
Maple: A Simultaneous Technology Mapping, Placement, and Global Routing

Algorithm for Field-Programmable Gate Arrays

Nozomu Togawa Masao Sato Tatsuo Ohtsuki

Dept. of Electronics and Communication Engineering, Waseda University

3-4-1 Okubo, Shinjuku, Tokyo 169, Japan

Abstract

Technology mapping algorithms for LUT (Look Up Table)
based FPGAs have been proposed to transfer a Boolean network
into logic-blocks. However, since those algorithms take no lay-
out information into account, they do not always lead to excel-
lent results. In this paper, a simultaneous technology mapping,
placement and global routing algorithm for FPGAs, Maple, is pre-
sented. Maple is an extended version of a simultaneous placement
and global routing algorithm for FPGAs, which is based on re-
cursive partition of layout regions and block sets. Maple inherits
its basic process and executes the technology mapping simulta-

neously in each recursive process. Therefore, the mapping can
be done with the placement and global routing information. Ex-

perimental results for some benchmark circuits demonstrate its
e�ciency and e�ectiveness.

1 Introduction

FPGAs (Field-Programmable Gate Arrays) have been at-
tracting public attention as new ASIC devices which are pro-

grammable and of high density. Especially, FPGAs which use
SRAM as programming elements [10],[11] are wide-spread to

make rapid-prototyping systems because of their reprogramma-
bility. SRAM based FPGAs make use of LUTs (Look Up Tables)

or similar circuits as LUTs [10],[11] as their basic blocks (logic-
blocks). Each LUT can realize any combinational function with
up to k inputs (typically, k = 4 or 5).

Research on technology mapping for LUT-based FPGAs is

very attractive and many algorithms have been proposed. Most
of them are classi�ed into two categories according to their ob-

jective functions. One aims at minimizing the number of logic-
blocks [7],[8],[14],[15]. The other aims at minimizing the level
of logic-blocks [5],[6],[9],[16]. Even if those objective functions

can be minimized, however, we cannot always produce good lay-
out (placement and routing) results since the objective functions

take no layout information into consideration.
Since logic-blocks and routing resources are prede�ned in an

FPGA chip, the layout of each circuit needs to be done within
them. Especially, the limitation of routing resources is crucial,

and conventional FPGA design which executes technology map-
ping and layout separately often causes unrouted nets in the lay-

out phase because of a shortage of routing resources. To obtain
good layout, i.e., less congested layout, FPGA design is required
to consider layout from higher design phases such as technology
mapping.

Since a few years ago, technology mapping algorithms which
use layout information have been proposed [1],[4],[17]. The al-

gorithm proposed in [17] considers \routability" as an objective,
but it does not reect layout precisely. The algorithm proposed
in [1] is based on SA (Simulated Annealing). It executes place-
ment and global routing during each iteration of SA and makes
use of its result. The algorithm must be much time-consuming
and di�cult to optimize a result globally in a short time. The

algorithm proposed in [4] executes both technology mapping and
placement simultaneously, but does not evaluate the layout in-
cluding routing.

In this paper, we consider technology mapping for LUT-based
FPGAs as the design including placement and routing, and pro-
pose a simultaneous technology mapping, placement, and global
routing algorithm, which is called Maple (MAPping with Layout
Execution). Maple is based on the simultaneous placement and
global routing algorithm [19]. This algorithm [19] has the follow-
ing advantages:

(1) The global route of each net is represented by a sequence of
pseudo-blocks. Since the pseudo-blocks are treated in the

same way as logic-blocks, placement and global routing can
be executed simultaneously.

(2) As the algorithm is based on recursive process of simple top-
down bi-partitioning, it runs fast and is easy to implement.

(3) The algorithm can handle blocks with functionally equiva-

lent terminals.

(4) The algorithm can handle multi-terminal nets without di-

viding them into two-terminal nets.

Maple inherits all of the above advantages and has further ones

as follows:

(5) Since Maple executes technology mapping at each recur-

sive level, it generates logic-blocks based on placement and
global routing information of the level. This leads to less

congested layout, i.e., the less number of routing tracks per
channel.

(6) Maple can execute \replication" in a natural way, which is
one of the greatest concern of technology mapping [3].

(7) By making good use of the maximum ow technique, the
mapping process itself runs fast, and thus the whole algo-
rithm including placement and global routing is executed
very fast.

This paper is organized as follows: Section 2 summarizes exist-

ing technology mapping algorithms for LUT-based FPGAs; Sec-
tion 3 de�nes the technology mapping, placement, and global
routing problem; Section 4 shows the Maple algorithm; Section 5
demonstrates experimental results compared with some conven-
tional approaches; and Section 6 gives concluding remarks.

2 Technology Mapping for LUT-based FPGAs
Input of technology mapping for LUT-based FPGAs is a

Boolean network [3]. The Boolean network is represented by
DAG (Directed Acyclic Graph), where each node represents a
logic function and each directed edge represents data (logic value)
ow from one node to the other. Basic operations of technology

mapping algorithms for LUT-based FPGAs are the following (1)
and (2) (e.g. [15]) or (2) (e.g. [6]).

