
The Inversion Algorithm for Digital Simulation

Peter M. Maurer

Dept. of Computer Sci&Eng, University of South Florida, Tampa, FL 33620

Abstract
The Inversion Algorithm is an event-driven algorithm,

whose performance rivals or exceeds that of Levelized
Compiled code simulation, even at activity rates of 50%
or more. The Inversion Algorithm has several unique
features, the most remarkable of which is the size of the
run-time code. The basic Algorithm can be implemented
using no more than a page of run-time code, although in
practice it is more efficient to provide several different
variations of the basic algorithm. The run-time code is
independent of the circuit under test, so the algorithm can
be implemented either as a compiled code or an
interpreted simulator with little variation in performance.
Because of the small size of the run-time code, the run-
time portions of the Inversion Algorithm can be
implemented in assembly language for peak efficiency,
and still be retargeted for new platforms with little effort.

1. Introduction.

In the past several years there has been much research
in improving simulation performance[1-3]. Two basic
approaches to simulation have evolved, which are termed
Oblivious, and Event-Driven[1]. Oblivious simulators
eliminate scheduling code to improve the performance of
gate simulations, but provide no performance
improvements for circuits that require few simulations.
Event-Driven simulators use scheduling algorithms to
reduce the number of gates simulated, but perform poorly
when the number of gate simulations is large.

Although event-driven simulation eliminates many gate
simulations, it does not eliminate all of them. A gate
simulation is useless if it does not produce a change in any
monitored net, a net visible to the user. In event-driven
simulation, a gate is simulated only if its inputs change
value. Even if the inputs of a gate change, the input
change may not result in an output change for the gate, or
the change in the output may be absorbed before reaching
a monitored net.

The Inversion Algorithm was designed to reduce
useless simulations of the first kind, those gate simulations
that do not result in a change in the output of the gate.
Eliminating useless simulations of the second kind is
significantly more difficult.

2. An Overview of The Inversion Algorithm.

The Inversion Algorithm will not schedule a gate for
simulation unless its output is will change value. When the
Inversion Algorithm processes an event, it performs tests
to determine whether the output of the gate will change.
While it is not immediately clear that this is more efficient
than simulating the gate, the tests can be streamlined to an
extent that would not be possible in a traditional event-
driven simulation. Tests must be individualized for
different gate-types, but one of the consequences of never
simulating a gate unless its output changes is that different
gate-types may appear to be identical during simulation.

The current implementation of the Inversion Algorithm
supports the 8 gate types AND, NAND, OR, NOR, XOR,
XNOR, NOT, and BUFFER. The tests for the XOR,
XNOR, NOT, and BUFFER gates are trivial, because any
change in an input of one of these gates implies a change
in the output. For XOR and XNOR gates the simulation
can be optimized further by testing to see whether the gate
is already scheduled for simulation. When this is the case,
the two simulations will cancel each other leaving the
output unchanged. This allows both simulations to be
eliminated.

The tests for AND, OR, NAND and NOR based on the
counting algorithm originally discovered by Schuler[4]. In
a traditional simulation, the counting algorithm operates
as follows. This algorithm assumes that there has been a
change in an input X to the gate G. The dominant value is
1 for OR and NOR gates, and 0 for AND and NAND
gates.

if Value.of.X = Dominant.Value.of.G then
begin

Count.of.G := Count.of.G + 1;
if Count.of.G = 1 then

Output.of.G := Dominant.Value.of.G;
endif;

end
else
begin

Count.of.G := Count.of.G - 1;
if Count.of.G = 0 then

Output.of.G := NOT Dominant.Value.of.G;
endif;

endif;
Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0258 $3.50

The counting algorithm assigns a value to the output of
G only if the output changes value. This algorithm is
extremely efficient because it uses the value of a single
input and a count rather than using all input values to
compute the output. The Inversion Algorithm uses a
highly optimized form of the counting algorithm to
determine whether the output of an AND, NAND, OR, or
NOR gate will change. As with XOR and XNOR gates,
when two simultaneous output changes occur, they cancel
one another and both simulations are eliminated.

