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Abstract

In this paper the problem of selecting an appropri-

ate programmable cell structure for FPGA architec-

ture design is addressed. The cells studied here can

be con�gured to the desired functionality by applying

input permutation, negation, bridging or constant as-

signment, or output negation. A general methodology

to determine logic description of such cells, which are

capable of being con�gured to a given set of functions

is described.

Experimental results suggest that the new cell be-

haves as well as the Actel 2 cell in terms of logic power

but requires substantially less area and wiring over-

head.

1 Introduction

We address the problem of selecting a logic block

structure which will use as little silicon as possible and

yet retain good mapping properties.

We propose an FPGA cell design approach based

on the classi�cation of Boolean functions [1]. We show

that the FPGA architecture implementing our cell has

excellent performance in terms of area and speed.

2 Universal Logic Gate

Universal logic gate G(m;n) [1, 2, 3] is an m-input

function, G(y1; : : : ; ym), which can realize all the n-

input functions, i.e. f (x1; : : : ; xn), by assigning yj to

1;0; xi or �xi, or negating the output of G.

In this section, instead of �nding the G(m;n) which

can realize all the n-input functions, we �nd an m-

input function, G(A), which can realize a given set

of functions, A. The maximum number of inputs of

functions in A is assumed be to n. The function G(A)

is called a Semi-ULG(A;m; n).

2.1 Terminology and de�nitions

Let fi be a function of n variables x1; : : : ; xn.

De�nition 1 (Input negation)

Two functions f1; f2 are said to be NI equivalent i�

there exists an assignment,
:
xi = xi or �xi, such that

f1(
:
x1; : : : ;

:
xn) = f2(x1; : : : ; xn). NI(f) represents the

set of all functions which are NI equivalent to f .

De�nition 2 (Input permutation) Two functions

f1; f2 are said to be P equivalent i� there exists

a permutation �, such that f1(x�(1); : : : ; x�(n)) =

f2(x1; : : : ; xn). P (f) represents the set of all functions

which are P equivalent to f .

De�nition 3 (Output negation) Two functions

f1; f2 are said to be NO equivalent i� f1 = f2 or �f2.

NO(f ) represents the set of all functions which are NO

equivalent to f .

It can be shown that NI(); P () and NO() commute

and are idempotent. The composition of three opera-

tors is de�ned as follows.

De�nition 4 (NPN) Two functions f1; f2 are said

to be NPN equivalent i� there exist functions g1; g2
such that

� f1 is NI equivalent to g1,

� g1 is P equivalent to g2, and

� g2 is NO equivalent to f2.

NPN (f) represents the set of all functions which are

NPN equivalent to f .

Now we consider the constant assignment (C) and

bridging (B) operators. Let f be a function of n vari-

ables (x1; : : : ; xn) and g be a function of n+1 variables

(x1; : : : ; xn; xn+1).
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De�nition 5 (Constant assignment) A function

g is said to be C+ over f i� the cofactor of g with

respect to xn+1, gxn+1 = f . A function g is said C�

over f i� g�xn+1 = f . A function g is said C over f i�

g is C+ over or C� over f . C(f ) represents the set of

all functions which are C over f .

De�nition 6 (Bridging) A function g is said to be

B+ over f i� there exists xi, such that,

g = xn+1xifxi + �xn+1 �xif �xi +(xn+1�xi)� [don't care]:

A function g is said to be B� over f i� there exists

xi, such that,

g = �xn+1xifxi +xn+1 �xif �xi +(�xn+1�xi)� [don't care]:

A function g is said to be B over f i� g is B+ over

or B� over f . B(f ) represents the set of all functions

which are B over f .

We extend the de�nition of NI(); P (); NO; C() and

B() to operate on a set of functions as follows.

De�nition 7 Let A represent a set of functions.

NI(A) =
S
f2A

NI(f ), P (A) =
S
f2A

P (f),

NO(A) =
S
f2A

NO(f ), C(A) =
S
f2A

C(f), B(A) =S
f2A

B(f ), and (B + C)(A) = C(A)
S
B(A).

For an n-input function f , let Ff be the set of all

m-input functions which can realize f . If a function

g can realize f , then all the functions which are NPN

equivalent to g can also realize f . We have the follow-

ing lemma.

Lemma 1 Ff = NPN (B + C)m�n(f).