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0156 $3.50

(1) Decomposition decomposes the input network and makes
the number of fanins of each node less than or equal to
a given number k (Fig. 1 (a)). Kernel extraction or
Roth-Karp decomposition can be applied for this operation
[14],[15].

(2) Covering covers several nodes of a Boolean network ob-
tained in (1) and generates one logic-block instead of them
(Fig. 1 (b)). The objective is to minimize the number of
generated logic-blocks or to minimize the logic level. It is
not necessary to consider logic functions of nodes explicitly
[6],[17].

In technology mapping, the decomposition, which transforms
logic functions directly, itself is a di�cult problem and have been
studied for many years from the viewpoint of logic minimization.
It is still di�cult even though the decomposition is restricted to
FPGAs. On the other hand, the covering is peculiar to LUT-
based FPGAs and considered to be a graph covering problem.
Since it excludes direct transformation of logic functions, it can
be combined with layout design algorithms e�ectively. From the
above, we consider technology mapping for FPGAs as covering
of a Boolean network as in [6],[17] and this covering is called
technology mapping in the rest of this paper.

g = (a+b)(c+d)

a

b c

d

a
b

c d

e = a+b

f = c+d

g = ef

(a) decomposition (k=3).

a

b

c d

e

f

a

b
c

d
e

f

(b) covering (k=3).

logic-block

node

Fig. 1: Technology mapping.

3 Problem Formulation

3.1 FPGA Layout Model

An FPGA layout model is de�ned as in Fig. 2, based on the
commercial FPGA architecture proposed in [11]. Each logic-block
is connected to switch-blocks through input and/or output termi-
nals. Switch-blocks are connected to each other by horizontal or
vertical tracks. A set of tracks which connects two switch-blocks

is called a channel. A position for placing a logic-block is called
a slot.

Logic-blocks on the periphery of the FPGA layout model are
connected to I/O pads and called I/O blocks. Each I/O block has
input and output terminals for all of the adjacent switch-blocks.
Other logic-blocks realize LUTs with four inputs and one output
(k = 4) by programming. Each of them has an input terminal for

each of four adjacent switch-blocks and an output terminal for
the lower-left adjacent switch-block (Fig. 3).

Switch-blocks are considered as switch boxes which make a
possible connection of terminals and tracks by programming.

logic-blocks switch-block

track

channeltermianls

grid

Fig. 2: FPGA layout model.

switch-block

o

logic-block

i1 i2

i3i4

Fig. 3: Terminal positions of a logic-block.
(i1; i2; i3; i4: input terminals, O: output terminal)

3.2 Technology Mapping, Placement, and Global Rout-

ing Problem

In the same way as other technology mapping algorithms, in-
put of our algorithm is a Boolean network. Among nodes of a
Boolean network, nodes which have no incoming edges are called

primary inputs and nodes which have no outgoing edges are called
primary outputs. Other nodes are called intermediate nodes. If

the number of incoming edges to each node of a Boolean network
is less than or equal to k, the Boolean network is called feasible.

An input Boolean network is assumed to be feasible in this paper.

For two nodes s; t of a Boolean network, s is a transitive fanin

of t if there exists a directed path from s to t, and t is a transitive
fanout of s. For a node s of a Boolean network, a set of s and
transitive fanins of s is called a cover of s. A cover of s outputs

a signal from only s. If the number of input nodes for a cover of
s is less than or equal to k, the cover is called feasible. A feasible

cover of s can be realized by one logic-block.
Technology mapping of a Boolean network is to satisfy the

following (a) - (c).

(a) Each of primary inputs and outputs corresponds to one
logic-block.

(b) Each of intermediate nodes is included in at least one cover.

(c) Inputs of any cover are outputs from other covers or primary
inputs.

As described earlier, routing congestion, i.e., the maximum
number of tracks per channel to route all nets, should be as small

as possible for FPGA design. So the following problem whose
objective is minimization of routing congestion is focused in this

paper.
[De�nition] Technologymapping, placement, and global routing

problem is for given
(1) a feasible Boolean network and

(2) a set of slots and terminal positions of logic-blocks,
to determine

(a) covers of a Boolean network (technology mapping),

(b) a slot position where each logic-block is placed, with con-
sidering each cover to be one logic-block (placement),

(c) a terminal position of each net (pin assignment) and
(d) a sequence of channels through which each net passes

(global routing)

within given slots so as to minimize the maximum number of
tracks per channel. Note that I/O blocks need to be placed on
the outermost slots.

Fig. 4 shows an example of a Boolean network and its layout.

a

b

c
d

e

f

g h

i

a

b

c d

e

f

g h

i

Fig. 4: Boolean network and its layout.

4 The Maple Algorithm

4.1 De�nitions

The following terminology is de�ned based on [19].
Unit-cell: a room partitioned by the grid (broken lines) of Fig.

