
E�cient Implementation of Retiming

Narendra Shenoy Richard Rudell

Synopsys Inc., 700 E. Middle�eld Road,
Mountain View CA 94043

Abstract

Retiming is a technique for optimizing sequential cir-
cuits. It repositions the registers in a circuit leav-
ing the combinational cells untouched. The objec-
tive of retiming is to �nd a circuit with the mini-
mum number of registers for a speci�ed clock period.
More than ten years have elapsed since Leiserson and
Saxe �rst presented a theoretical formulation to solve
this problem for single-clock edge-triggered sequential
circuits. Their proposed algorithms have polynomial
complexity; however naive implementations of these
algorithms exhibit O(n3) time complexity and O(n2)
space complexity when applied to digital circuits with n
combinational cells. This renders retiming ine�ective
for circuits with more than 500 combinational cells.
This paper addresses the implementation issues re-
quired to exploit the sparsity of circuit graphs to allow
min-period retiming and constrained min-area retim-
ing to be applied to circuits with as many as 10,000
combinational cells. We believe this is the �rst paper
to address these issues and the �rst to report retiming
results for large circuits.

1 Introduction
Retiming is a sequential logic optimization tech-

nique. Leiserson and Saxe provided the �rst formula-
tion and theoretical solution to this problem in 1983 [4]
although their later paper [5] has the most complete
overview of this work. Retiming uses the
exibility
provided by repositioning memory elements to opti-
mize a circuit to optimize one of several objective func-
tions:

1. min-period: minimize the clock period of the
circuit

2. min-area: minimize the number of registers in
the circuit

3. constrained min-area: minimize the number
of registers in the circuit subject to a maximum
constraint on the clock period, or indicate failure
if the target period cannot be achieved.

As a means of motivating and introducing the con-
cept of retiming, we present a simple example in Fig-
ure 1. Assume that each gate has the delay shown in-
side it. The solid rectangles represent edge-triggered
registers. A single clock is used to drive the clock pins
of registers. The best clock period for such a circuit

1 1

1

2

2

2
A

B

O

Figure 1: A simple circuit

1 1

1

2

2

2
A

B

O

Figure 2: Retiming for minimum registers

(neglecting clock skew and set-up time of registers) is
given by the maximum delay of a path consisting of
gates. The clock period for the circuit shown in Fig-
ure 1 is 6 units. An equivalent circuit with 3 registers
and a clock period of 4 units can be obtained by repo-
sitioning registers as shown in Figure 2. This circuit
has the minimum number of registers. On the other
hand, the minimum period achievable by moving reg-
isters is 2 units at a cost of 4 registers as shown in
Figure 3. Thus a simple re-con�guration of memory
elements yields designs with di�ering area costs (num-
ber of registers) and performance (clock period). It is
this trade-o� that we are interested in investigating.

For digital circuit design, the only interesting ob-
jective function is constrained minimum area retim-
ing. However, the minimum period retiming problem
remains important as a step in solving the constrained
min-area problem. This is because the min-period
problem is computationally less intensive and it pro-
vides a lower-bound for the best delay achievable by
the constrained min-area problem. For these reasons,
we address both the min-period and constrained min-
area optimization problems in this paper.

2 Previous Work
For the case of circuits with edge-triggered mem-

ory elements (registers) clocked by the same signal,
solutions to all three problems are described by Leis-
erson and Saxe [5]. Without taking anything away
from their signi�cant contribution, we mention sim-

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0226 $3.50

1 1

1

2

2

2
A

B

O

Figure 3: Retiming for minimum period

ply that the implementation details necessary for large
sparse circuits were not reported as part of their work.
Ishii, Leiserson, and Papaefthymiou [2], extend the
concepts to handle level-sensitive memory elements.
Lockyear and Ebeling [6] present an alternative ap-
proach to retiming circuits with level-sensitive mem-
ory elements. However, both of these papers address
the theoretical issues involved and not implementa-
tion or e�ciency details. Papaefthymiou and Randall
report experimental results for level-sensitive memory
elements [8], but the largest circuit they handle has
379 gates. Munzner and Hemme [7] propose a heuris-
tic algorithm for constrained min-area retiming to con-
vert a combinational circuit into a pipeline. Even
though retiming can be used for the same e�ect, they
justify the use of a heuristic algorithm by stating that
the retiming algorithms cannot handle circuits with
more than 400 gates.

