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Abstract
This paper presents accurate estimation of signal activity at
the internal nodes of CMOS combinational logic circuits. The

methodology is based on stochastic model of logic signals and
takes correlations and simultaneous switching of signals at logic

gate inputs into consideration. In combinational logic synthesis,
in order to minimize spurious transitions due to �nite propaga-

tion delays, it is crucial to balance all signal paths and to re-
duce the logic depth [4]. As a result of balancing delays through
di�erent paths, the inputs to logic gates may switch at approxi-

mately the same time. We have developed and implemented an
technique to calculate signal probability and switching activity

of the CMOS combinational logic circuits. Experimental results
show that if simultaneous switching is not considered the switch-

ing activities of the internal nodes can be o� by more than 100%
compared to simulation based techniques. In contrast, our tech-

nique is on the average within 2% of logic simulation results.

1 Introduction

With the recent trend toward portable computing and commu-

nication systems there has been an increasing thrust toward con-
sidering power dissipation during VLSI design [4, 3, 8]. In order

to design circuits for low power and high reliability, accurate
estimation of power dissipation is required. In CMOS circuits
majority of the power dissipation is due to charging and dis-

charging of load capacitance of logic gates. Such charging and
discharging occurs due to signal transitions. The problem of de-

termining when and how often transitions occur at a node in
a digital circuit is di�cult because they depend on the applied

input vectors and the sequence in which they are applied. There-
fore probabilistic techniques have been resorted to. Research di-
rected at estimating signal activity for combinational logic are
reported in [2, 5, 6]. However, such methods fail to consider the
e�ect of \near simultaneous" signal switching at logic gate in-

puts. SPICE simulation result shown in Figure 2 for the circuit
of Figure 1 shows that the spurious switching disappears at node
V6 and is negligible at node V5 if the two primary inputs have
a rising and a falling transition respectively, within 3ns of each

other. The spurious pulses try to charge or discharge the capac-
itances associated with the nodes of a circuit. If such pulses are
not wide enough to charge or discharge the capacitances, they
disappear. The above example shows that if the inputs to a logic
gate switch within a period of �t, spurious transitions do not

occur at the output. �t is a function of the inertial delay of the
gate and the load capacitances associated with the gate.
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Figure 1: A Circuit for SPICE simulation
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Figure 2: Timing diagram for SPICE simulation

The e�ect of simultaneous switching at the inputs of a logic

gate can be best understood by considering the example of Fig-
ure 3. If the signals at the inputs of a two input XOR logic

gate are switching as shown in the �gure, the output switching
activity will be zero, even though the signal transition rates at
the inputs are high. In this paper, we consider such e�ects in
estimating signal activities at the internal nodes of a multilevel
circuit.

The paper is organized as follows. Section 2 gives the basic
de�nitions and a brief review of signal probability and activity fol-
lowed by a brief discussion on power dissipation in CMOS logic.
Section 3 presents accurate estimation of signal activity consid-

ering signal correlations and simultaneous switching of inputs to
logic gates. A technique to derive activities at the internal nodes

of a circuit from their symbolic signal probabilities is given in
Section 4. Section 5 gives the implementation details and ex-
perimental results to show that our technique is accurate and
applicable to large circuits. The conclusions are given in Sec-
tion 6.

"ONE"

Figure 3: Example of simultaneous switching
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2 Preliminaries and De�nitions

In this section we describe the representation of multi-level cir-
cuits and review the concept of signal probability and activity,
followed by a brief discussion on power consumption in CMOS
logic circuits.

Multi-level Logic Representation: Multilevel logic can be
described by a set F of completely speci�ed Boolean functions.
Each Boolean function f 2 F, maps one or more inputs and in-
termediate signals to a n output or a new intermediate signal.
A circuit is represented as a Boolean network. Each node has
a Boolean variable and a Boolean expression associated with it.
There is a directed edge to a node g from a node f , if the expres-
sion associated with node g contains in it the variable associated
with f in either true or complemented form. A circuit is also
viewed as a set of gates. Each gate has one or more input pins
and (generally) one output pin. Several pins are electrically tied
together by a signal. Each signal connects to the output pin of
exactly one gate, called the driver gate.