2.

Subregion: a rectangular region composed of adjacent unit-
cells.

Cut-line: a horizontal or vertical line partitioning one subre-
gion into two pieces. It is drawn along the grid of Fig. 2.

Pseudo-block: a �ctitious block placed on a cut-line to main-

tain the connection of a net divided by the cut-line. Every pseudo-
block is assigned in a channel.

Block set: a set of logic-blocks and pseudo-blocks. Each block
set is assigned on a subregion boundary.

Node set: a set of nodes of a Boolean network. Each node set

exists inside a subregion.

4.2 Simultaneous Placement and Global Routing Algo-

rithm
[19]

The proposed algorithm is an extended version of a simul-

taneous placement and global routing algorithm [19], of which
outline is explained in this section. The simultaneous placement
and global routing algorithm is based on recursive bi-partition of

a layout region like min-cut placement [2]. When bi-partitioning
a region by a cut-line, a block set assigned to the region is parti-

tioned into three block sets, such as one assigned to slots in the
upper (or left) side of the cut-line, one assigned to slots in the
lower (or right) side of the cut-line, and one assigned to slots on
the cut-line. At that time, if there exists a connection between
the block sets partitioned by the cut-line, a pseudo-block is gener-
ated on the cut-line. Since pseudo-blocks are treated in the same
way as logic-blocks, placement and global routing can be executed
simultaneously. Repeating this process recursively, a position of
each logic-block and a global route of each net represented by a
sequence of pseudo-blocks are obtained.

4.3 Maple: A Simultaneous Technology Mapping, Place-

ment, and Global Routing Algorithm

To obtain less congested layout, a technology mapper should
generate each logic-block for those nodes which are close together
if all the nodes of a Boolean network are assumed to be placed
evenly on an FPGA chip based on connections among them. This

process is considered to be technologymapping which takes layout
requirements into account.

For example, consider technology mapping of a Boolean net-
work of Fig. 5. When each logic-block is an LUT with three

inputs (k = 3), covering which minimizes the number of logic-
blocks is shown in Fig. 5 (a). However, this mapping does not
always lead to a good layout result. It sometimes leads to routing
congestion and requires more tracks per channel (Fig. 5 (b)). In
Fig. 5 (b), bold boxes show the slots on which logic-blocks are
placed. On the other hand, if we do mapping so as to avoid rout-
ing congestion based on layout requirements, we can obtain a less
congested result as in Fig. 5 (c), (d). This is our motivation to
propose an algorithm, Maple, which executes technology mapping
with placement and global routing.

a
b

c d

a
b

c d

e f

e f

a

b c

d

e
f

b c
e

f

#tracks=2
(a) (b)

(c) (d)
#tracks=1

a d

Fig. 5: E�ect of technology mapping to its layout (k = 3).

The basic process of Maple is to bi-partition regions recursively

and to partition nodes of a Boolean network into three sets as in
[19] (Fig. 6). When partitioning the node set B in Fig. 6, nodes

which are expected to be assigned to slots on the cut-line are
considered as candidates for technology mapping. This has the
following advantages:

(1) Nodes on the cut-line are determined so as to strongly reect
the result of placement and global routing at each recursive

level, and their positions are limited to slots on the cut-
line. Therefore, mapping which takes layout requirements

into account is realized for those nodes. As a result, less
congested layout can be generated as in Fig. 5.

(2) After mapping, each cover of nodes becomes one logic-block.
Those logic-blocks are on the boundary of partitioned re-
gions, and the recursive process of [19] can be continued.
Therefore, Maple inherits the advantages of [19].

For example, in a Boolean network and a region of three slots
as in Fig. 5 a vertical cut-line is drawn through the center slot.
From the positions of a - f which are inputs or outputs of the
Boolean network, the center node of the Boolean network is se-

lected as a node which is better to be assigned on the cut-line, i.e.,
a candidate for technology mapping (see Section 4.4 for details).
This center node is covered with a logic-block on the cut-line. The

remaining nodes in the Boolean network is assigned on the other
slots in the subsequent recursive process. Note that, in case there
exist only two slots, Maple generates at most two logic-blocks as
in Fig. 5 (a).

Maple is realized by extending the algorithm in [19] and doing

the covering process for nodes on cut-lines. The outline of the
algorithm is as follows.

[Algorithm Maple]

Step 1. Assume each of primary inputs and outputs of an in-
put Boolean network to be an I/O block. I/O blocks are placed

on four sides and four corners of the layout region. The slot posi-
tions for them are determined gradually in recursive process. In
case where the slot positions of I/O blocks are speci�ed as input,
they are placed on the positions. Otherwise, primary inputs and
primary outputs are placed separately with a reasonable balance.
Put the entire layout region as a subregion into a queue Q.

Step 2. Pick a subregion R from Q. If Q is empty, halt.

Step 3. Partition R into two subregions R1 and R2 by a cut-
line. The cut-line is drawn in such a way that the longer sides of
the subregion boundary of R are partitioned so as to make the
partitioned subregions closer to a square.