2.2 ROBDD based implementation of the
operators

Let C be a subset of Bp, where B = f0; 1g, C can

be represented by its characteristic function as follows:

�C(x) =

�
1 if x 2 C

0 otherwise:

We will represent a set of functions using ROBDD

[4]. Given a set F of n-input functions, its character-

istic function is a boolean function with 2n variables,

since there are maximally 22
n

n-input functions in F

and 22
n

di�erent minterms in �F . In the following,

we will use F to denote �F . Let a set of n-input

functions F be represented by its characteristic func-

tion F(a0; : : : ; a2n�1). The following expression gives

a formal condition for a membership in F :

f 2 F i� F(a0; : : : ; a2n�1) = 1;

where ai = f (x1; : : : ; xn), and i = (xn � � �x1)2:

2.2.1 NI(F) operator

When functions originally expressed in terms of some

variable xi are to be expressed in terms of �xi, then the

new characteristic function can be obtained from F by

reordering of variable as follows:

N
1
I
() : a0; :::; a2n�1 ) a1; a0; a3; a2; :::; a2n�1; a2n�2

� � � � � � � � � � � � � � � � � � � � � � � � � � �

N
n

I
() : a0; :::; a2n�1 ) a2n�1 ; :::; a2n�1; a0; :::; a2n�1�1:

To compute the characteristic function of a set of func-

tions which are NI equivalent to another set of n-input

functions F represented by the characteristic function

F , n reorderings of the characteristic function are re-

quired.

2.2.2 P (F) operator

Permutation of two input variables, xi and xj,

on functions in F , results in reordering of the

corresponding variables in F . That is, if p =

(xn; � � � ; xi; � � � ; xj; � � � ; x1)2, then the input variable

of F , ap will be re-labeled as aq , where q =

(xn; � � � ; xj ; � � � ; xi; � � � ; x1)2. Relabeling needs to be

done only for p 6= q, and it can be formulated as

swapping every pair of such variables ap; aq where

p = (xn; � � � ; xi = 1; � � � ; xj = 0; � � � ; x1)2 and q =

(xn; � � � ; xi = 0; � � � ; xj = 1; � � � ; x1)2. Let's denote the

permutation of xi and xj as P
i;j(F). We need to per-

form the reordering
n(n�1)

2
times, to generate all the

n! permutations, since the results are accumulated in

ROBDD.

2.2.3 NO(F) operator

To negate outputs of the functions in F , the corre-

sponding operation on F is an exchange of ehigh and

elow edges for each node in the F 's ROBDD represen-

tation.

2.2.4 C(F ) operator

The constant assignment operator on the functions in

F results in the following re-labeling of the input vari-

ables in F .

C�() : a0; : : : ; a2n�1 ) a0; : : : ; a2n�1, and

C+() : a0; : : : ; a2n�1 ) a2n ; : : : ; a2n+1�1:

2.2.5 B(F) operator

The positive bridging operation on variable xi of

functions in F , i.e. xn+1  xi, results in re-

labeling input variable of F such that ap maps to



ap0 , where p = (xnxn�1 � � �xi � � �x1)2 and p0 =
(xixnxn�1 � � �xi � � �x1)2. The positive bridging oper-
ation is denoted as Bi

+(F). For Bi

�
(F), i.e. when

xn+1 �xi, we have p
0 = (�xixnxn�1 � � �xi � � �x1)2.

2.2.6 Semi-ULG

For each function fi in A, we compute the char-
acteristic function, NPN (B + C)m�n(fi). From
Lemma 1, we know that it contains all the m-input
functions which can realize fi. Then the intersection
of all NPN (B + C)m�n(fi)s will contain all Semi-
ULG(A;m; n)s which can realize all the functions in
A.

3 Experiment with SIS LUT technol-

ogy mapper

We have mapped the MCNC 91 benchmark circuits
to 3 input LUT blocks. In our experiment, we used SIS
standard script to obtain the mapping. The circuits
were optimized by the SIS script, source.rugged �rst,
and then the following script was used to map the
circuits into 3-input functions:

xl part coll -m -g 2 -n 3
xl coll ck -n 3
xl partition -m -n 3
simplify
xl imp -n 3
xl partition -t -n 3
xl cover -e 30 -u 200 -n 3
xl coll ck -n 3.

