Comprehensive Lower Bound Estimation from Behavioral Descriptions*

Seong Y. Ohmf, Fadi J. Kurdahi', and Nikil Dutt?

T Department of Electrical & Computer Engineering
* Department of Information & Computer Science
University of California, Irvine, CA 92717

Abstract

In this paper, we present a comprehensive technique for
lower bound estimation (LBE) of resources from behavioral
descriptions. Previous work has focused on LBE techniques
that use very simplecost model swhich primarilyfocusonthe
functional unit resources. Our cost model accounts for stor-
ageresourcesinadditionto functional resources. Our timing
model uses a finer granularity that permits the modeling of
functional unit, register and interconnect delays. We tested
our LBE technique for both functional unit and storage re-
quirements on several high-level synthesis benchmarks and
observed near-optimal results.

1 Introduction

Inorder for highlevel designtaskssuch asHighLevel Syn-
thesis (HLS) to produce reliableresults, such tasks must rely
on redlistic and accurate models of hardware components.
Without such realistic models, designs tasks essentially pro-
ceed in a blind fashion, which could result in designs not
satisfying cost and/or timing constraints. Such an approach
would result in unnecessary iterations through the design
cycle and would increase the design turn around time and
potentialy, would decrease the competitiveness of the de-
sign method itself.

Much of the earlier design prediction work assumed the
existence of netlist-based design descriptions as inputs, and
hence produced netlist-based estimators [1]. While such
tools provide an excellent feedback to the designer on the
design quality, they can only be used after the design data
path is synthesized, hence they provide back-end feedback.
However, if the designer starts with no feedback at al, or
with incorrect feedback, then there is no guarantee that the
design decisions initially made would indeed be the correct
ones which would produce the desired outcome. Thusit is

*This work was supported by a MICRO grant from the Univer-
sity of California and Compass Design Automation Inc., and by a
Fellowship from the Korea Organization of Science and Engineer-
ing Foundation.

Permissionto copy without fee al or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and noticeis given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires afee and/or specific permission.

very important to provide the designer with front-end feed-
back to provideinitial guidance in making design decisions.
Specifically, we need to have the capability of bounding the
design space prior to starting the HL S tasks.

In order to achieve thisgoal, we have studied the problem
of providing lower bound estimates on resources given a
control and data flow graph description of the design and a
performance goal expressed as clock cycle constraint. The
main features of our approach are the following:

1. It employsacomprehensive cost model which includes
a redistic measure of both functiona and storage re-
sources. Our studies of state-of-the-art libraries of RT
level components indicate that register cost can easily
surpassthoseof “large” Functional Units(FUs), such as
adders. Table 1 shows such an example from the VTI
0.8 cdll library.

2. It is based on a unified paradigm which anayzes life-
times of resources (be it FUs or registers) to determine
lower bounds on these resources. This allows the user
to analyze the tradeoffs of resource allocation.

3. Itassumesamoreaccurate timingmode whichincludes
the delays of FUs, registers, and interconnects.

We have devel oped efficient algorithms and heuristics to
support thismodel. Our initial experimentson standard HLS
benchmarks [2] indicate that this modd is quite accurate.
Our model is more comprehensive than previous ones, and
can be further expanded to account for additiona physical
design effects such as interconnect cost. Finally, this esti-
mation scheme naturally lendsitself to encapsulation within

Table 1: Areaand delay figuresfor adders, multipliers, and
registers from the VTI 0.8u data path library.

| Functional Unit | Area(u2) | Delay (ns) | Library Name |

Adder 40,000 150 DPADDOOIH (16 bit)
Multiplier 58,000 244 DPMLTOLIH (16 bit)
Regisier 41,440 217 DPDFFOB01 (16 bit)

00 1994 ACM 0-89791-690-5/94/0011/0182 $3.50

system level synthesis frameworks by providing early and
accurate estimates of design quaity when large behavioral
descriptions are partitioned onto severa chips, without the
need of running HL S toolsto obtain full design netlists.