Although theoretical solutions to edge-triggered

ip-
op retiming and related problems have been pre-
sented in the literature, very few papers have reported
experimental results using retiming. To the best of our
knowledge, experimental results for constrained min-
area retiming problem have not been reported. The
only reported results for min-period retiming we have
found are for small circuits. We believe the primary
reason for this is that, although the algorithms are
polynomial in the circuit size, naive implementations
su�er the worst-case (O(n3) time and O(n2) space) for
all circuits.

3 De�nitions
A sequential circuit is an interconnection of logic

gates and memory elements. A sequential circuit can
be represented by a directed graph G(V;E), where
each vertex v corresponds to a gate v. Each directed
edge euv represents a
ow of signal from the output
of gate u at its source to the input of gate v at its
sink. Each edge has a weight w(euv) which indicates
the number of registers that the signal at the output of
gate u must propagate through before it is available at
the input of gate v. Each vertex v has a constant delay
d(v). If there is an edge from vertex u to vertex v, u is
called a fanin of v and v is called a fanout of u. The set
of fanouts (fanins) of u is denoted by FO(u) (FI(u)).
A special vertex called the host vertex is introduced
in the graph with edges directed from the host vertex
to all vertices that represent primary inputs and edges
directed from all vertices representing primary outputs
to the host vertex.

A retiming is a labelling of the vertices r : V ! Z
where Z is the set of integers. The weight of an edge

euv, after retiming is denoted by wr(euv) and is given
by

wr(euv) = r(v) +w(euv)� r(u) (1)

The retiming label r(v), for a vertex v, represents the
number of registers moved from its output towards its
inputs. A path p is de�ned as a sequence of alternating
vertices and edges, such that each successive vertex is
a fanout of the previous vertex and the intermediate
edge is directed from the former to the later. A path
can start and end at vertices only. The existence of
a path from vertex u to vertex v is represented as
u ; v. The weight of a path w(p) is the sum of the
edge weights for the path. The delay of a path d(p) is
the sum of the delays of the vertices on the path. A
0-weight path p, is a path with w(p) = 0. The clock
period c is determined by the following equation:

c = max
pjw(p)=0

fd(p)g (2)

We brie
y summarize the results obtained by Leis-
erson and Saxe [5]. An important concept to the re-
timing algorithms is the de�nition of the W matrix
and the D matrix. They are de�ned as:

W (u; v) = min
p:u;v

fw(p)g; (3)

D(u; v) = max
p:u;v and w(p)=W (u;v)

fd(p)g: (4)

The matrices are de�ned for all pairs of vertices (u; v)
such that v is reachable from u by a sequence of edges
and the path does not include the host vertex. W (u; v)
determines the minimum latency, in clock cycles, for
data
owing from u to v and D(u; v) gives the maxi-
mum delay from u to v for the minimum latency.

3.1 Minimum period retiming
The objective is to obtain a circuit with the min-

imum clock period without any consideration to the
area penalty due to an increase in the number of regis-
ters. The retiming constraints for a target clock cycle
c translate into 2 sets of inequalities:

1. Non-negativity of edge-weights after retiming re-
quires wr(euv) � 0, euv 2 E, i.e.

r(v) � r(u) � �w(euv); 8euv 2 E: (5)

2. Correct clocking at a clock period c requires that
all paths u ; v with D(u; v) > c, after retiming
have at least one register on it, i.e.

r(v)�r(u) � �W (u; v)+1; 8u; v;D(u; v) > c:
(6)

The sets of constraints from Equations 5 and 6 can
be solved using the Bellman-Ford relaxation technique
developed for the \shortest path on a graph" prob-
lem [3]. Leiserson and Saxe introduce 3 algorithms
to solve the min-period retiming problem; we describe
the most e�cient one known as the relaxation method.

Let �(v) denote the largest delay seen along any com-
binational path that terminates at the output of v.

