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Abstract

This paper presents a new LP based optimal cell selec-
tion method. Optimal cell selection is useful tool for final
tuning of LSI designs. It replaces drivabilities of cells, ad-
justing timing, area, and power constraints. Using the lat-
est and earliest arrival times, it can handle both setup and
hold time constraints. We also make an efficient initial ba-
sis, which speeds up a simplex LP solver by 5 times without
any relaxations nor approximations. From experimental re-
sults, it reduces the clock cycle of a manual designed 13k-

transistor chip by 17% without any increase of area.

1 Introduction

In recent LSI design, library cells with several drivabil-
ities of the same logic are available. For example, Fujitsu
0.5 um CMOS gate array library has four inverters, five for
each type of nand gates, three for each type of flip-flops, etc.
Those library cells have different properties of drivability,
delay, area, and power consumption. Replacing cells of the
same logic is useful for tuning of the circuit, which adjusts
its timing constraints, total area, and total power consump-
tion. However, optimal cell selection is an NP problem,
Thus, it is difficult to tune a large circuit.

Almost all previous synthesis tools, such as DAGON [1]
and MIS [2], can only handle circuits of small size at the
same time. So they handle a large scale circuit by dividing it
into several sub-circuits, and optimizing each of them. Crit-
ical paths in the original circuit may be split and scattered
into those sub-circuits. Therefore some of sub-circuits may
have the separated critical paths and some may not. It is no
use to speed up sub-circuits, which have no critical paths.
Also critical paths are determined by relative delays of sub-
circuits. Thus, no one can know the final critical paths until
all sub-circuits are processed. Therefore it is not preferable
for timing optimization to divide a circuit into sub-circuits.

One technique, which overcomes this problem, is “gate
sizing.” Gate sizing does not change any network topolo-
gies but changes drivability of each gate. It raise drivabili-
ties of gates on critical paths, and makes them faster. On the
other hand, it lowers drivabilities of gates on non-critical
paths, and saves area and power consumption. By balanc-
ing drivability of each cell, gate sizing tunes up the circuit
with respect to delay, area, and power consumption.

Berkelaar [3] and Buurman [4] have proposed LP (Lin-
ear Programming) based gate sizing. It represents network
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delays of all paths in an LP problem. Therefore, it consid-
ers all path delays at the same time, and can optimize the
circuit globally to meet design requirements, such as delay,
area and power consumption. However, it does not consider
any hold time constraints.

In this paper, we propose a new cell selection method,
which works under both setup and hold time constraints.
We introduce two kinds of arrival times [5] : the latest
arrival time and the earliest arrival time. With these two
arrival times, we can represent setup and hold time con-
straints. Our method is an extension of the LP based gate
sizini[3]. Also we employ a technique to speed up a sim-
plex LP solver. From a result of timing analysis, We make
an efficient initial for a simplex LP solver. The initial basis
does not change the solution, but speeds up the LP solver.

This paper is organized as follows. In Section 2 we ex-
plain our timing mode!. Linear approximation of a gate de-
lay is illustrated in Section 3. In Section 4 we describe con-
straints about area and power consumption of a gate. Then.
we describe other constraints and the efficient initial basis
for a simplex LP solver in Section 5. Section 6 gives exper-
imental results. Finally, Section 7 is concluding remarks.

2 Timing Model

Our target circuit is sequential, combinational loop-free,
and contains latches and/or flip-flops (we call both FF) syn-
chronized with multi-phase clocks

There are two types of delay propagation: external and
internal [S]. External propagation goes through a net and
carries a wiring delay. Internal propagation is defined in-
side each gate, and carries a gate delay. We handles both
rising and falling signal transitions, In order to simplify our
discussion, we do not distinguish those signal transitions in
the following discussion. It is easy to extend our discussion
to distinguish them.,

We define two arrival time variables at each pin: the lat-
est arrival time and the earliest arrival time. We employs
“static” delay calculation, i.e., we ignore logics of all gates,
but consider all possible delay propagations. At each pin,
we record arrival times of the latest delay propagation and
the earliest delay propagation.

Let T'(:) and t(:) be the latest and earliest arrival times
of a signal 1, respectively. External propagation (net delay
from source i to sink j) is calculated as follows:

T()= T@)+ NetDelay;; Vs € fanout(s) (1)
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tG) =

ggﬁce that NetDelay;; represents a constant of the wiring
ay.