2 Previous Wor k

Thereis some recent work for estimating lower boundson
area cost and tota control steps (or csteps) [3, 4, 5, 6, 7, 8,
9, 10, 11, 12]. All of these works (with the exception of [7],
[1Q], [11], and [12]) are mainly concerned with FUs in their
area cost models. The work in [3] proposes a mathematical
model for predicting the area-delay curve. [4] proposes an
ILP formulation for lower bound estimation of performance
given resource constraints. [5] addresses lower bounds on
time and FU cost for functional pipelined data flow graph,
but not register cost. [6] also addresses lower bounds on
time and FU cost. It uses these two estimation agorithms
to predict system level area-delay curve. However, it does
not feature register cost estimation, either. An extension
of the work in [3] is described in [7] and addresses lower
bounds on time and area cost including interconnect cost,
but not register cost. [8] presents a formal approach which
seems to estimate FU cost better than [4] and [7] in some
benchmarks. It considers theinterdependency of the bounds
of different FU types, but not registers in estimation. [9]
findsthe lower bound on FU cost and utilizesit in finding an
optimal scheduling result effectively. [10] uses an ILP for-
mulation in cal culating lower bounds on the number of FUS,
registers, and busesseparately. However, it does not takeinto
account the dependencies among the number of resources of
each type in estimating the lower bounds, and furthermore
the solution can be computationally expensive. [11] presents
an integrated area-delay prediction model which includes
FU, register, and interconect costs for use in system level
partitioning. Finally, [12] considers a generalized memory
hierarchy scheme for a hardware/software co-design model
and predictsthe sizes of the various memory componentsto
achieve a given performance goal.

3 TheArea Cost Estimation Algorithm

Figure 1 shows the overdl structure of the area cost esti-
mation algorithm L BE. In this paper, ASAP;(ALAP;) de-
notes the earliest (latest) cstep in which operation O; can be
started without violating both timing constraint and prece-
dence relations between operations, and ASAFP/(ALAP/)
denotesthelast cstep where operation O; is completed when
it isscheduled in ASAP; (ALAP;) cstep. In determining
these values for each operation, we take into account the
pre-defined transfer delay including the delays of registers
and interconnects along with the delay of FU itself, thus pro-
viding a more sophisticated timing model. In this paper, the
cstep interval [ASAPF;, ALAP;] iscalled the time frame of
operation O;. Weestimatethe FU cost and register cost using

LBE()

parseinput DFG;

read delay and areainformation;

read timing constraints including clock period and
maximum delay;

total cstep number = | (maximum delay) / (clock period) |;

for each operation O; in input DFG,
determine ASAP;, ALAP;, ASAP] ALAP};

Est_Area Cost = Estimate_FU_Cost() + Estimate_Reg_Cost();

return(Est_Area_Cost);

}

Figure 1: Overal structure of the area cost estimation algo-
rithm.

these time frames.

In this paper, we assume that the register cost is a sec-
ondary cost with respect to FU cost. That is, we assume that
the FU cost estimation is performed before the register cost
estimation as in the traditional methods, where scheduling
isfirst performed to minimize the FU cost and subsequently
values are assigned to registers so as to minimize register
cost. In thissense, estimating the number of registers does
not necessarily correspond to an absolute lower bound, but
to a conditional lower bound on register cost subject to the
estimated FU cost. Our scheme, however, isflexible to a-
low modification of the estimation order between FUs and
registers.

Figure 2 shows an input DFG of the differential equation
example which solves the 2nd order differentia eguation
y” + bxy + 3y = 0, and Figure 3 shows the initia time
frames of the operations when the maximum delay is 80 ns
and theclock periodis20 ns. Inthisexample, we assumethat
the pre-defined transfer delay is 4.5 ns, and that additions,
comparisons, and subtractionsare executed by ALUswith 15
ns delay and multiplications by multiplierswith 15 ns del ay.