�(v) = d(v) + max
u2FI(v) and w(euv)=0

f�(u)g: (7)

It can be shown that the clock period c is given by the
expression

c = max
v2V

f�(v)g: (8)

The relaxation algorithm has the following O(jV jjEj)
subroutine which determines if a retiming exists for a
given clock period c. We refer the reader to [9] for a
proof of correctness of this algorithm.

For each v 2 V set r(v) = 0.
For jV j � 1 times f

Compute retimed edge weights (Equation 1).

Compute �(v), for all v 2 V (Equation 7).

For all v 2 V , such that �(v) > c, do r(v) + +.

g

Compute retimed edge weights (Equation 1).

If maxv2V f�(v)g > c, then no feasible retiming;

else the current r yields a legal retiming.

3.2 Constrained Min-Area Retiming

Under the assumption that all registers have the
same area, the min-area retiming problem reduces to
seeking a solution with the minimum number of reg-
isters. Constraints for retiming to be valid are the
same as in Equations 5 and 6. The formulation for
constrained min-area retiming is:

min
P

v2V (jFI(v)j � jFO(v)j)r(v)

r(v) � r(u) � �w(euv) 8euv 2 E

r(v) � r(u) � �W (u; v) + 1 8D(u; v) > c

These are linear constraints and the objective func-
tion is also a linear function of the retiming variables,
so linear programming techniques can be used to solve
this problem. Leiserson et al. [5] indicate that the dual
of this problem is an instance of minimum cost circu-
lation on a graph for which e�cient algorithms exist.
They also indicate that an initial feasible solution can
be obtained directly from the problem.

We will not review the construction of the mini-
mum cost circulation problem (details may be found
in [9]), except to note that the retiming graph is aug-
mented with dummy vertices, dummy edges, and ca-
pacity edges to transform it to the graph on which
the minimum cost circulation is solved. The edges in
this graph that originate due to the edge weights are
termed \circuit" edges as there is one edge for every
edge in the original circuit. The edges in this graph
that come from the clock period constraints are called
\period" edges. Note that the number of period edges
can be very large and destroy the sparsity of the graph;
we will deal with this issue in the next section.

4 Implementation issues
Our goal is to handle circuits with up to 10,000

combinational cells. However, we expect circuit
graphs to be sparse, i.e. jEj = kjV j for small k. For
min-period retiming, the bottleneck is the requirement
that we iterate O(jV j) times to prove that there is no
feasible retiming. For constrained min-area retiming,
the bottleneck is that even when the graphs are sparse,
the W and D matrices are dense. Further, the num-
ber of clock period edges which are implied by the
retiming equations indicate that the retiming graph
augmented with clock period edges will be dense. We
demonstrate in this section how to solve each of these
problems.

4.1 Minimum period retiming
Let us focus on the relaxation algorithm to deter-

mine if c is a feasible clock period. It is empirically
observed that if c is feasible then the retiming labels
converge rapidly before completing jV j � 1 iterations.
On the other hand, one cannot determine that a clock
period c is infeasible until all jV j � 1 iterations have
been exhausted and the retiming labels have failed to
converge. Thus any hope of speeding up min-period
retiming must focus on detecting if a clock period is
infeasible before completing the requisite jV j � 1 iter-
ations if possible. This is the principal motivation for
this section.

The Bellman-Ford algorithm solves the following
problem. Given a directed graph G(V;E) with arbi-
trary edge-weights f : E ! R (R is the set of reals),
and vertices with an initial distance marked on them,
�nd the shortest distance (measured by sum of edge
weights) to every vertex that respects the initial dis-
tance marking. The algorithm can be described as
follows (where r(v) now denotes the distance marking
to a vertex v):

For each v 2 V , r(v) =

�
known original distance,

+1 otherwise.

Loop jV j � 1 times f

For each edge euv f

r(v) = minu2FI(v)(r(v); r(u) + f(euv))

g

g

For each edge euv f

If r(v) < r(u) + f(euv) then FAIL (negative cycle)

g

The graph is permitted to have negative edge
weights and hence can have negative cycles. The pres-
ence of a negative cycle makes the shortest distance to
any vertex on that cycle unde�ned. In the presence of
a negative cycle, Bellman-Ford must report failure to
converge.