Internal propagation (gate delay from input ¢ to output
j) is calculated as follows:

t(i) + NetDelay;; Vj € fanout(i) (2)

TG) = o {TG)+ MaxzGateDelay;;} (3)
i€ fanin(j

tG) = .eftni!_l ) {t@) + MinGateDelay;;} (4)
i€ fanin(j

Variable MaxGateDelay;; and MinGateDelay;; repre-
sent maximum and minimum delays of a gate from input :
to output j, respectively.

Eq. 3 and Eq. 4 have max or min operators. However,
;ve can get linear inequalities without any relaxations as fol-
ows:

T(j) 2 T(i) + MaxGateDelay;; Vi € fanin(j)
t(j) < t(i) + MinGateDelay;; Vi € fanin(j)

(%)
(6)

In order to hold convexity with Eq. 5, MaxGateDelay;;
must be convex upwards. Similarly, MinGateDelay;; in
Eq. 6 must be convex downwards.
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Figure 1: Setup and Hold Constraints of an FF

Our setup and hold time constraints of FFs are based on

[6]. Leti in Fig. 1 be the input data signal of an FF, and

ck be the control signal of the same FF. At the beginning

of the clock period, data of ¢ is valid. At t(¢) of the earliest,

. arrival time, the data of i becomes invalid. Then, at T'(i)

of the latest arrival time, the data of i becomes valid again.

Thus, signal ¢ holds valid data between T'(i) and t(:) + T

(we define T as the clock cycle period). Setup and hold
time constraints are represented as follows:

>

t@) - T(ck) 2
T+tck)=T@E) 2

Whota(i, ck)
Wactup(i» ck)

M
®

In these equations, Whoid, Waetup represents minimum
hold and setup constants, respectively. Eq. 8 has a term of
T, because we should compensate one clock cycle for setup
time evaluation.

It is trivial that Eq. 7 and Eq. 8 hold convexity with Eq. 5
and Eq. 6.

3 Gate Delay Model

A gate delay model heavily depends on a target tech-
nology. Thus we cannot discuss about a general gate delay
approximation for LP formulation. We only can illustrate
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an example of linear gate delay approximation of our target
technology. :

Our target design is Fujitsu CMOS 0.5 ym gate array
technology, and its gate delay calculation needs two fac-
tors: total driving capacitance of the output signal and “slew
rate” of the input signal. Driving capacitance is a sum
of wiring capacitance and loading capacitances of fanout
gates. “Slew rate” represents dullness of a signal transi-
tion response of ‘H — L' or ‘L — H’. Let i and j be input
and output signals of a gate, respectively. And let CL(j)
and S(i) be the total driving capacitance of output j and the
slew rate of input ¢, respectively. The gate delay from i to
j is given as follows:

GateDelay;; =t0+a-SG)+{kcl+8-SG@)}CL(G) (9)

where t0, kcl, a and 3 are characteristic constants of the
gate internal pat.bi toj.

“Slew rate” of output (j) is calculated at each gate output
signal with the following equation:

S(G) =1ts0+ kscl - CL(j) (10)

where ts0, and kscl are characteristic constants of the gate
outlput J. ‘

t is obvious that Eq. 9 is non-linear because of multi-
plication of variables of C'L(j) and S(i). Thus we intro-
duce a first approximation: be C'L(j) a constant. In recent
sub-micron technology, wiring capacitance has a majority
in C L(j). Gate sizing only swaps cells, but does not change
layout. So we think wiring capacitance is a constant, and
change of C'L(j) by swapping cells is negligible.

We approximate Eq. 9 and Eq. 10 with the least squares
method. An approximated gate delay functions is a “plane”,
i.e., convex both upwards and downwards. So we can use
this both as M axGateDelay and MinGateDelay.

MaxzGateDelay;; = MinGateDelay;;

= a1.~j . Driveg +a2,-,- . S(i)+a3.-]- (1])
Vi, j:gate delay from: to j
S() = bl Drive, +b2; (12)

Vj: output of the gate
drive(minlib) < Drivey < drive(max.id) (13)

where Drive, is the drivability variable of gate g, al;;,
a2,;, a3;, bl; and b2; are constants, which are derived
from linear groximatlon with the method of least squares.
drive(minlib) and drive(mazx_lib) specify the range of
the drivability of the gate.

According to our experiments, the approximation error
of our gate delay is less than 10%.

4 Gate Area and Power Consumption

Power consumption of a CMOS gate g is calculated by
this equation:

1

5 2 CLi-f6&)-V?

i€ fanin(g)

GatePowerg = 14)

where CL(i), f() and V are loading capacitance of input
i, transition frequency of input ¢, and the voltage, respec-
tively.




