R) Ry, Rp, T, |1R,1W,1F R, AW memory-memory (M-M) 1
rmd_ | Ry < mem(® + Immed)| R, Ry ! ;R' IWIM 1R R A MW Table 4: Timing parameters: latencies of operation pairs
2: ::zgg)) : Emed Ré IRZ 12: 1m 2:& Note that the design parameters are able to model the exist-
_ ence of bypassing buses in the data path. For example, if we
md |mem®B+Disp)<-R |RyRpD |2RIMIF | RAM remove the bypassing bus in the ‘A’ stage in Figure 4, then the
mrad | mem(R + Disp) <- R+ |Ry, Ry, D1 (2R, 1M 2F | RAM delay cycles for the A-A, A-M, and A-C pairs in Table 4 all
Immed become one, instead of zero.
jd pc <- pc + Immed | 1F A

Table 2: MOP specification 3.3. Resource allocation
*. The operator N appends a tag to a value before the value is sent to a
destination.
t. Refer to the notation in Table 1
¥. Notation: ‘R’=read port of register-file, ‘W’=write port of register-file,
‘M’=memory port, ‘F’=functional unit, and the value is the number of a
particular hardware resource. For example, ‘2R’ means two read ports for
register-file.
**_Notation: ‘R’=register read stage; ‘A =ALU stage, ‘M’=memory
stage, ‘W'=register write stage

Hardware resources are allocated while MOPs are scheduled
to time steps. This is similar to the problem formulation in [8].
For each fortime step, the required hardware resources are the
total of the resources consumed by each MOP scheduled into the
time step, minus the resources that are shared. The sharing of
resources in a time step is due to the operand encoding. When two
or more register reads belonging to different MOPs are unified,
i.e., reading from the same register, one register read port is suffi-
cient. On the other hand, if more than one destination register
receive results of the same arithmetic/logic expression, one func-

The set of timing parameters describes the operation latencie§onal unit is enough since the computation result can be shared.
in terms of clock cycles. There are two classes of operation laten- Take the instructions discussed in Section 2.3 for example.
cies: latencies for the operations of data path modules, and latenFhe instructionadd_store(R1,R2,R3,R4,Immed) requiresthree
cies (delay cycles) for information passing between operations inregister read ports for the register read specifigrs andrs,
pipeline stages. Examples for the architecture template inone register write port far1, one functional unit for addition, and
Figure 4 are shown in Table 3 and Table 4, respectively. The M-Aone memory port for the store operation. On the other hand, the
instruction push(R1,R4,Immed) requires onlyone register read

Instruction . port, as opposed to three, with the requirements for other types of
| Register s 0Pt T resources remaining unchanged. The saving is due to the unifica-
: status bits Stage g g g
File from data path tion of register read specifiersFR;=R,.
cee §= = R The global resources allocated is then the union of the
Staius bits resources used by each instruction.
from data path 3.4. Design constraints and objective function
LN) é g - A =
o : The design constraints used in Section 2 remain intact, except
vee 53 @ from auia pack the resource ones which are eliminated from the problem formu-
Memory § _ : M lation. The algorithm is responsible for finding the best resource
N o < allocation according to the objective function.
frorS s ggs The goal of the algorithm is to minimize the value of the
b objective function which is given by the designer. The objective
File % 3 w function can be an arbitrary function of the dynamic cycle count
Register C, the static code siZ8 the instruction set siZe the number of
register read (write) porR (W), the number of memory poriis,
Data path Control path and the number of functional unks
(- ()- 3.5. Design process

Figure 4. An architecture template The design process for the HLS+ISS+ISM problem consists of

three phases.

N . i . 1: main :- hanoi(8). 1: in :-
1. The glven_ application is translated to _dependency graphs of| 2. hanoi(N) - move(N,a.c,b). mal:reverse([1,2,3,4,5,6,7,8,9,10,11,12,
MOPs which are supported by the given architecture tem- | 3 move(©._,_J:- L 2 13,14,15,16,17,18,19,20,21,

. T : . 4: move(N,A,B,C) :- Mis N-1, 3: 22,23,24,25,26,27,28,29,30],).
plate. This translation is performed in two steps. First, the move(M.A,C,B), move(M.C.B.A). 4: nreverse([X|LOJ,L) - nreverse(LO,L1),
application, written in a high level language, is translated . concat(LL [X].L).