We can abort the iteration at any point if we dis-
cover a negative cycle in the graph. Let us call such a
negative cycle a certi�cate of infeasibility. We present
a technique inspired by Szymanski who used a simi-
lar approach to compute lower bounds for clock peri-
ods [10]. The predecessor heuristic maintains a pre-
decessor vertex pointer denoted by pred() with each

vertex. The Bellman-Ford algorithm starts with all
pred() pointers set to be empty. Every time vertex v
has its distance decreased, the fanin node that caused
the change is stored as pred(v); i.e., in the Bellman-
Ford algorithm, if during the relaxation of edge euv,
we discover that r(v) > r(u) + f(euv), then we set
pred(v) = u. Thus at every instant of the iteration,
we have a sub-graph of the original graph maintained
by the predecessor edges with jV j edges and jV j ver-
tices.

Each vertex v has a predecessor graph associated
with it, de�ned by repeated traversing of the pred()
pointers, starting at v and ending when either the pre-
decessor is empty or a cycle is found. At every itera-
tion the predecessor graphs of all vertices are examined
to see if a negative cycle exists. If v is marked, its pre-
decessor graph has been examined during an earlier
traversal. A cycle is detected by checking if a vertex
has already been visited during the walk started from
the current v. The traversal is stopped whenever a cy-
cle is detected, a marked vertex is visited, or the end of
the predecessor chain has been reached. The complex-
ity of traversal algorithm is O(jV j) and is dominated
by the O(jEj) relaxation of the edges. The traversal
mechanism is outlined below:

For each v 2 V , mark(v) = 0
For each v 2 V , cycle(v) = 0

cycle count = 0

For each v 2 V f

if (!mark(v)) f

cycle count++

u = v

while(u != NIL && !mark(u)) f

if (cycle(u) == cycle count) declare

cycle exists

mark(u) = 1

cycle(u) = cycle count

u = pred(u)

g

g

g

Let us now extend this analogy to the min-period
retiming problem. When �(v) is computed for each
vertex v, we store with v, a vertex u, such that there
exists a 0-weight path u ; v and �(v) = d(p). If
�(v) > c, then we set pred(v) = u. Consider a cy-
cle in the predecessor sub-graph that includes vertices
u1; : : : ; uk = u0, i.e. pred(ui) = ui�1, i = 1; : : : ; k.
Let pi�1;i, denote the path ui�1 ; ui which is used
in the computation of �(ui). During the iterations,
retiming labels increase only by 1. Recall that before
the labels are updated, w(pi�1;i) = 0 . After update,

wr(pi�1;i) = r(ui) � r(ui�1) +w(pi�1;i)

= r(ui) � r(ui�1)

� 1:

name # gates CPU (in sec.) clock period
original new before after

s1494 386 96.2 2.1 17.4 17.4
s1423 384 101.0 3.9 36.6 31.4
s5378 887 527.6 13.7 11.9 10.4
s9234 1107 159.8 13.8 19.9 12.9
s13207 1854 1973.2 28.8 23.2 21.4
s15850 2240 2856.1 37.4 40.1 22.9
s38584 7882 39025.9 306.2 35.5 34.1

Table 1: Minimum period retiming.

In addition d(pi�1;i) > c. Thus for the cycle

X
i=1;:::k

d(pi�1;i) > kc

X
i=1;:::k

d(pi�1;i) > c
X

i=1;:::;k

wr(pi�1;i):

The term on the left hand side represents the total
delay encountered as a signal traverses the cycle. The
term on the right hand side is the total time available
for the signal to propagate under the current clock pe-
riod. Retiming cannot change the number of registers
in a cycle of a circuit (see Lemma 1 in [5]). This im-
plies that for a clock period c, this cycle will prevent
any feasible retiming. Retiming can only exist for a
clock period given by the inequality,

c
0

�

P
i=1;:::;k d(pi�1;i)P
i=1;:::;k w(pi�1;i)

: (9)

The implementation of this technique results in dra-
matic speed-up in execution time. Not only can in-
feasibility be detected early, but the cycle that caused
infeasibility provides a new lower bound for the clock
period. This can be used to bias the binary search ef-
fectively. The memory overhead consists of a pointer
per vertex and an extra �eld used for detecting the
cycle.