V is a constant. Since we do not change connections of
the network, f(i) can‘be thought as a constant. C L(i) de-
pends on the assigned library cell. Thus, power consump-
tion of a gate is a function of its drivability.

With a linear piece-wise technique, we approximate area
and power consumption of a gate as functions of drivability:

GateAreay > cly, - Driveg +c2;
GatePowery > dly - Driveg + d2;

k=1...m (15)
k=1...n (16)

Notice that cly, c¢2, d1i, and d2; are constants, and m
and n are number of linear piece-wise constraints of area
and power consumption, respectively.

5 Optimal Cell Selection

5.1 LP formulation

In the previous sections, we have introduced basic rela-
tions among arrival times, slew rates, and drivabilities. In
this section, we describe the remaining constraints in our
LP formulation.

First, we add boundary conditions: arrival times and
slew rates at the primary inputs of the circuit, and required
times at primary outputs.

Second, we give limits of the cycle time, total area, and
total power consumption.

Tmin < T < Tmaa: an

A = GateAreay < Apmar  (18)
Vg€Circuit

P = Z GatePowery < Prae (19)
Vg€Circuit

where T4z, Tmin specify allowable range of the cycle
time T, and A2 and Pp,. specify maximum limits of
the total area and power consumption, respectively.

Finally, we specify the objective function as follows:

Obj=a-T+b-A+c-P — min (20)
where q, b, and c are non-negative constants, which are
given by the designer.

LP optimization answers the optimal drivability of each
gate, where the gate is assumed to be assigned an arbitrary
continuous drivability. After LP optimization, we assign
each gate a library cell with a discrete drivability. First, ev-
ery gate is assigned the cell of the nearest drivability. Then
we iterate replacing cells in such greedy manner that re-
duces cost function of Eq. 20.

5.2 Initial Basis for an LP solver

A simplex algorithm is the method to find the basis of the
optimal solution, by changing basic variables iteratively. If
it starts from a basis near to the final one, it may get the
optimal solution with small amount of run time. We found
timing analysis is useful to generate such a initial basis.

We recall the latest arrival time constraint:

TG 2

T() + MazGateDelay;; 2n
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A simplex LP solver introduces a new slack variable s;;(>
0) for this inequality and change it an equation:

TG)

An ordinary simplex algorithm starts with a trivial initial
basis, that is, all slack variables are basic, and and non slack
variables (such as T'(:), T'(j), MazGateDelay;; in Eq. 22)
are non-basic. With the following consideration, we can
obtain much better initial basis.

Inreal design, Gate Delays;; is larger than zero. Accord-
ing to Eq. 22, arrival time variable T'(j) is larger than zero.
Since the value of a non-basic variable is not zero, T'(j)
must be a basic variable ([7]).

If the path i — j is on the critical path, the slack variable
8i; equals to zero. Otherwise, s;; is non-zero. Thus, a slack
variable is a non-basic variable if its corresponding path is
critical, and is a basic variable if its corresponding path is
not critical.

Of course, we cannot know the actual critical paths, un-
less we get the optimal solution. But we can obtain hints
of them from timing analysis of the initial circuit. Because
replacing cells never causes drastic delay change, critical
paths are assumed to not change drastically. Thus we con-
sider the critical paths of the initial circuit is similar to ones
of the optimal solution.

We make the initial basis by the procedure as follows:

1. Do timing analysis and mark slack variables on the
critical paths.

2. Make slack variables marked above non-basic vari-
ables.

3. Make all arrival time variables basic variables.

We employ the Dijkstra method for our timing analysis. Its
run time order is O(E): where E is number of edges of the
network.

T(:)+ MaxGateDelay;; +s;; (22)

6 Experiments

First, we evaluate the efficiency of speed-up described in
Subsection 5.2. Table 1 shows the results. “No init basis”
uses a default initial basis of LP solver, and “Init bagis” uses
our initial basis according to timing analysis of the initial
circuit. The sgeed up ratio is over 4.8. Especially for L6
of a 21-bit multiplier, “No init basis” does not terminate in
two weeks, but “Init basis” terminates in only 5 hours.

Second, we have done an experiments for some of
benchmark circuits. The optimization condition is to min-
imize the cycle time with no increase of the total area, no
hold time constraints at pri outputs, and no power con-
sumption constraints. Initial circuits are mapped by SIS
in delay mode (with option of “-n 1 -AFG"). Library cells
used in technology mapping consists of four inverters, five
2-input NAND:s, five 2-input NORs, and three D-type flip
flops. Since the technology mapper of SIS does not con-
sider slew rate, we have set o and 3 in Eq. 9 to 0, when we
calculate delays.