(a). hanoi_8 5: nreverse([],[]).

into an intermediate representation by the compiler of the
high level language (in our current environment, the Aquar-
ius Prolog Compiler [19]). Second, a retargetable MOP map-

6: concat([],L,L).
7: concat([X|L1],L2,[X|L3]) :-
concat(L1,L2,L3).

1: main :- concat([a,b,c],[d,e],_).

: concat(f],L,L).

1 concat([X|L1],L2,[X|L3]) :-
concat(L1,L2,L3).

[SRN]

per, consulting the given architecture template specified with (b). conl (c). nreverse
the language described in Section 3.2, transforms the inter- — — -
mediate representation into the dependency graphs of MOPs, Figure 5. Application programs in Prolog

éhe source code in Prolog. Thain clauses are given by the
designer to represent the typical execution of the programs.

The results are given in Table 5. The columns under the header
. : . - . “Synthesis results” are the outputs of the algorithm: the resource
Instructions w_nhout (_encodmg any operar_1d_._The thalned allgcation, cycle counts of the gpplication, thge instruction set size.
schedule and ms?ructl_on set constitute the initial design stateote thatconlandnreversehave more MOP parallelisms avail-
which can be an inferior one. able thanhanoi_8 Therefore,conl and nreverseare allocated
3. The simulated annealing algorithm, with the modifications more hardware resources thzamoi_8 Furthermore, some pow-
discussed in Section 3.3 and Section 3.4, is invoked to opti-erful instructions are included @aonIs andnreversés instruction
mize the design state. Note that the initial temperature for thesets to make use of the additional hardware resources, as indi-
annealing process has to be higher than the problem in Seccated by the larger sizes of their instruction sets. In the table we
tion 2. The number of movements tried at each temperature!so list the number of candidate instructions (in the “Inst. set

has to be larger as well. These modifications are due to thépace” column) and the number of microarchitecture configura-

much larger design space when instruction sets and microarIlons (in the "uArch space co[umn) explored by th.e algonthm.
. . . These numbers show that sufficient number of design candidates
chitectures are designed together. Several experiments ma

) have been explored.
be necessary in order to set the proper values for thes

2. A preprocessor generates a simple-minded schedule for th
MOPs. An instruction set is derived from the schedule. This
is done by directly mapping time steps in the schedule into

parameters. Synthesis results
The best instruction set, microarchitecture, and assembly codg Benchmark posoyrce Cycle | Inst. set | Inst. set| uArch
which minimize the objective function can be obtained after the allocation (©) size (S) | space | space
design state reaches the equilibrium state. hanol B SRIW IV IF = o e -
4. Experiments conl 3R, 1W, 1M, 1F 135 24 244 7
nreverse 3R, 1W, 2M, 2F 313 25 275 7

In this section we present experimental results of our simu- -
lated annealing algorithm for the design of application specific Table 5: Synthesis results
instruction sets and microarchitectures, and instruction set map-+ Refer to the footnote ‘t’ in Table 2 for the meanings of the notation.
ping. To simplify the experiments, an application specific design))) i)
was synthesized for each given application. However, this is not For comparison, we also applied an iterative approach with
to mean that our algorithm can only be used to synthesize designgur previous tool [4] to find the best microarchitectures and
for single applications. Application specific designs customized instruction sets for the applications. Our previous tool was con-
for a set of given applications can be synthesized by taking thestructed to generate instruction sets and mapping for given
collection of the MOP dependency graphs from all the given resource allocation. Therefore, the most difficult task is to decide
applications as the input of the algorithm. that how many configurations of resource Qllocation should be
We used the MOP specification in Table 2 and timing parame-tried before we believe that sufficient design space has been
ters in Table 3 and Table 4 as the given architecture template. Théxplored. For each application, we chose three resource configu-
bit width constraints for instruction fields is given in Table 1. The rations from the “uArch space” column in Table 5. The three con-
following function is used as the objective function. The mean- figurations include the best one (in the “Resource allocation
ings of the variables are given in Section 3.4. column in Table 5) and two other possible configurations that are
Objective =100In(C)+ | + 2R + 3W + 5M + 4F EQ1 Closest to the best cheTable 6 lists the objective values and the
PU times used by the tools. The header “The integrated
pproach” lists the results of the algorithm presented in this paper.
Ehe header “The iterative approach” lists the results of our previ-