4.1.1 Experimental results

All experiments are run on a Solbourne Series 5e. We
select some circuits from the ISCAS89 suite chosen so
that they re
ect the variation in size of this suite.

We compare an implementation of the retiming al-
gorithm without predecessor pointers to an implemen-
tation that uses it in Table 1. The two implementa-
tions are identical except for the part that traverses
the predecessor pointers. We see a substantial reduc-
tion in execution time for the predecessor heuristic.
Using the cycle obtained as a certi�cate of infeasibil-
ity to update the lower bound on the clock period is
useful, as the bias eliminates feasibility checks at clock
periods less than the bound and are guaranteed to be
infeasible.

4.2 Minimum area retiming
Minimum area retiming poses 2 major hurdles;

1. computing the W and D matrices, and

2. implementing minimum cost circulation.

4.2.1 Computing W and D matrices

We shall not describe the method proposed by Leiser-
son et al. [5] to compute the W and D matrices, ex-
cept to say that an algorithm with O(jV j3) time and

O(jV j2) memory is proposed. The W and D matrices
are required to add the clock period edges which in
turn are required to solve the minimum cost circula-
tion problem using cost scaling techniques. Further,
all of the clock period edges must be added prior to
solving the circulation problem.

The number of clock period edges greatly increases
the density of the original graph. However, only a
small subset of the period edges implied by Equation 6
are required for the computation; the rest form re-
dundant constraints. The original algorithm has two
drawbacks: the O(jV j2) memory and the inability to
prune the clock period edges. We propose an algo-
rithm which has a worse complexity than the original
formulation, but whose memory is O(jV j) and is able
to generate a smaller set of constraints for sparse cir-
cuit graphs.

Equation 6 describes the conditions under which
clock period edges need to be added to the retiming
graph. In the original formulation of constrained min-
area retiming, clock period edges are required between
all vertices u and v such that

u; v and D(u; v) > c: (10)

To see why a smaller set of clock period edges is suf-
�cient for constrained min-area retiming, note that if

r(v) � r(u) � �W (u; v) + 1 (11)

is true for a sub-path of a path, then it is also true
for the entire path. Hence a period edge need only be
added to vertex v, reachable from w, such that:

D(w; v) > c and D(w; u) � c 8u lying on w ; FI(v)
(12)

Consider a vertex w. We are interested in the pe-
riod edges that have their source as w. To do this, it is
necessary to examine only a single row of theW andD
matrices (i.e., the row W (w; :) and the row D(w; :)).
The set of vertices can be partitioned into disjoint sets
depending on the value of W (w; :) as shown in Fig-
ure 4. The directed edges in Figure 4 represent paths
to other vertices from w. The dashed curve represents
the set of vertices v that meet the condition of Equa-
tion 12. We can ignore any period edges between w
and the fanouts of such vertices. Thus only some of the
entries of W (w; :) and D(w; :) need to be computed.
The elements of W (w; :) can be computed using Djik-
stra's algorithm since the edge weights w(euv) � 0,

W(w, .) = 1 set

W(w, .) = 2 set

w

11

2

2

0

W(w, .) = 0 set

.

.

.

Figure 4: Disjoint partitions of the vertices

8euv 2 E. The computation of D(w; :) is complicated
due to 2 facts; the dependence onW (w; :) and the non-
monotonicity of the gate delays (akin to �nding the
longest path in a graph with positive edge weights).