Signal Probability and Activity in CMOS:

We briey describe the model used in [2] for estimation of sig-

nal activity of circuits in the following. The primary inputs to a
combinational circuit are modeled as mutually independent SSS

(Strict-Sense Stationary) mean-ergodic 0-1 processes. Under
this assumption, the probability of the primary input logic sig-
nals xi(t); i = 1 : : : n, assuming the logic value ONE at any given

time t becomes a constant, independent of time, and is called
the equilibrium probability of the random signal xi(t). This is

denoted by P (xi). The activity A(xi) at a primary input xi of

the module is de�ned as limT!1
nx

i
(T )

T
and equals the expected

value of
nx

i
(T )

T
. The variable nxi is the number of switching of

xi(t) in the time interval (�T=2; T=2]. Since digital circuits can

be thought of as non-linear but time-invariant systems, the sig-
nals at the internal and output nodes of the circuit are also SSS

and mean-ergodic. Further, the Boolean functions describing the
outputs of a logic module are decoupled from the delays inside

the module by assuming the signals to have passed through a
special delay module prior to entering the module under consid-
eration. Therefore, the task of propagating equilibrium probabil-

ities through the module is transformed into that of propagating
signal probabilities. Also the activities A(yj) at the nodes yj of

the module are given by

A(yj) =

nX

i=1

P (
@yj

@xi
)A(xi) (1)

Here @y=@x is the Boolean di�erence of function y with respect

to x and is de�ned by @y
@x

= y jx=1 �y jx=0= y(x)� y(�x):
Though equation 1 considers signal correlations within a logic

module, it does not take simultaneous switching into account.

Hence, this method results in errors in estimating activities of a
circuit.

In order to better explain our approach, we introduce the con-
cept of normalized activity, which will be used in Section 3. As-
sume all primary inputs to the module switch only at the leading

edge of the clock and the module is delay-free. Every signal x at
the internal or output node of the circuit become a discrete-time

stochastic process. Therefore, x(t) represents the logic value for
the time interval (t; t + T ]; where t is some leading edge of the
clock cycle and T is the clock cycle of the circuit module. This
is due to the fact that during the interval the signal x(t) does
not change value. We denote P (x(t)) as the probability of node
x being logic ONE in the time interval (t; t+ T ]: If one selects a
clock cycle at random, the probability of having a switching at t

at node y is A(y)=f . Here A(y) is the activity at node y and f is

the clock frequency [7]. We de�ne the normalized activity a(y)
as A(y)=f .

Power Dissipation in CMOS Logic Circuits

Of the three sources of power dissipation in digital CMOS cir-
cuits { switching, direct-path short circuit current, and leakage
current { the �rst one is by far the dominant. Ignoring power
dissipation due to direct-path short circuit current and leakage
current, the average power dissipation in a CMOS logic is given
by POWERave=

1
2
V 2
dd

P
i
CiA(i); where Vdd is the supply volt-

age, A(i) is the activity at node i, and Ci is the capacitive load
at that node. The summation is taken over all nodes of the logic
circuit. It should be observed that A(i) is proportional to a(i).
Ci is approximately proportional to the fanout at that node. As
a result, the normalized power dissipation measure � de�ned as
� =
P

i
fanouti � a(i) is proportional to the average power

dissipation in CMOS circuits. The parameter, fanouti is the
number of fanouts at node i.

3 Accurate Activities

When more than one primary input, say xi and xj, are switching

simultaneously, the Boolean di�erences @y
@xi

and @y
@xj

are unde-

�ned at those time instants. Hence, the proof in [2] that leads
to equation 1 is no longer valid for this situation. Therefore,
we need the following de�nitions to derive the accurate expres-

sion of activity considering simultaneous switching of signals.
Let y be a Boolean expression and xi; i = 1 : : : n be mutually

independent primary inputs of y. We de�ne,
@ykjb

i1
;:::;b

i
k

@xi1 ���@xik
=

y jxi1=bi1 ;:::;xik=bik
�y jxi1=

�bi1 ;:::;xik
=�bi

k

; where k is positive

integer, bij is logic value ONE or ZERO and xij ; j = 1 : : : k are

distinct mutually independent primary inputs of y. We de�ne

Pc(
@kyjb

i1
;b
i2

;:::;b
i
k

@xi1@xi2 ���@xik
) as the conditional probability of having a

transition at time t while xi1 ; xi2 ; : : : ; xik are switching at time

t and the rest of the signals are not. Here t is some leading
edge of the clock. Under this condition, the probability of xj
(62 fxi1 ; xi2 ; : : : ; xikg) being ONE in the time interval (t; t + T ]

is
P (xj )�a(xj )=2

1�a(xj )
rather than P (xj), where T is the clock cycle.