Step 4. Corresponding to the partition of R, the block sets on
the subregion boundary (A and C in Fig. 6) are partitioned into
three sets respectively.

Step 5. For nodes which are expected to be assigned on the
cut-line, execute technology mapping. This step will be explained
in details in Sections 4.4 - 4.7.

Step 6. Assign covers which include nodes generated by tech-
nology mapping in Step 5 (which are regarded as logic-blocks)
to slots on the cut-line. Assign other nodes to slots of the up-
per or lower (left or right) side of the cut-line. This step will be
explained in Section 4.8.

Step 7. Assign nets to terminals for logic-blocks on the cut-
line.

Step 8. Generate a pseudo-block on the cut-line for each net

crossing it.

Step 9. If R1 and/or R2 can be further partitioned, put them
(it) into Q. Return to Step 2.

Steps 2, 3, 8, and 9 must be trivial. Steps 1, 4, and 7 are done
in the same way as [19]. So, Steps 5 and 6 are described in detail

in the following sections, with respect to a horizontal cut-line.

cut-line

R

A B C

R1

R2

A, C : block sets, B : node sets
R, R1, R2 : subregions

pseudo-block

: nodes : logic-blocks

Fig. 6: Recursive process of partitioning a region.

4.4 Candidate Nodes for Technology Mapping

Technology mapping algorithm consists of three main compo-

nents: candidate selection, covering, and replication. They are
explained in Sections 4.4 - 4.6 respectively, and summarized in
Section 4.7. In this section, we determine which nodes in the
node set inside a subregion (nodes in B of Fig. 6) should be
assigned to slots on the cut-line.

Let G be a directed graph which is generated in such a way

that its nodes are associated with blocks (logic-blocks and pseudo-
blocks) on the boundary and the nodes inside the subregion.
Edges and their direction of G are the same as the input Boolean
network. Note that each block set on the subregion boundary
(A and C in Fig. 6) has been already partitioned into three sets
in Step 4. Then, an initial label is given to each node v corre-
sponding to a block on the subregion boundary according to its
assigned position as follows:

label(v) =

(
1 (upper side of the cut-line)

0 (lower side of the cut-line)
0:5 (on the cut-line)

The initial labels are propagated along directed edges of G,
and each node v is given a label labelf(v) (f of labelf(v) stands
for the forward direction) by the following expression.

labelf (v) =
X

u 2 I(v)

labelf (u)= j I(v) j

where I(v) denotes fanin nodes of v. labelf (v) is the mean value of
labels of I(v). Therefore, those labels are calculated with taking
connections between nodes into account.

The initial labels are also propagated in the reverse direction
of edges in a similar way in our algorithm. Let labelb(v) (b of
labelb(v) stands for the backward direction) be a label attached in
this direction to each node v. label(v) for each node v is calculated
by averaging labelf (v) and labelb(v). label(v) is considered to
indicate to which side of the cut-line v is better to be assigned.
The closer to 1 (resp., 0) label(v) is, the more likely v is better
to be assigned to the upper (resp., lower) side.

Based on label(v), each node of the node set B is expected to
be assigned to the upper side slots, the lower side slots, or slots
on the cut-line so as to balance the slot utilization. So, we sort
the nodes based on their labels. Then, we assign them to the
upper side slots, slots on the cut-line, and the lower side slots, in
the descending order of their labels, in proportion to the numbers

of slots of the three parts. Candidates for technology mapping
should be nodes which are expected to be assigned to the slots on
the cut-line. Let lmin and lmax be the minimum and maximum

labels of those nodes, respectively, and then nodes whose labels
satisfy the following inequality are decided to be the candidates

for mapping.

lmin � label(v) � lmax

4.5 Generation of a Feasible Cover

An algorithm for generating a cover is presented in this sec-
tion. Since the number of slots on the cut-line is �xed, one logic-

block should cover as many candidates as possible. So, some
nodes which are not candidates could be covered to obtain fea-

sible covers. Note that the number of inputs of each cover for
candidate nodes must not exceed k, since the number of inputs
for each logic-block is up to k. In the following, we propose an

algorithm which generates such covers by using the network ow
theorem. We use the terminology of [18].

A level (depth) of each node of the directed graph G is de�ned
in such a way that the level of nodes which have no incoming edges

is set to be 0, and the level of the other nodes is the maximum
level of the fanin nodes plus one. Let t be a node which is the
candidate for mapping and has the largest level. A cover of t will
include t and transitive fanins of t. So, If we start the covering
process from the node of the largest level, the cover is expected
to include the most candidate nodes.