We now describe how to generate a single row of
the W and D matrices for a single vertex w, and how
to �nd only the set of vertices which satisfy Equa-
tion 12. An ordered pair (w(euv);�d(v)) is associated
with each edge euv and is used to compute the short-
est distance from w. Comparisons are done in lexico-
graphical order. Thus for a path w ; v, we obtain the
distance as an ordered pair denoted by (av; bv). Upon
termination of the algorithm this pair is the same as
(W (w; v); D(w; v)). The algorithm to compute period
edges consists of applying the following mix of Dijk-
stra's algorithm and Bellman-Ford algorithm. The al-
gorithm maintains a heap for each distinct value of av
(the heap is indexed by this value since there could be
several such heaps). Since w(euv) � 0, we are guaran-
teed that the �rst component of the distance measure
cannot decrease for all vertices in the heap with the
lowest index. To compute bv for all v in the smallest
indexed heap, the Bellman-Ford algorithm is used.

c = target clock period

Sk = the kth heap

8w 2 V f

w = current vertex

8v 2 V , av = 0 and bv = +1

S0 = fwg, aw = d(w) and bw = 0

k = current register weight

do f

k = minfpjSp 6= ;g

u = pop min (Sk)

if (bu > c) f

add period edge from w to u

with weight au � 1
g else f

8v 2 FO(u) f

if ((av; bv) > (au +w(euv); bu + d(v))) f

heap insert(Sau+w(euv), v)

g

g

g

g while (9pjSp 6= ;)

g

Dijkstra's algorithm for shortest paths on a graph
requires that the distance measure be monotonic. The
distance measure (as de�ned by the lexicographical
order) of a vertex v is a function of the edge-weights
and the vertex delays. Edge weights are monotonic,
since w(e) � 0, 8e 2 E and we are interested in dis-
tances with minimum number of edge-weights. How-
ever, the vertex delays are non-monotonic; i.e. after
popping u using pop min(), we cannot conclude that
bu has attained the value ofD(w; u). To handle this, a
Bellman-Ford relaxation is carried out for each value
of k (the minimum index amongst the set of heaps).

Consider the analysis for a given w. Let the index
k increase from 0 to K. Let Vk be the set of ver-
tices for which W (w; v) = k. Let Ek be the set of
edges with 0 edge weights with either sources or sinks
in Vk. Due to the non-monotonicity of vertex delays,
we are forced to execute a Bellman-Ford set of relax-
ations for each k. Hence for a given k, there will be
at most jVkjjEkj heap queries, each of which requires
log jVkj time; yielding a complexity of jVkjjEkj log jVkj.
Since we are guaranteed that every cycle has at least
one register, distances cannot be increased arbitrar-
ily by traversing cycles. Thus the algorithm requires
O(
P

k:Vk 6=;
jVkjjEkj log jVkj). Note that the vertex sets

Vk (and edge sets Ek) are disjoint and hence we can

bound this by O(jV jjEj log jV j), where V and E are
the maximum sized sets amongst Vk and Ek (among
possible values of k). Since this is repeated for each
vertex the worst case bound is O(jV j2jEj log jV j) |
considerably worse than a Floyd-Warshall (O(jV j3)).
There are two bene�ts to using this algorithm. First
the memory overhead is a set of heaps whose total size
can be kept to O(jV j) with some book-keeping. Sec-
ondly, the execution time rarely displays the behavior
predicted by worst case analysis. On sparse graphs,
the term

P
k:Vk 6=;

jVkj, rarely reaches its upper bound

of jV j because, not all vertices are reachable from w,
and the pruning of distance propagation once the de-
lay of a path becomes larger than c e�ectively restricts
the set of vertices examined. This pruning strategy
speeds up the convergence of the algorithm.

In practice, the term jEj log jV j is much smaller
than jEj log jV j. The �nal proof of this algorithm is
in the implementation. For some of the large circuits
used in the experiments, it is almost impossible to �n-
ish computing the W and D matrices in a reasonable
amount of time using a Floyd-Warshall implementa-
tion. With the above algorithm, the execution time is

comparable to minimumcost circulation computation.