The experimental results are illustrated in Table 2 both
for combinational and sequential circuits. We ran these ex-
geriments with an LP solver of simplex method on a SUN

PARC 670. The maximum memory usage was 32MB.
We also compare our method with simulated annealing (de-
noted as “SA” in the tables).

’




For all circuits, our method speeds up the initial circuits.
The reason is that our method consider all path delays at the
same time, while SIS does not.

Furthermore, we have done experiments of circuits of
manual designs. The experimental circuits are taken from
real designs. Especially, “L4" is a circuit of whole one chip.
The optimization condition is the same at the a previous
experiment. The target library contains 390 cells. Each cell
has three or four cells with the same logic but with different
drivabilities.

Table 3 illustrates the results. For all circuits, our method
“LP” sped up the circuit more than 11% with almost no
increase of area. As for “L4”, we achieved 17% speed-
up, by replacing 1,375 gates. Also results of our method
are superior to ones of simulated annealing. However, our
method need much more run time. Almost all run time of
our method is spent for the LP solver.

Fig. 2 shows a time-power trade-off of a bus logic circuit.
Transition frequency of each net is calculated by random
pattern logic simulations. The graph presents an inverse
proportional curve of cycle time and power consumption.
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Figure 2: Time-power trade-off curve

7 Conclusion

We have proposed a new LP based optimal cell selec-
tion method, which considers all path delays at the same
time, guarantees both setup and hold time constraints, and
minimizes the cycle time, the total area, and the total power
consumption. We conclude that our gate sizing method is
very powerful for the use of tuning up a circuit of whole
chip after physical layout design.

However, the problem of our method is large run time
necessary to solve the LP problem. We may resolve this
problem using a fast LP solver, such as an interior point
method. Moreover, reduction of variables and constraints
is effective for speed-up, since the number of variables and
* constraints in LP are linearly increasing with the number of
gates. If we can know gates, which never become on critical
paths, we can remove variables and constraints about arrival
times of those gates.
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Table 1: Speed-up of an LP solver

Ckt  #gate | No init basis Inmit basis (ratio)
C880 %37 Th48m55s 22m4'7s (4.8)
L2 552 6h18m55s 52m57s (7.2)
L4 2088 108h5m 22h46m (4.8)
L6 5140 > 2 weeks | 4h55m (o> 50,000)

Table 2: Results for MCNC benchmarks

Ckt Opt Cycle{ps] Areallr] Run
Ca32 ong | 9,9T7.3(1.00 1,647.5 -
415 gates | SA | 9,024.8(0.91) 1,646.7 | 8md6s
451 nets | LP | 8,062.0(0.81) 1,647.4 | 17m25s
880 ong | 9,392.6(1.00)  2,568.4 -
657 gates | SA | 8,459.8(0.90) 2,567.9 | 22m28s
717nets | LP | 6,839.8(0.73) 2,568.3 | 57m19s
[ S208 ong | 5,/93.7(1.00) 639.4 -
156 gates | SA | 4,575.0(0.79) 6388 | 1mlds
167 nets | LP | 3,729.0(0.64) 639.2 [ 2md0s
ong | 6,0604.6(1.00) 1,540.5 -
326 gates | SA | 6,104.5(0.92) 1,340.5 | 5m30s
330nets | LP | 4,589.5(0.69) 1,340.5 | 12m07s
Table 3: Results of Real Designs
Ckt Opt Cycle[ps]  Areallr] Run
L1 ong { 5,695.4(1.00 2,166.9 -
303 gates | SA 5,305.000.93) 2,166.1 Tm24s
722 nets LP 5,084.9(0.89) 2,166.4 | Tm27s
L2 ong | 17,559.0(1.00)  3,3744 -
552 gates | SA | 16,497.9(0.94) 3,373.6 | 25m31s
1732 nets | LP | 14,522.9(0.83)  3,375.3 | 1hO6m
L3 onig | SZ2IZ2.I(1.00)  T,0727 -
167 gates | SA 7,019.2(0.85) 10729 | 2ml3s
461 nets LP 6,951.4(0.85) 1,070.6 | 2m49s
L4 ong | 17,729.4(1. ,404.0 -
2088 gates | SA | 18,081.4(1.02) 13,4158 | 3h19m
5308 nets | LP | 14,653.6(0.83) 13,380.7 | 22h47m
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