4 Estimating a Lower Bound on FU Cost
41 Basicidea

The basicideabehind the FU cost estimation scheme stems
fromthepigeonholeprinciple: if V operationsare scheduled
over K csteps, then it is guaranteed that at least [N/ K]
operations are scheduled into some cstep among those K
csteps. Thiscan bestated dightly differently if wearetalking
about acstepinterval 7 = [X, Y] whoselengthisY — X +1.
In this case, if N operations of type " are scheduled in the
interval 7, thenatleast [N/(Y — X +1)] FUsof typeT are
required. Now given a particular operation O;, then clearly,
O; isguaranteed to be scheduled in 7 if [ASAP;, ALAP;]
C Z. For each interval 7, we find the number of operations

ctrl x(xl)

uul) yiyl)

- . Value to be stored in registers

Figure 2: A DFG of the 2nd order differentia equation ex-
ample.

cstep
1 *1 x *3| *a +5
2 *6 *7 +8 <9
3 -10
4 -11

Figure 3: Theinitial time frames of the operations.

of type 1" guaranteed to be scheduled during that interval,
and estimate the lower bound on the number of FUs of type
T. After that, we enumerate al the cstep intervals 7 C
[1,t0tal estep number] to get a tighter lower bound. The
maximum such number over all enumerated intervalsyields
an estimated lower bound on the FU cost of typeT'.

For example, the four multiplicationsO1, O, O3, and Og
in Figure 3 are guaranteed to be executed in cstep interval
[1, 2], sincetheir timeframes are fully included in thisinter-
val. So [4/2] = 2 isestimated as a candidate of the lower
bound on the number of multipliersfor thisinterval. Toget a
tighter lower bound, these candidates are estimated over all
the cstep intervals and the maximum oneis selected. In this
case, max(0,1,2) = 2 isfinaly chosen as the lower bound
on the number of multipliers. In a similar way, the lower
bound on ALU count is estimated as 2.

The above basic idea is generalized to support multi-
cycling, chaining, and functiona pipelining of operations.
Figure 4 shows an extended version of the FU cost esti-
mation algorithm. In this agorithm, «(T") denotes a set
of operations of type 7', and P , (Q; .) is the intersection
of interval Z and the earliest (latest) cstep interval during
which O; may be performed by an FU of type 7. O; is
guaranteed to occupy an FU for as many csteps as L; . at
leastintheinterval 7. Therefore, > o, (1) Li - represents
the total number of FU dotsrequired in theinterva 7, and

[(>_o0,ewry Li,=)/|Z]] yieldsalower bound on the number
of FUsof type T" estimated for interval Z. We enumerate all
the cstep intervals 7 to get atighter lower bound, and then
select the maximum one as the lower bound on the number
of FU of typeT'.

As for the pipelined operations, we only have to count
the first stage of them in estimating the lower bound on
the number of the pipelined FUs [13]. Therefore, for each
pipelined operation O;, we assumethat ASAP! and ALAP!
areequa to ASAPF; and AL A P; respectively, and then apply
the same procedure above.

An estimated lower bound on the total FU cost is derived
by applying the above procedure for al the types.

Estimate_ FU_Cost()

for each FU type T,
¥(T') = set of operations of type T';
for eachcstepinterval Z C [1, total cstep number],
for each operation O; in (1),
P, =[ASAP;, ASAP/In Z;
Qi,. = [ALAP,, ALAP]In Z;
Li,z = min(|Pi,z|, |Qz,z|)1
LBr = maz- (|— (ZO,Gw(T) Li,z) / |Z| -|)1
FEst_FU_Cost = ZT(LBT x Arear);
update F'st_FU _Cost;
return(E'st_FU _Cost);

}

Figure 4: FU cost estimation agorithm.

4.2 Refining the lower bounds

Once the lower bounds on FU counts are estimated using
the above procedure, we can usethoseboundsasaninitial so-
[utionwhichisfurther refined to obtain tighter |ower bounds.
First, each FU is assumed to be used as many as the initial
lower bound on the number of FUs of that particular type.
This constraint may restrict the time frames of the operations
to be schedul ed.

For example, theinitid timeframeof O3 is[1, 2] asshown
in Figure3. However, if we assume that the number of multi-
pliersavailableisequa tothelower bound on the number of
multipliers(= 2), O3 cannot be scheduled into cstep 1, since
at least 2 other multiplicationsO; and O, are guaranteed to
be scheduled into cstep 1. Therefore, the time frame of O5
shrinksto [2,2]. In asimilar way, we can adjust the ALAP
times of the operations. More sophisticated methods, which
restrict the time frames effectively under the resource con-
gtraints, can be found in [13] and [14]. Figure 5 shows the
time frames of the operations modified by this update proce-
dure. Inthisexample, timeframes of operationsOs, Oy, Os,
O~, Og, and Oy are modified compared with thosein Figure
3.