4.2.2 Minimum cost circulation using cost-
scaling

A disadvantage of cost-scaling techniques is that the
graph cannot change during the computations; conse-
quently all the period edges must be determined before
starting the cost-scaling algorithm. Our implementa-
tion is based on the generalized cost-scaling framework
of Goldberg and Tarjan [1] and has a complexity of
O(jV jjEj log jV j log(jV jC)) where C is the largest cost
in the graph i.e. one more than the number of reg-
isters in the circuit. If jV j is 10,000, and we restrict
ourselves to 32-bit integer arithmetic, C must be less
than 200; 000; since C is the number of registers in the
circuit, this is a reasonable assumption. The algorithm
operates by maintaining an error from optimality and
successively halving it. At the start this error is jV jC.
However if an initial
ow is known, the value of C
can be reduced to be the minimum value that has to
be added to the cost of each edge so that the graph
does not have a negative cost cycle. This fact reduces
the value of C by an order of magnitude. An initial

ow for the circulation graph can be constructed eas-
ily. For most circuits C turns out to be less than 10,
e�ectively making the algorithm independent of C.

As an aside, one has to be careful with the edge
capacities. In general these are real numbers and can
cause convergence problems. For sake of stability, the
edge capacities are scaled to integers using a factor
which is a function of the least common multiple of
the number of fanouts of vertices in the graph.

4.2.3 Experimental results

The experimental setting for min-area retiming con-
sists of the following steps. A min-period retiming is
carried out to determine a bound on the best achiev-
able clock period. The number of registers in the min-
period solution is examined. A min-area retiming is
performed on this circuit with the clock period set to
the best achievable clock period. This yields an area
optimal solution without any sacri�ce in performance.

The results for constrained min-area retiming are
compared to the results for min-period retiming in
Table 2. The �rst set of circuits consists of the IS-
CAS circuits used for min-period retiming. The last
3 circuits (the second set) are multipliers pipelined by
placing three resisters in series at the outputs in each
case (see Section 5 for details). As can be seen, the
min-period solution can be very far away from the area
optimal solution at the same clock period.

5 Tracing area-delay curves
One motivation for constrained min-area retiming

algorithms is to examine the area-delay trade-o�. This
section presents a set of experiments on two multipli-
ers: an 8x8 multiplier with 16 outputs and a 16x16
multiplier with 32 outputs. We choose multipliers be-
cause they common circuits found in many data-paths
and signal processing designs. Each multiplier has 3
registers in series at each output. The area and delay

name # gates # registers CPU
min min-area at for

period min-period min-area
s1494 386 7 7 58
s1423 384 81 78 84
s5378 887 296 169 300
s9234 1107 328 241 641
s13207 1854 548 481 2467
s15850 2240 655 529 4668
s38584 7882 1433 1429 139328
8x8 542 179 102 38
16x16 3030 710 183 2459
32x32 �13k 2763 403 67155

Table 2: Minimum area retiming.

name # gates regi- clock period
sters original min-period

8x8 542 48 27.85 7.53
16x16 3030 96 58.82 15.92

Table 3: Properties of multipliers

characteristics for the initial circuits are summarized
in Table 3 (columns 2-4). The clock period is the
maximumdelay from an input to an output, since the
registers are all placed at the outputs. As the latency
of each output is 3, we expect that min-period retim-
ing will partition the circuit into 4 regions that have
almost the same delay. Thus the value of the clock pe-
riod at a min-period solution is expected to be roughly
a fourth of the original clock period (column 5).

The next experiment concerns the area delay trade-
o� that is possible by changing the target clock period.
The lower bound on the clock period is computed us-
ing the min-period retiming algorithm. The original
clock period is an upper bound. 4 equi-distant points
are picked between the upper and lower bound, as a
target clock period for each circuit. The minimum
number of registers required for each clock period is
computed (in Table 4). An e�ective area-delay trade-
o� is seen. The CPU variation with the clock period
is also shown in Table 4. This variation can be as-
cribed to the changing number of edges in the graph,
which varies signi�cantly as the clock period is var-
ied. This variation is a response to the di�erent target
clock periods. For a given circuit, as the target clock
is varied, the number of period edges varies consider-
ably (see Table 5). At clock periods close to the lower
bound, the period edges dominate all the other edges
in E. The number of period edges steadily increases as
the target clock period is lowered and then decreases.
This can be explained as follows. As the clock period
decreases, the number of paths that need to be con-
strained increases. This is the general trend. Recall
the pruning strategy used in the computation of pe-
riod edges that ignores any path that extends from

name # registers at clock = Tmin + ktstep
k=0 k=1 k=2 k=3 k=4 k=5

8x8 102 69 63 54 52 48
16x16 183 139 126 117 104 96

CPU time at clock = Tmin + ktstep
8x8 33.8 31.0 31.4 37.9 36 36.1
16x16 2459 4264 2325 2860 3397 2840