This is due to the fact that we have assumed xj is not switching

at time t and can be explained as follows. xj(t�T )xj(t) = 1 and
�xj(t�T )�xj(t) = 1 signify that xj does not switch at time t and re-
main ONE and ZERO respectively. Similarly, xj(t�T )�xj(t) = 1
and �xj(t�T )xj(t) = 1 signify that xj has a transition from ONE
to ZERO and from ZERO to ONE respectively. Therefore, since

xj is SSS, the following equations hold,
P (xj(t� T )xj(t)) + P (�xj(t� T )�xj(t)) = 1� a(xj)

P (xj(t� T )�xj(t)) + P (�xj(t� T )xj(t)) = a(xj):
However, because P (xj(t� T )) = P (xj(t)) since xj is SSS, and
P (xj(t� T )) = P (xj(t� T )xj(t)) + P (xj(t� T )�xj(t));

P (xj(t)) = P (xj(t� T )xj(t)) + P (�xj(t� T )xj(t));
therefore, P (xj(t� T )�xj(t)) = P (�xj(t� T )xj(t)) = a(xj)=2:

Since xj(t � T )xj(t) + �xj(t � T )xj(t) = xj(t), it follows that
P (xj) = P (xj(t)) = P (xj(t � T )xj(t) + �xj(t � T )xj(t)) =
P (xj(t�T )xj(t))+P (�xj(t�T )xj(t)):Hence, P (xj(t�T )xj(t)) =
P (xj)�a(xj)=2: The conditional probability of xj being ONE in

the time interval (t; t+ T ] while it does not switch at t, denoted
as Pc(xj), is given by
P (xj(t) = 1 j fxj(t� T )xj(t) + �xj(t� T )�xj(t) = 1g) =

P (xj (t�T )xj (t))

P (xj (t�T )xj (t))+P (�xj (t�T )�xj (t))
=

(P (xj )�a(xj )=2)

1�a(xj )
:

Under the assumption that the primary inputs are mutually
independent and the logic signals can be modeled as strict-sense
stationary(SSS) mean-ergodic 0-1 discrete-time stochastic pro-
cesses with logic modules having zero delays, the following the-



orem holds.

Theorem 1 (n-inputs) If y is a Boolean expression and
xi; i = 1 : : : n are mutually independent primary inputs of y.
Then

a(y) =
Pn

i=1
Pc(

@y

@xi
)(a(xi)

Q
j 6=i

1�j�n

(1� a(xj)))

+ 1
2
(
P

1�i<j�n
(Pc(

@2yj00
@xi@xj

) + Pc(
@2yj01
@xi@xj

))[a(xi)a(xj)Q
l2f1;2;::: ;ng�fi;jg

(1 � a(xl))] � � �

+ 1

2n�1
(Pc(

@nyj0:::0
@x1���@xn

) + Pc(
@nyj01:::1

@x1@x2 ���@xn
))(
Qn

l=1
a(xl));

where Pc(
@y

@xi
); P c(

@2yj00
@x1@x2

); : : : and Pc(
@nyj01:::1

@x1@x2 ���@xn
) are con-

ditional probabilities under the condition that only some primary
inputs switch and the rest do not at the leading edge of the clock
cycle.

However, if we apply Theorem 1 to calculate the exact activity,
we must compute

Pc(
@y

@xi
); P c(

@nyj00:::0
@x1@x2 ���@xn

); : : : and Pc(
@nyj01:::1

@x1@x2 ���@xn
):

This can be CPU time intensive. In the next section, we will show

how to utilize symbolic probability to calculate exact activity.

4 Derivation of Activities from

Signal Probabilities

Often times symbolic probability expression in terms of input
symbolic probabilities or Binary Decision Diagram of a node is
created before activity is computed [2, 3, 5, 8]. Therefore, it

saves time and memory space by deriving the activity from its
symbolic probability expression. We �rst show how to compute

the exact activity, considering simultaneous switching.