We assumed that every basic block executes once for ever
application. This assumption was due to the fact that the profile

analyzer was not available at the moment so that we were not abl us tool. The results show that the integrated approach finds the

to obtain the run time behavior, e.e., the execution counts of basi ame or better desians than the iterative approach. And the inte-
blocks. The number of movements tried at each temperature poin? 9 vy :

is 5%(# of MOPS) The next temperature is 90% of the current grated approach has an average speedup of 3.5 in CPU time over

temperature. The experiments were conducted on a HP 750 workt-he iterative approach. This is because that while th_e itera_tive
station with 224M memory approach has to conduct several complete runs with various

; L resource configurations in order to find the best solution, the inte-
Three symbolic applications were selected from the Prolo - . ' .
benchmarkysuite [11h21$10i 8is the *hanoi’ problem solvecon1 ggrated approach find the best solution much faster by dynamically
concatenates two strings_into one stringeversereverses the) . _) .
order of the given strindNote that the predicai@ncat defined 1. In real designs, more possible configurations have to be tried,
in conlis used as a subroutinerneverseas well. Figure 5 lists ~ in order to ensure that sufficient design space has been explored.

switching between different resource configurations so that infea- In the future, we need to address the following problems. (1)
sible design space can be pruned early in the search process. Thidhe CPU time grows quickly with the size of application. For
comparison shows that the integrated approach, in addition to théarger applications, the design may be accomplished in two
clarity in the problem formulation, is a significant performance phases. In the first phase, the integrated synthesis task is per-
improvement over our previous approach in solving the combinedformed on the most important part of the applications. In the sec-
HLS+ISS+ISM problem. ond phase, instruction set mapping is performed for the rest of the
It is difficult to fairly compare our approach with related work applications, based on the design derived on the first phase. (2)
since these approaches evolve from different research discipline§he automatic generation of simulators for the synthesized
such as computer architecture, compiler and high level synthesiginstruction sets and microarchitectures is necessary for the pur-
They have different concerns, machine models and problem forfo0ses of verification and performance measurement. (3) Similar
mulations. Further investigations are necessary to compardO [8], binding and connection synthesis can be integrated into the

related work in the future.

The integrated The iterative
approach (previous) approach
Benchmarl S;_)re/?rdu (1
Objectivel Time T, | Objective| Time T, Ty
value | (min.) value (min.)
2
hanoi_8 398.76 1] 398.76 38 3/80 (2]
conl 532.51 44 535.58 147 3.84
nreverse 626.6Q 197 634.80 682 3147 [3]
Average 3.54

Table 6: Comparison with our previous approach [4]

Due to space limit, we do not list the synthesized instruction
sets in the paper. Interested readers may refer to [5]. By carefull
examining the synthesized instructions, we found that there exis
few powerful instructions that are rarely used in the assembly
code. The instruction set sizes can be reduced by deleting theng]
instructions, at the cost of slightly increased cycle counts. This
action will further reduce the objective values, resulting in better [7]
solutions. However, this was not done by our algorithm. The rea-
son is that the chance of the MOPs contained in these instructions
being selected and displaced by the algorithm was very low sincd8]
this pattern occurred rarely in the application. To fix this problem,
we can increase the number of movements tried at each tempera-
ture point at the cost of increased CPU time. Or, we can introduce”]
more powerful move operators such as “delete an instruction” or
“delete a resource” to the algorithm at the cost of complicating 10]
the design heuristics and modification to the data structure, sinc«!i
the objects being moved is no longer just MOPs, which are sim-[11]
ple and local, but also instructions and resources, which are com-
plex and global. [12]

The experiments also demonstrate that our tools can be used
for the exploration and analysis of several interesting architec-
tural properties of applications. However, the space limit does not[13]
allow the discussion. Interested readers may refer to [5]

5. Conclusions

(4]

(14]

We have presented a method which encapsulates the combined
problem of instruction set design, microarchitecture design and[ls]
instruction set mapping with a single formulation: a simultaneous
scheduling/allocation problem with an integrated instruction for-
mation process. The formulation takes as inputs the application|1g)
architecture template, objective function and design constraints,
and generates as outputs the instruction set, resource allocation
(which instantiates the architecture template) and assembly code
for the application. A simulated algorithm is used to solve the [17]
problem. The method is an extension to our previous work [4].