Table 4: Variation versus clock period.

name jV j jEj=jV j at clock = Tmin + ktstep
k=0 k=1 k=2 k=3 k=4 k=5

8x8 799 8.6 9.7 6.7 4.1 3.3 3.1

16x16 3944 25.5 38.5 26.5 7.3 3.7 3.2

Table 5: Retiming graph density.

a sub-path with delay greater than the clock period.
This has little e�ect at large clock periods, since most
reachable vertices have delays less than the clock pe-
riod. But when the clock period decreases, this strat-
egy results in a decrease of period edges. Note that in
all the cases, the graph remains sparse even after the
period edges are added.

6 Conclusions
The practicality of constrained min-area retiming

(min-area retiming subject to a target clock period)
for large circuits has been demonstrated. The issues
that need to be addressed for a successful implementa-
tion require careful analysis and a good understanding
of software techniques and computer algorithms. We
hope to have high-lighted some of these issues in this
technical discussion.

The predecessor technique to detect infeasibility of
a clock period has been demonstrated to be very ef-
fective for min-period retiming.

Two key contributions are made for the constrained
min-area retiming problem. First, we have shown that
�nding essential period edges can be done e�ciently.
Secondly, using the information provided by an ini-
tial
ow is critical for convergence of the cost-scaling
algorithm.

The area-delay trade-o� demonstrates a big win
for the constrained min-area algorithm over the min-
period algorithm, although this is hardly surprising.
Although both algorithms have been known for sev-
eral years, the experimental evidence has been lacking,
especially for large circuits. The min-area algorithm
enables a designer to control the area-delay trade-o�
of retiming in a precise manner.

Finally, we would like to dispel the notion that the
existence of a polynomial-time algorithm implies that
the techniques can be applied to large circuits; we
must have near-linear complexity to handle entire cir-
cuits in one piece.

Acknowledgments
We thank Albert Wang and Don MacMillen for

stimulating several discussions. This work was spon-
sored by the ARPA Application Speci�c Electronic
Modules (ASEM) Program under the Manufactur-
ing Technology Directorate of Wright Laboratory, Air
Force Material Command (ASC).

References
[1] A. Goldberg, E. Tardos, and R. E. Tarjan. Network

ow Algorithms. Technical report, Department of

Computer Science, 1989.

[2] A. Ishii, C. E. Leiserson, and M. C. Papaefthymiou.

Optimizing Two-Phase Level-Clocked Circuitry. In
Advanced Research in VLSI, 1992.

[3] E. L. Lawler. Combinatorial Optimization: networks
and Matroids. Holt, Rinehart and Winston, 1976.

[4] C. E. Leiserson and J. B. Saxe. Optimizing Syn-

chronous Systems. In Journal of VLSI and Computer

Systems, pages 41{67, 1983.

[5] C. E. Leiserson and J. B. Saxe. Retiming Synchronous

Circuitry. In Algorithmica, 1991. 6(1).

[6] B. Lockyear and C. Ebeling. Optimal Retiming of

Multi-Phase Level-Clocked Circuits. In Advanced Re-
search in VLSI, 1992.

[7] A. Munzner and G. Hemme. Converting Combina-
tional Circuits into Pipelined Data Path. In Proceed-

ings of the International Conference on Computer-

Aided Design, 1991.

[8] M. C. Papaefthymiou and K. H. Randall. TIM:

A Timing Package for Two-phase Level-clocked Cir-
cuitry. In Proceedings of the Design Automation Con-

ference. IEEE/ACM, 1993.

[9] J. B. Saxe. Decomposable Searching Problems and

Circuit Optimizations by retiming: Two Studies in

General Transfromations of Computational Struc-

tures. PhD thesis, Carnegie-Mellon University, 1985.

[10] T. G. Szymanski. Computing Optimal Clock Sched-

ules. In Proceedings of the Design Automation Con-

ference, 1992.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