We know from the last section that P (y(t�T )y(t)) = P (y(t))�
1
2
a(y) = P (y)� 1

2
a(y), where y is some node in a circuit. Hence,

a(y) = 2(P (y)� P (y(t� T )y(t))): Instead of computing P (y(t�
T )y(t)) directly, we can utilize the symbolic form of P (y) to do
the same. Let y = f(x1; x2; : : : ; xn) be a Boolean expression in

terms of the primary inputs. We can express y(t � T )y(t) as
follows,

y(t� T )y(t) = f(x1(t� T ); : : : ; xn(t� T ))f(x1(t); : : : ; xn(t))

= g(x1(t� T ); x1(t); x2(t� T ); x2(t); : : : ; ; xn(t� T ); xn(t));

where g(:) is some Boolean expression. Similar to [1], P (y(t �
T )y(t)) can be expressed as a sum of primary input probabil-
ity products

Pm

i=1
�i(
Q

j2Ii
P (sj)), where sj is xj; �xj; xj(t �

T )xj(t); xj(t � T ) �xj(t), or �xj(t � T ) �xj(t), and �i is some in-
teger. Note that sj does not include xj(t � T ); xj(t) and

�xj(t � T )xj(t) since P (xj(t � T )) = P (xj(t)) = P (xj) and

P ( �xj(t� T )xj(t)) = P (xj(t� T ) �xj(t)) =
1
2
a(xj).

Therefore, if we de�ne

P (xj(t� T ))P (xj(t)) = P (xj(t� T )xj(t)) = P (xj)�
1
2
a(xj),

P (xj(t� T ))P ( �xj(t)) = P (xj(t� T ) �xj(t)) =
1
2
a(xj), and

P ( �xj(t�T ))P ( �xj(t)) = P ( �xj(t�T ) �xj(t)) = 1�P (xj)�
1
2
a(xj),

then P (y(t� T )y(t)) = P (y(t� T ))P (y(t)):
Hence, we do not need to explicitly compute P (y(t � T )y(t)).
The following example demonstrates this method.

Example 1 y = x1 + x2. Given P (y) = P (x1) + P (x1)P (x2),

where P (x1) = 1� P (x1), calculate P (y(t� T )y(t)):

P (y(t� T )y(t)) = (P (x1(t� T )) + P (x1(t� T ))P (x2(t� T )))

(P (x1(t)) + P (x1(t))P (x2(t)))

= P (x1(t� T ))P (x1(t)) + (P (x1(t� T ))P (x1(t))P (x2(t))+

P (x1(t� T ))P (x1(t))P (x2(t� T ))+

x1

x2
y1

y

y3

y2

w

x4

x5

x6

x7

x3

Figure 4: the minimum independent inputs to node y

P (x1(t� T ))P (x1(t))P (x2(t� T ))P (x2(t)))
= (P (x1)� 1=2a(x1)) + 1=2a(x1)P (x2) + 1=2a(x1)P (x2)
+(1� P (x1)� 1=2a(x1))(P (x2)� 1=2a(x2)):

After rearranging and simplifying terms, we have

a(y) = (1� P (x1))a(x2) + (1� P (x2))a(x1)� 1=2a(x1)a(x2):2

Though P (y(t�T )) and P (y(t)) are expressed explicitly in terms
of P (xj(t � T )) and P (xj(t)); it needs no extra memory space

other than P(y). This is because they have the same symbolic
form.

5 Implementation and Results

The proposed methodology uses signal probability measure to

accurately estimate activity for CMOS circuits. Therefore, it
is very important to accurately calculate signal probability for

further use in estimating activity. We choose the general algo-
rithm proposed in [1] and adopt a data structure similar to [3].
It should be noted that signal correlations have been taken into

account in the algorithm.

However, the exact calculation of signal probability is NP �

hard [2]. Without properly partitioning the circuits, the method

may not be applicable to very large circuits. This is due to the
fact that the size of the symbolic probability expression grows
exponentially with respect to the number of independent inputs

to the circuit module. A partitioning algorithm that limits the
number of inputs to a module has been proposed in [9]. However,

it does not utilize the information of the circuit topology. For
example, let us consider the circuit of Figure 4. Our goal is

to calculate the signal probability at node y considering signal
correlations. All we need is the set of 4 independent inputs,
fy1; x4; w; x7g rather than the whole set of 7 primary inputs
fx1; x2; : : : ; x7g. This is because y1; x4;w; x7 are independent.
We, therefore, apply the heuristic similar to [9] to the smaller set

and set the maximum number of independent inputs to be 10.