Unlike traditional event-driven simulation, the
Inversion Algorithm uses the counting procedure during
the event processing phase, rather than the gate simulation
phase. Modifying and testing counts increases the amount
of work that must be done during event processing, but the
amount of work required during the gate simulation phase
is minimal. It is not necessary to test the output of a gate
to determine whether an event has occurred. Since any
time a gate is simulated, its output is changes either from
one to zero or from zero to one, the only operation
required to simulate a gate is the inversion operation.

Surprisingly, it is possible to eliminate most gate
simulations entirely. Because the correct operation of the
Inversion Algorithm does not require net-values, it is
possible to eliminate all net values and simulations, except
when the net is monitored. To schedule XOR, XNOR,
NOT, and BUFFER gates, the only information needed to
schedule a simulation is that an input has changed value.
The input values for AND, NAND, OR and NOR gates
are also unnecessary. The counting algorithm increments
the gate count when a net value changes from the non-
dominant value to the dominant value, and decrements the
gate count when the reverse change occurs. Because a net
is processed only when its value changes, and because the
value of each input alternates between the dominant and
the non-dominant value, the only information for correct
processing of AND, NAND, OR, and NOR inputs, is
whether the next counting operation is an increment or a
decrement. Because this can be done in a way that does
not require testing, the counting technique used by the
Inversion Algorithm is much more efficient than the
procedure illustrated above.

In the Inversion Algorithm, each event is represented
by the structure illustrated in Figure 1.

next shadow
previous shadow

subroutine
first fanout branch
last fanout branch

queue address
lock address

Figure 1. The Structure of a Shadow.

The element “subroutine” illustrated in Figure 1 is a
pointer to the code to be executed to process the event.
For AND and OR gates, two event-processors are created,
one that increments the count, and another which
decrements the count. These routines toggle the routine
pointer, so the two routines are executed alternately for
any particular net.

Since the simulator does not need to keep track of the
value of gate outputs, the presence of an inverted gate
output can simply be ignored. Thus the processing for
AND and NAND gates is identical, as is that of several
other pairs of gate-types. Because the increment and
decrement operations performed for AND and OR gates
are with respect to the dominant value of the gate, the
processing for these two gates is identical once net-values
are eliminated. Those few inversion operations that are
required can be performed in the event-processing phase
of the Inversion Algorithm, eliminating the need for a
separate gate-simulation phase.

In reality, the Inversion Algorithm performs no
traditional gate evaluations, but simply processes a series
of events. In traditional event-driven simulation, each
event corresponds to a change in a single net. However,
in the inversion algorithm each event corresponds to a
change in a single fanout branch of a net. Thus a single
event in a traditional event-driven algorithm may
correspond to several events in the Inversion Algorithm.
Figure 2 illustrates why this is necessary.

G1

G2

G3

X

Figure 2. A Circuit Fragment.

In Figure 2, the output of gate G1 is the input for two
additional gates G2 and G3. However, when an increment
operation is performed for G2, a decrement operation
must be performed for G3, and vice-versa. Although both
of these actions could be performed during a single event,
it is more convenient to incorporate them into separate
events. Thus the units of scheduling in the Inversion
Algorithm are fanout branches.

Because the Inversion Algorithm computes only
changes in signals, it is necessary to assign each signal a
value before simulation begins, and it is necessary that the
assignment of values be consistent with the structure of
the circuit. For example, the input and output of NOT
gates must have opposite values. Determining the initial
operation for AND, NAND, OR and NOR fanout
branches, and computing initial gate-counts requires net
values to be consistent. Computing initialization values

does not depend on the timing model, so an interpretive
zero-delay simulation can be performed immediately after
parsing. This operation is performed only once during the
lifetime of the circuit.

3. The Translation Phase.

The Inversion Algorithm consists of two major phases,
the Translation Phase which prepares the circuit for
simulation, and the Simulation Phase which performs the
simulation. Once the circuit has been parsed, it is
levelized, the gates of the circuit are sorted into levelized
order, and each gate is simulated once to create
initialization values. A “simulation” fanout branch is
added to each monitored net to generate net values.
Finally a data structure known as a shadow is generated
for each fanout branch of each net in the circuit.