We have presented experimental results with three Prolog
applications. Limitations of the method are shown, and possible
improvements are discussed. The experiments also show that thgg)
current method has significant speedup over our previous method
coupled with an iterative approach.

[18]

design process as well.
Reference

J. P. BennettA Methodology for Automated Design of Computer In-
struction SetsPh.D. thesis, Univ. of Cambridge, Computer Labora-
tory, 1988

Bruce Holmer, Automatic Design of Computer Instruction S$ets
Ph.D. thesis, Computer Science Department, Univ. of California,
Berkeley, 1993

Alauddin Alomary, et al., “An ASIP Instruction Set Optimization
Algorithm with Functional Module Sharing Constrairffoc. of the
International Conference on Computer-Aided DesigNey. 1993
Ing-Jer Huang and Alvin Despain, “Synthesis of Instruction Sets for
Pipelined MicroprocessorsProc. of the 31st Design Automation
ConferenceJune 1994

Ing-Jer HuangCo-Synthesis of Instruction Sets and Microarchitec-
tures,Ph.D. thesis, Dept. of Electrical Engineering - Systems, Univ.
of Southern California, August 1994

Peter M. Kogge, The Architecture of Pipelined Computers
McGraw-Hill Book Company, 1981

Mauricio Breternitz Jr. and John Paul Shen, “Architecture Synthesis
of High-Performance Application-Specific ProcessoRaHc. De-
sign Automation Conferenc&990

Srinivas Devadas and Richard Newton, “Algorithms for Hardware
Allocation in Data Path SynthesidEEE Trans. on Computer-Aid-
ed Design\ol. 8, No. 7, July 1989

Ing-Jer Huang and Alvin Despain, “Hardware/Software Resolution
of Pipeline Hazards in Instruction Set Processd?spt. of the In-
ternational Conference on Computer-Aided Desjidisy. 1993

Richard Cloutier and Donald Thomas, “Synthesis of Pipelined In-
struction Set Processorgtoc. of 30th DAC1993

R. HaygoodA Prolog Benchmark Suite for Aquarjd®chnical Re-
port, UCB/CSD 89/509, University of California, Berkeley, 1989
Pierre Paulin, Clifford Liem, Trevor May, Shailesh Sutarwala, “DSP
Design Tool Requirements for Embedded Systems: A Telecommu-
nications Industrial Perspective,” to appeadaurnal of VLSI Sig-

nal Processing1994

Clifford Liem, Trevor May, Pierre Paulin, “Instruction-Set Matching
and Selection for DSP and ASIP Code GeneratiBrot. of EDAC
1994

Johan Van Praet, Gert Goossens, Dirk Lanneer, Hugo De Man, “In-
struction Set Definition and Instruction Selection for ASIPsdc.

of Int'l Symposium on High Level Synthesigy 1994

Bruce Holmer and Barry Pangrle, “Hardware/Software Codesign
Using Automated Instruction Set Design & Processor Synthesis,”
Proc. of Hardware/Software Codesign Worksht@03

Hironobu Kitabatake and Katsuhiko Shirai, “Functional Design of a
Special Purpose Processor Based on High Level Specification De-
scription,” IEICE Trans. Fundamentald/ol. E75-A, No. 10, Oct.
1992

M. Corazao, et al., “Instruction Set Mapping for Performance Opti-
mization,” Proc. of ICCAD Nov. 1993

Wei-Kai Cheng and Youn-Long Lin, “Code Generation for a DSP
Processor,Proc. of Int'l Symposium on High Level SyntheSlay
1994

Peter Van Roy and Alvin Despain, “High-performance Logic Pro-
gramming with the Aquarius Prolog Compiler,Computey
25(1):54-68, January 1992

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