If thereis any adjustment in the time frames, we estimate
the lower bounds again using the modified time frames to

get tighter lower bounds. In thisexample, thereisno update
in the estimated FU cost because the initial lower bound
estimationisexactly thesameastheoptimal one. Thisupdate
procedure, however, is particularly effective in estimating a
better register cost when it isasecondary cost with respect to
FU cost asinthetraditional design methods, since modifying
the time frames of operations also affects the lifetimes of
values between operations.

cstep
1 *1 *2 +5
2 *6 *3 <9
3 -10 *7 *4
4 -11 +8

Figure5: The adjusted time frames of the operations.

The time complexity in estimating the initia FU cost is
O(N - C?) and that in refining the estimation is roughly
O(N - (N + E)) [13], where N and E represent the number
of operations and the number of edges in the given DFG
respectively, and C' thetotal number of csteps. Thusthetotal
time complexity of thisagorithmisO(N - (C? + N + E)).

5 Register Cost Estimation
5.1 Basictechnique

The main difficulty in estimating the register cost arises
fromthefact that no prior schedulingisassumed. Thismeans
that the lifetimes of variables are not known a priori, since
theselifetimesare only known once scheduling is performed.
Therefore, the estimation approach should consider all the
possiblelifetimes of al the variables.

Figure 6 shows our register cost estimation algorithm. In
thisa gorithm, theweight of avariableV; ;, denoted by W ;,
representstheminimumsize of lifetimesof thevariable. That
is, oncevariable V; ; becomes active, it should remain active
for atleast I; ; contiguouscsteps. If theweight of each vari-
ableis determined, we compute } -, M; ; . for each inter-
v Z. Since) "y, - M; ;. isthetotal number of register slots
required for interval Z, [(v, Mij:) / 1Z]] represents
the minimum number of registers required for that interval,
that is, alower bound on the register count. We enumerate
al the cstep intervals Z C [1,total cstep number + 1] to
get atighter lower bound and then select the maximum one
as the lower bound on the register count.

This basic technique, however, suffers from a serious
drawback: in most cases, the weight of a variable is usu-
ally too small, and thus this basic procedure would yield a
trivial lower bound on the register cost. In order to dleviate
this problem, we need to find the largest possible weights

Estimate_Reg_Cost()
{
for each variable V; ;, calculate W; ;;
Fanout_Reduction();
Variable_Merging();
for eachinterval Z C [1,total cstep number + 1],
for each variable V; ;,
if O; ispipelined, S; = ASAP;;
elseS; = ASAP];
P .= [SJ - Wi, +1, SJ] Nz,
Qi,j,» =[ALAP! +1, ALAP/ + W, ;1N Z;
Mi,],z = min(|Pi,],z|, |Qi,],z|);
LBreg = maz- ([(Y, Miy) /12D 1)
Est_Reg_Cost = LBRreg X AreaRreg;
return(£'st_Reg _Cost);

Figure 6: Register cost estimation algorithm.

for the variables. As mentioned before, the update proce-
dure described in Section 4.2 helps increase their weights
by restricting the time frames of operations, when the FU
estimation is performed before register estimation. For fur-
ther improvements, however, we apply two additional tech-
niques. Fanout Reduction and Variable Merging. Table 2
shows the variables and their weights before and after these
improvement techniques are applied.

Table2: Theweightsof the variables.

[Variables and Weights before |mprovements
| varlable| Uq | U | us

vy [oo [y1 | y2

| [ul]
[weight | 3 [1 [3 [1[1[2]4]17]3
| variable | yl | a | b | c | d | e | f | g | h
[weight | 1T [1 | 1T [1[1[]1]1]17]1

[After Fanout Reduction and Variable Merging |

[(variable | (ua.yld) | y2 | @axl) | (@f.h) | & | (egul) |
[wdght | 5 [4] 5 | 3 1] 3 |

5.2 Fanout reduction

Consider two shared variables V; ; and V; i, which have
the same source O; and thusrepresent the same datavaue. If
0; isguaranteed to be completed before Oy, then V; ; does
not need to be considered when computing the register cost
estimate, since thelifetime of V; ; isalwaysincluded in that
of V; . For example, if ALAP; < ASAP] or Oy isdata
dependent on O;, then we only have to consider V; ;, in our
basic procedure. This technique will help reduce the total
problem size and a so simplify the variable merging problem
explained later.