Then, for each mapped function, we have determined
the NPN equivalence class to which it belonged. The
results are summarized in Figure 1. Note that the last
4 classes constitute only 3% of the mapped functions.
Since those 4 equivalence classes are rarely used, we
can exclude them from the set of functionsA, for which
Semi-ULG(A;m; n)s are determined. Clearly, we sac-
ri�ce some functional programmability but the size of
the logic block and the number of inputs are reduced.
The algorithm described in Subsection 2.2.6 was used
to �nd all Semi-ULG(A; 4; 3)s. The number of inputs
to Semi-ULG(A; 4; 3) is 4, which is 1 less than the min-
imum required to realize all the 14 classes of 3-input
functions. Among the 26 solutions, f11 is the best in
terms of area and speed:

f11 = �x0�x1 + x1x2x3 + �x2�x3:

Moreover, without using negative bridging, f11 still
can realize the 10 of 14 classes. This is important

because a negative bridging realization requires both
phases of an input. From now on, we will refer to the
f11 as the Semi-NPN-ULG(4,3).

4 Global phase assignment

It is possible that both phases of the same signal
are required while only one phase is available. We call
such a situation a polarity disagreement.

The circuit is assumed optimized and mapped by
the SIS LUT FPGA technology mapper. Each node,
ni, of the circuit has at most three inputs. A function
fi is associated with each node ni. fi is a logic function
of its direct inputs. For each fi, there exist several
ways to realize it by the Semi-NPN-ULG(4,3).

For a node, if its output polarity is di�erent from
the polarity required by its fanout node or when
both positive and negative phases are required by
the fanouts, we have to insert an extra Semi-NPN-
ULG(4,3) to implement an inverter. Thus, the goal
is to minimize the number of inserted inverters. We
formulated it as 0� 1 integer programming problem.

We use the method of simulated annealing to solve
the phase assignment problem, and the results for 22
MCNC 91 benchmark examples are shown in Figure 2.
The �fth column, SIS, lists the count of the 3-input
functions mapped by the SIS script mentioned in Sec-
tion 3. For Semi-NPN-ULG(4,3), the percentage of
disagreement drops from 38.5% to 30.1% when global
phase optimization is applied, while for I-Semi-NPN-
ULG(4,3) (with programmable output inverter), the
percentage drops from 11.2% to 6.7%. The column la-
beled K counts the number of nodes which belong to
the excluded 4 classes. Their total percentage is less
than 3%. For each such a function which belongs to an
excluded class, we need to use 2 Semi-NPN-ULG(4,3)
blocks to realize it.

The columns, Amap XAmap and Xmap, are from
[5, 6]. Amap and Xmap are specialized technology
mappers for Actel 2 and LUT, respectively. The �rst
column, NEW SIS, is from [7] which is an improved
version of Amap. On the average, the number of
blocks used by I-Semi-NPN-ULG(4,3) is about 9%
more than that of LUT(3). Note, that the number
of blocks required by I-Semi-NPN-ULG(4,3) is deter-
mined by adding the entries labeled SIS and entries
labeled G2 and K. Comparing to Actel 2, the num-
ber of blocks1 required by the dual-output Semi-NPN-

1
For a fair comparison, we count the number of blocks for

each circuit as the smaller one from SIS or XMAP LUT tech-

nology mapper.



ULG(4,3) is about 5% more. Note that, when calcu-

lating the number of blocks required by dual-output

Semi-NPN-ULG(4,3), the value of G is zero.

5 CMOS realization of the Semi-NPN-

ULG(4,3)

In the CMOS complex gate design, it is desirable

to reduce the number of inversions in the formula.

Thus, we re-work the formula which describes the

Semi-NPN-ULG(4,3) from �x0�x1 + x1x2x3 + �x2�x3 to

(x0 + x1) x0x1x2 (x2 + x3):

It takes 6 transistors to implement x0x1x2 and 10

for the remaining circuit. Totally, the Semi-NPN-

ULG(4,3) can be implemented with 16 transistors.

For the dual-output Semi-NPN-ULG(4,3) cell, 2 ex-

tra transistors are needed for the inversion, while for

the I-Semi-NPN-ULG(4,3) cell, the exor gate requires

12 transistors, and the one-bit memory cell requires

additional 6 transistors.

A multiplexor function �sd0 + sd1, requires 10 tran-

sistors, where s is the selection bit, and d0 and d1 are

the data bits. The total number of transistors for the

Actel 2 cell is about 38. Comparing the dual-output

Semi-NPN-ULG(4,3) to the Actel 2 cell, besides the

fewer number of transistors used, it also reduces by

33% the number of programmable switches2 (anti-

fuse) in the routing channels. This is because there

are 4 inputs and 2 outputs in the dual-output Semi-

NPN-ULG(4,3) cell, while there are 8 inputs and one

output in Actel 2 cell. The speed analysis by SPICE

indicates that the dual-output Semi-NPN-ULG(4,3) is

30% faster than the Actel 2 cell.