Figure 1 illustrates the structure of a shadow. The event
list is doubly linked to facilitate fast cancellation of
events. The subroutine field points to the event
processing routine for this fanout branch. The first and
last fanout branch fields contain pointers to the first and
last shadow that will be scheduled when the output of the
gate associated with this shadow changes value. Because
all fanout branches of a net must be scheduled or
descheduled simultaneously, the corresponding shadows
are statically linked during the translation phase. The
subchain of shadows is inserted as a group into the event
list. The lock address field contains the address of the
counter for the gate associated with the fanout branch.
For NOT, BUFFER, XOR and XNOR gates, this field is
unused. Finally, the queue address is the address of the
queue into which the shadow is to be inserted.

4. The Simulation Phase.

Eight different event processors are used during the
simulation phase of the Inversion Algorithm. These occur
in pairs and are called INCREMENT, INCREMENTX,
DECREMENT, DECREMENTX, NOT, NOTX, XOR
and XORX. For each pair, the first routine is used for
nets that are not at the end of a subchain while the second
is used at the end of the subchain to delete the subchain
after processing. These eight routines, which consist of
less than a page of code each, constitute the major portion
of the run-time code of the Inversion Algorithm. (The
other components are Vector I/O and Input testing.)

The INCREMENT and DECREMENT processors are
used for AND, NAND, OR, and NOR gates. If the
initialization value of an AND or a NAND input branch is
zero, then the decrement processor is used, otherwise the
increment processor is used. Similarly, if the initialization
value of an OR or a NOR gate is one, then the increment
processor is used, otherwise the decrement processor is

used. The initial value of the gate count is computed by
counting the dominant values of the inputs of the gate.

Existing implementations of the Inversion Algorithm
are based on the zero-delay simulator, LECSIM,
developed by Wang[3]. This implementation was chosen
because it provides the most direct comparison with
oblivious levelized compiled code simulators, which are
viewed as the primary competition of the Inversion
Algorithm. For details on this algorithm, see [3].

5. Optimizations.

There are several optimizations that can be used to
significantly improve performance. The most important
of these are eliminating of NOT and BUFFER gates,
eliminating of XOR and XNOR gates, collapsing
homogeneous connections, and collapsing heterogeneous
connections.

It is possible to eliminate all NOT and BUFFER gates
from an Inversion Algorithm simulation. When the input
of a NOT or BUFFER gate is processed, the only action
that is taken is scheduling the fanout branches of the
output of the gate. The same effect can be achieved by
simply not scheduling the input of the gate, but scheduling
its fanout branches instead. It is necessary to retain the
NOT and BUFFER gates during the generation of
initialization values for all signals. Once this operation is
complete, the translation phase may simply ignore all
NOT and BUFFER gates.

Furthermore, the only action taken when processing an
input to an XOR or an XNOR is to schedule or deschedule
its output branches. One can eliminate the processing of
the input branch by scheduling or descheduling the output
branches of the gate instead. Because this can interfere
with block scheduling of fanout branches none of the
current implementations use this optimization.

It is possible to eliminate much of the processing for
other types of nets in the circuit. Assume for the moment
that all NOT and XOR gates have been eliminated from
the circuit. This leaves only the AND/OR gates, AND,
NAND, OR, and NOR. Any connection between these
types of gates can be classified as heterogeneous or
homogeneous, but the classification must be done before
eliminating NOT gates from the circuit. Let A and B be
two AND/OR-type gates, and suppose the output of A is
one input to B. Suppose a change in the input of A is
propagated to B. This will cause the counters for both
gates to be incremented or decremented. If both counters
move in the same direction, then the connection is
homogeneous, otherwise it is heterogeneous. A
connection between two AND gates is homogeneous, but
a connection between two NAND gates is heterogeneous
because of the inverted output. In general, an intervening
NOT gate transforms a homogeneous connection into a

heterogeneous connection, and vice versa. Two
consecutive NOT gates cancel one another.

A homogeneous connection between gates A and B can
be eliminated by treating the inputs of A as if they were
inputs of B, and adjusting the initial value of the counter
accordingly. It is possible to eliminate all homogeneous
connections from a circuit, however it is not always
advantageous to do so. If a net fans out to more than one
gate, then collapsing it may decrease performance rather
than increasing it. It is always advantageous to eliminate
homogeneous connections for nets that do not fan out.

It is possible to eliminate some homogeneous
connections in a conventional simulator. AND-AND and
OR-OR connections can be eliminated by treating the
combination of gates as a single AND or a single OR gate.
The Inversion Algorithm permits NAND-OR and NOR-
AND connections to be eliminated without restructuring
the circuit.