As an example, the two fanouts y; and y-» in Figure 2
have the same source but different destinations. Oz and
Og respectively. For these shared variables, the condition
“ALAP) < ASAPL” issatisfied when the total number of
csteps is 4 (see Figure 5). So we only have to consider

the variable y- in estimating the register cost. In a similar
way, u; and us are reduced by us, @1 by x», and e by !
respectively.

5.3 Variablemerging

Since our god is only in counting the number of regis-
ters, we do not need to assume a particular register binding.
In this case, the lifetimes of some variables can be merged
for the purpose of estimation only. For example, if O; is
not pipelined, two variables V; ; and V; ;, can be merged as
a new variable, say V; , with a larger weight, since they
cannot be active at the same time. This modification helps
increase) -, . M; ;. in Figure 6 and also reduces the num-
ber of variables or problem size. In this technique, shared
variables are not considered for merging. However, by the
fanout reduction procedure described above, we can reduce
the number of shared variables.

As an example, the two variables x, and =/ in Figure 2
can be merged as a new variable, since the destination of 5
isthe source of zI. Inthiscase, theinitial weight of the new
variable is 5, while the sum of the weights of the old two
variablesis4, asshownin Table2. Asaresult, our algorithm
computes M, ; . for the new merged variable as 1 when the
interval Z = [2, 2], while M; ; .sfor the old varisbles are O
respectively for the same interval. In asimilar way, we can
merge other variables as shown in Table 2.

Thetime complexity in cal culating theweights of variables
and intheimprovement stepsisroughly O(E'- (N + E')), and
the complexity in estimating the register cost isO(E - C?),
where N representsthe number of operations, £ the number
of valuesto be stored in registers, and C' the total number of
csteps. Thus the total time complexity of this algorithm is
O(E-(C*+ N+ E)).

6 Experimental Results

In order to validate the proposed lower bound estimation
algorithms, we applied them to three well-known high level
synthesis benchmarks from the HLS benchmark suite [2]:
(1) the 2nd order differential equation, (2) the 5th order el-
liptic wave filter (EWF), and (3) the AR filter. Experimental
results on these benchmarks are given in Tables 3, 4, 5, 6,
and 7. In these experiments, we assumed that clock period
is 20 ns and the total transfer delay including register and
interconnect delay is4.5 ns. The FU delays are specified in
the tables. The CPU time for each experiment is less than
0.05 seconds on a SUN 4 workstation. Basically we com-
pared our resultswith OASIC [10], ILP approach [15], HAL
[16], and InSyn [17]. In many cases, however, we could
find some better designs (denoted by ‘Manua Design’ inthe
tables) with less register cost than the designs reported in
[15] and [16], though they are not optimal in some cases. As
aresult, these designs help us compare more accurately our
estimates (especially register cost) with those of the actual

(possibly optimal) designsobtai ned through the conventional
scheduling and allocation processes.

Table 3: 2nd order differential equation

Delay | Actual Design [OurEstimation |
(ns) | Source | FU [Reg. | FU [Reg. |
80 1 ILP[19] | 2(+),2(x) 4 2(4), 2(x) 4
80 £ | Manud | 2(4),2(x) 5 2(+), 2(x) 5
120f | Manud | 2(+), 3(x) 6 2(+), 3(+) 6
140% | Manud | 2(+), 2(+) 5 2(+), 2(+) 5

t: Theinput variablesare NOT stored in registers.

t: Theinput/output variablesare stored in registers.