Based on the directed graph G, we generate a graph G(t)

whose nodes are the node t, the transitive fanins of t which are
inside the subregion or on the subregion boundary, and an addi-
tional node s which is connected to nodes corresponding to blocks
on the subregion boundary, as in Fig. 7 (b). Fig. 7 shows an ex-

ample of k = 3 and bold circles indicate the candidates. To obtain
a feasible cover of t, we further generate GR(t) with capacities
from G(t) in the following way (see Fig. 8 (a)). Each edge of G(t)
corresponds to that of GR(t) with the capacity of in�nity. The
nodes s and t of GR(t) are the same as those of G(t). For each

node v of G(t) besides s and t, we generate two nodes, v1 and v2,
and connect them by an edge from v1 to v2 with the capacity of

one in GR(t). Incoming edges of v correspond to those of v1 and
outgoing edges of v correspond to those of v2.

ForGR(t), we will obtain the maximum ow from s to t. When
we bi-partition the nodes of GR(t) into two sets: one including s

t

t

s

(a) G

: nodes to be covered

: logic-blocks or pseudo-blocks

(b) G(t)

: nodes of the Boolean network

Fig. 7: Generation of G(t) (k = 3).

1

1

t

s

1 1
1

1 1
1

1
cut

1
1

1

1

s

1 1

1

Vc

cut

t

w

(a) (b)

1
1

11

flow

Fig. 8: Generation of a feasible cover of t by means of maximum
ow in GR(t).

and the other including t, the bi-partitioning line is called a cut
and the sum of the capacities of edges which cross the cut in the

direction from s to t is called a size of the cut. According to the
maximum ow minimum cut theorem, if the maximum ow is up

to k, a cut whose size is at most k exists. It is clear that the
edges which cross the cut in such a direction are at most k edges
with the capacity of one in GR(t). All the transitive fanouts for

each node in G(t) which is corresponding to one of those edges in
GR(t) form a feasible cover of t because at most k nodes are the

inputs of the cover. Since the input Boolean network is feasible,
the maximum ow with the size at most k exists.

To explain our procedure which computes the maximum ow,
we introduce a residual graph [18] �rst. Nodes of a residual graph
are the same as GR(t). For each edge of GR(t), if the value of
\the capacity of the edge - the ow of the edge" is more than zero,
we generate an edge of the same direction with the capacity of
the value. If the ow of each edge is more than zero, we generate

an edge with the reverse direction and the capacity of that ow.
Fig. 9 shows the residual graph of Fig. 8 (a) in which there are
two ows. A directed path between two nodes in the residual

graph is called an augmenting path.

The maximum ow is obtained by means of the augmenting
path method [18] as follows. In the residual graph of GR(t), we

�nd an augmenting path from s to t, and then increase the ow
by one along the path in GR(t). We repeat this process until no
augmenting paths exist from s to t. The ow is the maximum

one when no augmenting paths exist.

After obtaining the maximum ow by the above method,
Maple searches nodes from s in the residual graph (see Fig. 9).

Then, it generates a cut which bi-partitions nodes of GR(t) into
searched ones and unsearched ones. Generally, several minimum

cuts exist for one maximum ow. Since Maple searches nodes from
s, the number of searched nodes including s is minimum. Thus,

: nodes reachable from s

s

t
: nodes unreachable from s

1

1

1

11

1

1
1

1

1

11

11

11
1

Fig. 9: Residual graph for Fig. 8 (a).

the number of nodes included in the generated cover becomes
maximum.

If the maximum ow is less than k, more nodes could be cov-
ered. Let Vc be a set of nodes which do not correspond to blocks
on the subregion boundary and whose outgoing edge crosses the
cut. Maple tries to search more augmenting paths. Let w be
one of nodes of Vc whose label is in the range from lmin to lmax

(in case where there are no such nodes, a node whose label is
closest to this range). Then, an augmenting path from s to w

is searched (Fig. 8 (b)). When there exist no augmenting paths
from s to w, it means that the node w is covered. In such a case,
we search the residual graph of GR(t) from s and generate a cut

which bi-partitions nodes of GR(t) in the same way as described
above.

The above process is repeated until we �nally �nd k augment-
ing paths or the generated cover includes all the nodes of G(t)
except nodes corresponding to blocks on the subregion boundary.

The generated cover may include some nodes which are not
candidates for technology mapping. Such nodes are expected to
be excluded from the cover. If there are such nodes, we apply the

following operation for each of the nodes in the ascending order
of their levels. First, we assume to exclude the node from the

cover. If the cover remains feasible, the node is really excluded.
Otherwise, the node is still included in the cover.

The above algorithm is summarized as follows.

[Algorithm for Generating a Feasible Cover]

Step 1. For a node t, generate a directed graph GR(t). Let
Vc = ftg.

Step 2. Let w be one of nodes of Vc whose label is in the range

from lmin to lmax. If there are no such nodes, a node whose label
is closest to this range is chosen.

Step 3. In the residual graph of GR(t), search an augmenting
path from s to w, and increase the ow by one along the path in
GR(t). Repeat this path search until there exist no such paths

or the total number of searched paths becomes k. If the total
number of searched paths becomes k, go to Step 5.