For the LUT(3), we assume that each memory bit

costs 6 transistors. Added up with the decoder cir-

cuitry, the total number of transistors for each LUT(3)

cell is about 102. Compared to LUT(3), although

the I-Semi-NPN-ULG(4,3) cell requires less transistors

(34), it su�ers from having one more input.

6 Conclusions

The theory of NPN equivalence has been described

and applied to characterize the three input functions

produced by SIS LUT technology mapper for the

2
Each input or output of the logic cell needs to be be con-

nected to the routing channel by a programmable anti-fuse

switch.

MCNC 91 benchmarks. The results of this character-

ization revealed that ten of the fourteen NPN equiva-

lent classes were used in 97% of the mapped functions.

A method was then proposed to construct logic mod-

ules that could cover the most frequently used NPN

equivalent classes. The logic module selected by us

is the Semi-NPN-ULG(4,3). We have compared the

area and speed characteristics of the dual-output Semi-

NPN-ULG(4,3) logic module with the Actel 2 logic

module, and I-Semi-NPN-ULG(4,3) logic module with

three inputs look up table realization.
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ID inputs NPN class % Realizable

1 0 0 0 yes

2 1 �a0 0 yes

3 2 a0a1 19 yes

4 2 a0 � a1 2 yes

5 3 a0(a1 + a2) 42 yes

6 3 a0a1a2 23 yes

7 3 a0a1 + �a0a2 9 yes

8 3 a0(a1 � a2) 2 yes

9 3 a0 �a1 + a0 �a2 + �a0a1a2 2 yes

10 3 a0a1 + �a0 �a1a2 0 yes

11 3 a0 � a1 � a2 2 no

12 3 a0a1 + a1a2 + a0a2 1 no

13 3 �a0 �a1 �a2 + a0a1a2 0 no

14 3 �a0a1a2 + a0 �a1a2+ 0 no

a0a1 �a2

Figure 1: The percentages of 3-input NPN classes used by the SIS LUT technology mapper on the MCNC 91

benchmark circuits.

MCNC (Actel) (Actel) (Actel) (LUT) (LUT) I-Semi-ULG(4,3) Semi-ULG(4,3)
example NEW SIS Amap XAmap Xmap SIS G1 G2 K G1 G2 K

5xp1 39 53 58 49 48 6 2 0 24 13 0
9symml 102 110 93 25 0 0 6 8 6 6
C1908 159 204 200 167 142 26 9 19 50 28 19
C499 166 141 139 105 100 0 0 32 8 1 32
C5315 560 604 685 577 555 53 25 42 205 122 42
alu2 175 196 210 177 165 28 17 0 86 69 0
alu4 336 365 311 300 59 39 5 156 123 5
apex6 275 366 370 320 327 21 13 1 103 89 1
apex7 92 112 109 96 95 11 7 0 17 14 0
bw 54 94 102 77 71 13 10 1 35 30 1
clip 43 53 57 46 57 8 6 2 27 21 2
count 39 62 55 47 55 1 1 0 8 8 0
des 1318 1605 1652 1418 1537 136 101 2 679 616 2
duke2 158 169 188 156 207 37 23 0 100 81 0
f51m 39 58 64 54 40 8 6 1 17 13 1
frg1 61 61 58 62 2 1 0 27 20 0
frg2 406 412 350 375 20 9 2 49 26 2
k2 482 473 418 467 103 29 0 221 124 0
pair 684 729 614 625 65 46 8 237 204 8
rd84 36 93 101 85 33 0 0 6 6 4 6
rot 259 309 309 272 277 32 23 0 82 58 0
vg2 31 37 39 37 39 1 0 0 11 11 0

Total 6227 6488 5527 5602 630 367 127 2156 1681 127
11:2% 6:6% 2:3% 38:5% 30:0% 2:3%

Sub total 3443 4156 4338 3683 3748 381 243 106 1458 1178 106
10:2% 6:5% 2:8% 38:9% 31:4% 2:8%

Figure 2: The results of global phase assignment. Gi counts the number of polarity disagreement. G1 is the

number of the initial polarity disagreements, while G2 is the number after performing minimization by simulated

annealing. The value K counts the number of functions which belong to the 4 un-realizable classes.
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