*: multiplier (delay = 15.0 ns), *: multiplier (delay = 24.4 ns)
+: ALU (delay = 15.0 ns)

Table 4: 5th order dliptic wavefilter - design |

Delay | HAL [16] [ManualDesign [Our Estimation]
(ns) | FU [Reg. | FU [Reg. | FU [Reg. |
340 3(+), 3(*) - 3(+), 3(%) 11 3(+), 3(*) 11
360 | 3(+), 2(*) - 2(1).2() | 10 | 2(+),2(x) | 10
380 2(+), 2(x) 12 2(+), 2(x) 9 2(+), 2(x) 9
400 2(+), 2(x) - 2(+), 2(+) 9 2(+), 2(x) 9
420 2(+), 1(x) 12 2(+), 1(*) 9 2(+), 1(x) 9

[*: multiplier (defay = 24.4ns), +: adder (delay = 15.0 ns) |

Table5: 5thorder dliptic wavefilter - design |1

‘ Delay | OASIC[10] [HAL [16] [OurEdimaion |
(ns) | FU [Reg. | FU [Reg. | FU [Reg. |
340 3(4). 2(xp) 10 3(4). 2(xp) 12 3(4). 2(xp) 10
360 3(4), 1(+p) 10 3(4), 1(*p) - 3(4), 1(+p) 10
380 2(4), 1(xp) 9 2(4), 1(xp) 12 2(4), 1(xp) 9

[*p: 2-stage pipelined multiplier (delay of 25.0 ns), +: adder (delay of 15.0 ns)

Table 6: 5th order dliptic wavefilter - design 111

Delay | InSyn[17] [Our Estimation |
(ns) | FU [Reg. | FU [Reg. |
340 3(+), 2(*p) [} 3(+), 2(*p) 8
360 3(+), 1(*p) - 3(+), 1(*p) 8
380 2(+), 1(*p) 8 2(+), 1(*p) 8
400 - - 2(+), 1(*p) 8
420 - - 2(+), 1(xp) 8
560 1(4), 1(+p) 9 1(4), 1(+p) 8

Note: Theinput variablesare NOT stored in registers.

*p: 2-stage pipelined multiplier (delay = 25.0 ns)

+: adder (delay = 15.0 ns)

Table7: ARfilter

‘ Delay | ILP[15] [ManuaDesign [Our Estimation |
(ns) | FU [Reg. | FU [Reg. | FU [Reg. |
120 - - 4(4), 4(x) 6 4(4). 4(x) 6
140 4(4), 4() 6 4(4), 4(x) 4
160 B B 2(+), 3(x) 6 2(+), 3(%) 4
180 2(4), 2(x) 6 2(4), 2(x) 5 2(4), 2(x) 3

Note: Theinput variablesare NOT stored in registers.
*: multiplier (delay = 15.0ns), +: adder (delay = 7.5 ns)

Theresultsare quiteencouraging, indicating that thelower
bound estimation algorithms achieve perfect accuracy with
respect to estimating the functional unit requirements. The
estimated lower bound on register countisalso quiteaccurate

as shown in the tables. We note here that the register cost
estimate predicts alower bound on register count across all
possible schedules that can be accomplished given the FU
resources. In most cases, the lower bound on register cost is
equal to the actua register count. In other cases, the bound
is1 or 2 registers below the actual count. Note that no prior
scheduling is assumed in our estimation.

Figure 7 shows the behavioral “shape function” that is
generated for the EWF example (Table 4), and the predicted
lower bound shape function. The area and delay figures for
the adders, multipliers, and registers were generated using
the VTI 0.8y data path library described in Table 1. We
note that the layout areas of aregister and an adder are quite
comparablein thislibrary, indeed the register cost is dightly
more than the adder’s. This suggests that the register cost
is as significant as the adder cost and must be considered in
order to haveredistic estimation of the overall design area.

800000

L

O Predicted Shape Function

> Actual Design Points
O FU Model

600000 |

400000

Layout Area (sg. microns)

200000

%06 350 260 250
Delay (ns)

Figure 7: The actua and lower bound shape functions of
the EWF with non-pipelined multiplier.

7 Conclusions

We presented an LBE technique that accounts for func-
tional and storage unitswith a finer granularity of time, and
presented experimenta results of our approach on several
HLS benchmarks. These results confirm the importance of
accounting for both storage and functiona units in lower
bound estimation. Our estimatesfor functional unit and stor-
agerequirementsare quite accurate and validate our approach
for these examples.