Step 4. Search nodes from s in the residual graph of GR(t).
Then, generate a cut which bi-partitions its nodes into searched
ones and unsearched ones. Let Vc be a set of nodes which do

not correspond to blocks on the subregion boundary and whose
outgoing edge crosses the cut. If Vc is not empty, go to Step 2.

Step 5. Let a cover of t be nodes in G(t) other than those
which generate the nodes reachable from s in the residual graph
of GR(t). For the nodes in the cover, if there are some nodes
which are not candidates for technology mapping, try to exclude
them from the cover.

The above process is terminated when at most k augmenting

paths are obtained. An augmenting path is obtained, once all the
nodes of GR(t) are searched. Therefore, the time complexity of

generating a cover of a node t is proportional to the number of
nodes in the subregion, i.e., the size of G.

4.6 Replication and Label Updating

Since each cover corresponds to one logic-block, the number
of its output must be one. In a cover of t, all the nodes which
have outputs other than t need to be replicated (Fig. 10 (a), (b)).

Let Vt be a set of nodes included in the cover of t. Let v be a
node in Vt other than t whose outgoing edge is connected to an
outside node. The node v and its transitive fanins are replicated.
Each replicated node has outgoing edges to the original node's
fanouts which are not in Vt and incoming edges from the original
node's fanins. The replication is executed in the descending or-
der of levels of nodes which need to be replicated. By following
this order, we can replicate nodes which have outgoing edges to
already replicated nodes e�ciently. When we obtain a cover of
t and replication for it, the cover, i.e., Vt is represented by one
logic-block t as in Fig. 10 (c).

Maple utilizes the labels described in Section 4.4. So, we give
a label to each of generated logic-blocks and replicated nodes.
Labels are given to them by propagating labels of neighbors.

The directed graph obtained by the above process is logically
equivalent to the initial Boolean network, and then we repeat the
above process for this graph.

t t

t

cover

(a) (b)

(c)

Fig. 10: Replication.

4.7 Mapping Algorithm

The mapping algorithm in Maple is summarized according to
Sections 4.4 - 4.6.

[Mapping Algorithm]

Step 1 (Section 4.4). Sort nodes inside the subregion in the
descending order of their labels and determine the range of labels
(lmin � label � lmax) of the nodes which should be assigned to
slots on the cut-line.

Step 2. For a directed graph G generated by blocks on the

subregion boundary and nodes inside the subregion, let t be an
uncovered node inside the subregion which has the largest level
within the range of Step 1. If there exist no such nodes, halt.

Step 3 (Section 4.5). Obtain a cover of the node t.
Step 4 (Section 4.6). Replace the cover of t with a logic-block

t, and make replications. Give labels to the generated logic-block
and nodes. Go to Step 2.

4.8 Node Set Partitioning

Each generated logic-block should be assigned to a slot on the

cut-line. However, in case where the number of such logic-blocks
is over the number of slots on the cut-line, logic-blocks whose

Fig. 11: Layout result for duke2.

labels are closer to 0.5 are assigned to the slots on the cut-line
�rst. If there are logic-blocks which cannot be assigned, we put
such logic-blocks back to uncovered nodes. Then, we assign them
with other nodes in G to slots of the upper and lower side of

the cut-line, in the descending order of their labels, in proportion
to the number of slots of each region. This process achieves a

partition such that nets tend not to cross the cut-line, thus leads
to less congested (fewer tracks per channel) layout.

4.9 Computational Complexity

Let the number of slots on an FPGA chip be L�L, the number
of nodes of a Boolean network be Nn, and the number of pseudo-
blocks generated in the whole process beNp. If T is the maximum

number of tracks per channel, Np is at most O(L2 �T). Let N be
Nn +Np.

Maple is based on top-down hierarchical bi-partitioning. Each
subregion has a level of the hierarchy. The level of the entire

layout region is one. If the subregion with the level of i is bi-
partitioned, each of bi-partitioned subregions has the level of (i+

1). It must be clear that the level of unit-cells is O(logL).

At each level of hierarchy, since the number of candidate nodes
for mapping is at mostO(Nn) and a cover of each node is obtained
in O(N) time, the mapping process requires O(Nn � N) time.

Labeling and assignment of nets to terminals require O(N) time
and sorting requires O(N logN) time at each level.

From the above discussion, since the algorithm requiresO(Nn�

N + N logN) at each level, the time complexity of Maple is
O(N(logN +Nn) logL).

The space complexity is clearly O(N).

5 Experimental Results

Maple is implemented on SUN Sparc Station 2 (28.5 MIPS) in
C language and applied to MCNC benchmark circuits shown in
Table 1. Fig. 11 shows the outcome for the circuit duke2 obtained
by Maple. In Fig. 11, logic-blocks and switch-blocks are shown
as solid and dashed boxes, respectively. Bold boxes indicate the
slots on which logic-blocks are placed. Global routes of some nets
are also shown.

We have compared four algorithms, i.e., Maple and three con-
ventional algorithms.