The Probability and Activity Simulator (PAS) to estimate ac-
tivities at the internal and output nodes of a CMOS logic circuit
has been implemented in C under the Berkeley SIS environment.
We assume that the primary input signal probabilities and ac-
tivities are available to us through system level simulation of the
environment that the circuit will be working in. We �rst present
a number of test cases that show the importance of considering
simultaneous switching for circuits. Then we show the accuracy
and e�ciency of our technique on ISCAS benchmark circuits. In
order to asses the accuracy of the results, we use a logic simula-

tor with zero-delaymodel. We generated 10,000 random primary
inputs (conforming to the given probabilities and activities) for

logic simulation to determine the activities at the internal nodes
of a circuit. The primary input signal probabilities and activi-
ties of the circuit were used in PAS to generate probabilities and
activities at internal nodes of the circuits.

Table 1 shows the detailed results for an MCNC benchmark
example (parity). All inputs were assigned a signal probability
of 0.5. All primary inputs were assigned the same activity as



Table 1: Detailed result forMCNC benchmark example

parity

act Sim NSS PAS
� CPU CPU Err CPU Err

(sec) (sec) % (sec) %

0.05 3.15 232 0.02 23.5 0.01 0.0
0.1 5.35 270 0.02 42.6 0.01 0.0
0.18 8.42 407 0.02 72.1 0.01 -0.12
0.26 10.59 422 0.02 95.4 0.01 0.09
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Figure 5: Node Activities for example parity (input acti

vities = 0.26)

shown in the table (act). PAS denotes our technique for calcu-
lation of signal activity taking simultaneous switching and sig-

nal correlations into account. NSS (No Simultaneous Switching)
denotes the technique that considers signal correlations but ne-

glects simultaneous switching of signals at logic gate inputs. �
represents the normalized power dissipation measure introduced
in Section 2 and is used to compare the results with logic simu-

lation technique (Sim). The percentage error (Err %) represents
the deviation from the simulation results. The CPU times are

also shown in the table for a SPARC 10 workstation. It can be
observed that the power dissipationmeasure� can be o� by more

than 95% if simultaneous switching is not considered, while the
results for our technique are remarkably close to the simulation

results. Figure 5 shows the accuracy of activity calculation for
the parity example. The x-axis represents the di�erent nodes of
the circuit, while the y-axis represents the normalized activities

associated with each node. Node 0 through 15 are the primary
inputs. Nodes 16 through 30 are either intermediate nodes or

primary outputs. It can be easily observed that the PAS closely
follows simulation results, while the errors introduced by NSS
can be large.

Table 2 shows the results on 10 ISCAS benchmarks. Results

show that the power dissipation measure � determined by PAS
is on the average 2% of logic simulation results. On the other
hand, NSS is at best 21% o� the logic simulation results. It

con�rms again that simultaneous switching must be considered
while estimating power dissipation.

6 Conclusions

By considering signal correlations and \near simultaneous"
switching of inputs to static logic gates, we have shown that
the activities at internal nodes are remarkably close to the simu-
lation results. But if such switching is not considered, activities
can be o� by more than 100%. A technique that derive activity
at a static logic gate from symbolic probability has been demon-

strated. By partitioning the circuit properly, we have achieved

Table 2: Results on ISCAS benchmarks

Ex. act Sim PAS NSS

� CPU CPU Err CPU Err
(sec) (sec) % (sec) %

C432 .1 37 273 2 6.4 2 39

.26 82 554 2 0.6 2 71

C499 .1 102 529 4 0.0 16 143
.26 144 872 4 -0.3 16 366

C880 .1 80 524 3 2.9 3 23

.26 137 1068 3 1.2 3 37

C1355 .1 180 1033 22 0.2 34 106
.26 292 1709 22 -0.0 34 245

C1908 .1 240 1508 27 0.7 26 63
.26 358 2514 27 0.3 26 109

C2670 .1 268 1565 18 2.1 22 25
.26 589 3255 18 1 22 55

C3540 .1 372 2308 498 1.8 454 53
.26 740 4485 498 -1 454 110

C5315 .1 608 3839 68 -1.7 92 21

.26 1314 7594 68 -0.9 92 52

C6288 .1 1028 5424 590 -10 2357 >300
.26 1604 8596 590 -4.1 2357 >300

C7552 .1 892 7644 147 1.2 237 27

.26 1892 11046 147 0.1 237 63

large speed-up in our estimation algorithmwhile maintaining the

accuracy. Hence, this technique can be e�ciently used in a logic
synthesis environment to estimate power dissipation.
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