Aswe move towards sub-micron technologies, the effects
of interconnects will begin to dominate the design. Our
present model does not estimate interconnect and multiplex-
ing costs and delay, but the timing model can accommodate
such estimates once available. Currently, the user provides
some initial estimates of such delays. Once an RT leve
structure is further defined, it is possible to use accurate
layout-based estimation schemes [1] to quickly get a better
prediction of the interconnect delay before committing to a
costly layout step. Clearly, better accounting for interconnect
is needed and will be addressed in future work.

References

[1] C. Ramachandran, F. J. Kurdahi, D. Ggjski, V. Chaiyakul, and
A.Wu, “Accurate Layout Areaand Delay Modeling for System
Level Design,” Proc. ICCAD '92, Nov. 1992.

[2] N.Dutt and C. Ramachandran, “ Benchmarksfor the 1992 High
Level Synthesis Workshop,” Technical Report, ICS Depart-
ment, UC Irvine, 1992.

[3] R. Jain, A. C. Parker, and N. Park, “Predicting System-Level
Area and Delay for Pipelined and Non-pipelined Designs,”
IEEE Trans. CAD, vol 11. no. 8, pp. 955-965, August 1992.

[4] M. Rim and R. Jain, “Estimating Lower-Bound Performance
of SchedulesUsing a Relaxation Technique,” Proc. ICCD ’92,
pp. 290-294, Oct. 1992.

[5] Y. Hu, A. Ghouse, and B. S. Carlson, “Lower Bounds on the
Iteration Time and the Number of Resources for Functional
Pipelined DataFlow Graphs,” Proc. ICCD ' 93, pp. 21-24, 1993.

[6] A. H. Timmer, M. J. M. Heijligers, and J. A. G. Jess,
“Fast System-Level Area-Delay Curve Prediction,” Proc. 1st
APCHDL, pp. 198-207, 1993.

[7] A. Sharma and R. Jain, “Estimating Architectural Resources
and Performance for High-Level Synthesis Applications,”
IEEE Trans. VLS Systems, vol 1. no. 2, pp. 175-190, June
1993.

[8] Samit Chaudhuri and Robert A. Walker, “Computing Lower
Bounds on Functional Units before Scheduling,” Proc. 7th In-
ternational Symposium on High-Level Synthesis, pp. 36-41,
May 1994,

[9] SeongY.Ohmand Chu S. Jhon, “ A Branch and Bound Method
for the Optimal Scheduling,” Proc. CICC 92, May 1992.

[10] C. H. Gebotys and M. I. Elmasry, “Simultaneous Schedul-
ing and Allocation for Cost Constrained Optimal Architectural
Synthesis,” Proc. 28th DAC, pp. 2-7, June 1991.

[11] Kayhan Kuglkeakar, “System-Level Synthesis Techniques
with Emphasison Partitioning and Design planning,” PhD The-
sis, EE-systems Dept., USC. Sept. 91.

[12] P.GuptaandA. C. Parker, “SMASH: A Program for Schedul-
ing Memory-Intensive Application-Specific Hardware,” Proc.
7th International Workshop on HLS, pp. 54-59, May 1994.

[13] Seong Y. Ohm, Fadi J. Kurdahi, and Nikil Dutt, “A Unified
Method for the Lower Bound Estimation on Resources,” Tech-
nical Report, ECE Department, UC Irvine, 1994.

[14] A.H.TimmerandJ. A. G. Jess, “ Execution Interval Analysis
under Resource Constraints,” Proc. ICCAD ’ 93, pp. 454-4509,
Nov. 1993.

[15] M. Rim, R. Jain and R. D. Leone, “Optimal Allocation and
Binding in High-Level Synthesis,” Proc. 29th DAC, pp. 120-
123, June 1992.

[16] P. G. Paulin and J. P. Knight, “ Scheduling and Binding Al-
gorithms for High-Level Synthesis,” Proc. 26th DAC, pp. 1-6,
June 1989.

[17] A. Sharma and R. Jain, “InSyn: Integrated Scheduling for
DSP Applications,” Proc. 30th DAC, pp. 349-354, June 1993.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