Algorithm 1: After technology mapping (decomposition and
covering) using mis-pga(new) [15], we execute SA based
pairwise exchange placement [12] followed by hierarchical
global routing [13]. The objective of mis-pga(new) is to

minimize the number of logic-blocks. In SA, the objective
is to minimize the estimated total wire length, where the

estimated wire length of each net is the half perimeter of
the minimum rectangle surrounding all the terminals of the
net. The hierarchical global routing [13] aims at minimizing
the total wire length and attening routing congestion.

Algorithm 2: After technology mapping using mis-pga(new),
we execute min-cut placement followed by hierarchical
global routing [13]. For min-cut placement, the algorithm
proposed in [2] is applied.

Algorithm 3: After technology mapping using mis-pga(new),
we execute simultaneous placement and global routing [19].

Maple: After generating a feasible Boolean network by the
decomposition in mis-pga(new) (we used a command
xl split), we execute Maple.

For the experiments, the number of slots in the FPGA model
is determined in such a way that, after technology mapping (de-
composition and covering) by mis-pga(new), the logic-block uti-
lization (except I/O blocks) becomes close to but no more than
80%, as in Table 1, where the utilization is the number of used
logic-blocks divided by the number of slots. This is because, if
the logic-block utilization is over 80%, the routing congestion is
much increased and it is known from experiences that all nets
cannot be routed in the prefabricated tracks in an FPGA chip
[17].

Tables 2 - 5 show the experimental results. In the tables, #lb
denotes the number of logic-blocks. #t denotes the maximum
number of tracks per channel to require to do global routing for

all nets. wl denotes the total number of tracks occupied by the
nets. CPU time is shown in the form of \time for technology

mapping" + \time for placement" + \time for global routing" in
Tables 2 and 3, and \time for technology mapping" + \time for

placement and global routing" in Table 4.

From the results for the same chip-size of each circuit, though
the total wire length by Maple is more than that by conventional

algorithms, the maximum number of tracks per channel by Maple

is 25% less than that of the algorithm 1, 39% less than that of

the algorithm 2, and 12% less than that of the algorithm 3. This
implies that routing congestion is more reduced by design which

takes the layout information into account from higher phases.
The reduction of tracks per channel is more outstanding in larger
circuits. CPU time of Maple is short enough compared with the

sum of CPU times of several phases in conventional algorithms.

The numbers of slots and tracks per channel of FPGA chips

are prede�ned. In the conventional design, we need to limit the
logic-block utilization to less than 80% in order to route all the
nets of a circuit in prede�ned tracks [3],[17]. Therefore, how much
we can reduce routing congestion, i.e., minimizing the maximum
number of tracks per channel, with utilizing all the slots on a
chip is quite important for routing given nets without leaving any
unrouted nets. The experimental results show that the conven-

tional approaches that emphasize only on minimizing the num-
ber of logic-blocks cause the increase of routing congestion. On
the other hand, Maple generates 20% more logic-blocks than the
conventional algorithms by technology mapping based on require-
ments of placement and global routing, and makes good use of

those logic-blocks in terms of the decrease in tracks per channel.

From the above discussion, it is shown that Maple is e�cient
and e�ective.

6 Conclusions

We have proposed Maple, a simultaneous technology mapping,

placement, and global routing algorithm for FPGAs. Maple pro-
duces layout which is less congested by generating logic-blocks

based on placement and global routing information. Experimen-
tal results show its e�ciency and e�ectiveness.

For the paths of which timing is critical, Maple can reduce their
delays by the covering which covers them with fewer logic-blocks
and the node partitioning such that they cross fewer cut-lines
which lead a reduction of switch-blocks. For the circuits in the
above experiments, delay constrains have been imposed on several
paths. #cp and dmax of Table 1 denote the number of paths with
the constraints and the delay constraints, respectively. Tables 5
and 6 show that Maple with path delay constraints has achieved
no constraints violations except for two circuits.

Table 1: Benchmark circuits.

circuit #i #o #slots #cp dmax

alu2 10 6 16 � 16 4 177
alupla 25 5 9 � 9 12 48
bw 5 28 11 � 11 18 124

duke2 22 29 16 � 16 4 87
f51m 8 8 9 � 9 30 101
misex1 8 7 7 � 7 4 24
misex3 14 14 17 � 17 16 200
misex3c 14 14 17 � 17 12 218
rd73 7 3 6 � 6 20 31
rd84 8 4 8 � 8 3 38
term1 34 10 12 � 12 25 82
vg2 25 8 10 � 10 4 29

#i: number of primary inputs, #o: number of primary outputs, #cp:
number of paths with maximum permissible delay constraints, dmax :
maximum permissible delay for the paths with constraints

Table 2: Algorithm 1 (mis-pga(new) + SA based placement +
hierarchical global routing).