It is also possible to eliminate some or all of the
heterogeneous connections in a circuit, however the
procedure is more complex and does not always
completely eliminate all the operations required to
simulate these connections. (As with homogeneous
connections, it is advantageous to eliminate a
homogeneous connections only for those nets that do not
fan out.) There are two procedures for eliminating
heterogeneous connections, which are called the linear
method, and the layered method. Due to lack of space,
only the layered method will be discussed here.

Unlike collapsing homogeneous connections, which
eliminates gate-counts for collapsed gates, the layered
method preserves the gate-counts of each of the original
gates. The same number of tests are required as for
uncollapsed connections, but the tests are done without
any intermediate scheduling. To illustrate, suppose that a
heterogeneous connection gates A and B has been
collapsed. Suppose further that there is a change in an
input to A that would cause A’s count to be decremented.
This operation proceeeds as it would before the
connection were collapsed, but if the new count is zero,
then the count for gate B is incremented. If B’s count is
incremented from zero, then the output branches of B are
scheduled. The shadow for a layered connection differs
from that of a simple connection in that the "Lock"
component of the shadow is an array of pointers rather
than a single pointer.

6. Performance Evaluation.

Four prototype simulators were constructed, an
unoptimized version, one which eliminates NOT and
BUFFER gates, one which eliminates NOTs, BUFFERs,
and homogeneous connections, and one which eliminates
NOTs, BUFFERs, homogeneous connections and

heterogeneous connections. All are event-driven zero-
delay simulators based on the LECSIM model.

The prototypes were certified to produce correct results
by running them on the ISCAS-85 benchmarks[5]. Each
circuit was simulated with 5000 randomly generated input
vectors using the four prototypes and a Levelized
Compiled Code simulator. The results of these
experiments are reported in Figure 3. The numbers are
seconds of CPU time on a SUN IPC.

Circuit Unopt. NOT
Elim.

Hom.
Elim.

Hom/Het
Elim.

LCC Activity.

c432 1.7 1.6 1.4 1.2 0.5 59.4
c499 2.0 1.9 1.9 1.9 0.6 63.2
c880 3.8 3.5 3.2 2.7 1.2 57.1
c1355 6.5 5.4 5.4 4.2 1.9 56.5
c1908 8.1 5.8 5.6 4.5 4.4 56.8
c2670 17.7 13.2 12.2 11.7 5.3 55.7
c3540 16.5 11.6 10.0 9.3 8.4 52.4
c5315 36.9 28.8 28.1 22.8 21.7 63.8
c6288 40.4 40.0 39.7 33.8 30.1 61.5
c7552 52.6 40.6 39.4 33.5 40.7 60.7

Figure 3. Experimental Results.

7. Conclusion.

As Figure 3 indicates, the activity rates of the circuits
tested ranged from just over 50% to over 60%. At this
level of activity, Levelized Complied Code simulation
(the LCC column) typically outperforms event driven
simulation by a significant margin. However, for the
Inversion Algorithm with deletion of Homogeneous and
Heterogeneous connections, the timings are essentially the
same for the circuits c1908, c3540, c5315, and c6288.
For circuit c7552, the Inversion Algorithm actually
outperforms Levelized Compiled Code simulation.

8. References.
1. M. Lewis, “A Hierarchical Compiled Code Event-Driven

Logic Simulator,” IEEE Transactions on Computer Aided
Design, Vol 10, No. 6, pp.726-737, June 1991.

2. P. M. Maurer, “The Shadow Algorithm: A Scheduling
Technique for Both Compiled and Interpreted Simulation,”
IEEE Transactions on Computer Aided Design, in press.

3. Z. Wang and P. M. Maurer, “LECSIM : A Levelized Event
Driven Compiled Logic Simulator,” Proceedings of the 27th
Design Automation Conference, 1990, pp. 491-496.

4. D. Schuler “Simulation of NAND Logic,” Proceedings of
COMPCON 72, Sept. 1972, pp. 243-245.

5. F. Brglez, P. Pownall, R. Hum, “Accelerated ATPG and Fault
Grading via Testability Analysis,” Proceedings of the
International Conference on Circuits and Systems, 1985, pp.
695-698.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