circuit #t #lb wl CPU time [s]
alu2 15 152 1537 434.1 + 9518.9 + 4.40
alupla 11 68 367 50.5 + 218.1 + 0.73
bw 9 91 524 25.1 + 2477.9 + 0.74

duke2 20 192 2244 341.2 + 8551.8 + 7.56
f51m 7 51 233 33.9 + 516.9 + 0.37
misex1 4 28 75 7.9 + 86.1 + 0.05
misex3 16 190 2086 430.9 + 19712.5 + 7.13
misex3c 20 189 2010 248.9 + 18173.4 + 9.33
rd73 4 23 72 36.9 + 49.7 + 0.07
rd84 7 33 153 98.1 + 219.4 + 0.19
term1 10 110 663 72.6 + 5773.2 + 1.45
vg2 5 59 193 10.9 + 1298.1 + 0.39
total 128 1186 10157 1791.0 + 66596.0 + 32.41
ratio 1.00 1.00 1.00 {

#t: maximum number of tracks per channel, #lb: number of logic-
blocks, wl: total wire length

Table 3: Algorithm 2 (mis-pga(new) + min-cut placement + hi-
erarchical global routing).

circuit #t #lb wl CPU time [s]
alu2 17 152 1607 434.1 + 25.41 + 5.95
alupla 11 68 369 50.5 + 1.52 + 0.38
bw 14 91 649 25.1 + 2.78 + 0.85

duke2 23 192 2275 341.2 + 26.65 + 8.39
f51m 11 51 268 33.9 + 0.76 + 0.34
misex1 4 28 80 7.9 + 0.18 + 0.07
misex3 21 190 2305 430.9 + 36.33 + 10.02
misex3c 22 189 2214 248.9 + 37.18 + 9.96
rd73 6 23 72 36.9 + 0.12 + 0.08
rd84 9 33 148 98.1 + 0.40 + 0.18
term1 12 110 755 72.6 + 6.40 + 1.14
vg2 6 59 267 10.9 + 2.12 + 0.31
total 156 1186 11007 1791.0 + 139.85 + 37.67
ratio 1.22 1.00 1.08 {

Table 4: Algorithm 3 (mis-pga(new) + simultaneous placement
and global routing).

circuit #t #lb wl CPU time [s]
alu2 14 152 1515 434.1 + 1.56
alupla 8 68 381 50.5 + 0.37
bw 10 91 609 25.1 + 0.64

duke2 13 192 1846 341.2 + 1.94
f51m 7 51 227 33.9 + 0.20
misex1 4 28 75 7.9 + 0.14
misex3 15 190 1931 430.9 + 1.97
misex3c 15 189 1834 248.9 + 1.97
rd73 4 23 70 36.9 + 0.10
rd84 6 33 136 98.1 + 0.22
term1 9 110 761 72.6 + 0.83
vg2 5 59 331 10.9 + 0.33
total 110 1186 9716 1791.0 + 10.27
ratio 0.86 1.00 0.96 {

Table 5: Maple without path delay constraints.

circuit #t #lb wl CPU time [s] #v d

alu2 13 192 1740 5.7 + 3.58 4 209
alupla 7 78 386 0.8 + 0.82 12 57
bw 8 105 602 1.6 + 1.12 5 145

duke2 12 235 2264 4.7 + 4.90 4 103
f51m 7 63 323 1.3 + 0.81 14 119
misex1 4 34 79 0.4 + 0.28 4 28
misex3 11 236 2145 6.2 + 4.14 7 236
misex3c 11 231 2101 6.0 + 4.86 3 257
rd73 4 23 60 0.6 + 0.16 10 37
rd84 6 41 156 0.7 + 0.38 3 45
term1 9 136 838 1.9 + 1.54 10 97
vg2 5 69 297 0.9 + 0.48 4 35
total 96 1443 10991 30.8 + 23.07 80 1368
ratio 0.75 1.21 1.08 { { 1.00

CPU time of Maple is shown in the form of \time for xl split" +
\time for Maple," where xl split is the command in mis-pga which
decomposes the input Boolean network and makes the number of the
inputs of all nodes no more than k(= 4) as preprocessing.

Table 6: Maple with path delay constraints.

circuit #t #lb wl CPU time [s] #v d

alu2 13 190 1945 5.7 + 10.92 0 171
alupla 7 75 382 0.8 + 1.17 1 52
bw 9 102 633 1.6 + 2.97 0 122

duke2 12 230 2144 4.7 + 5.65 0 87
f51m 8 61 319 1.3 + 3.07 1 105
misex1 4 37 90 0.4 + 0.35 0 24
misex3 11 231 2282 6.2 + 18.22 0 200
misex3c 11 235 2204 6.0 + 15.48 0 218
rd73 4 23 65 0.6 + 0.20 0 31
rd84 6 39 162 0.7 + 0.43 0 38
term1 10 137 888 1.9 + 4.03 0 82
vg2 5 67 334 0.9 + 0.71 0 29
total 100 1427 11448 30.8 + 63.20 2 1159
ratio 0.78 1.20 1.13 { { 0.85

The delays of one switch-block and one logic-block are set to one and
three, respectively. The delay of each path is computed as the sum of
the delays by logic-blocks and switch-blocks on the path. The path
delay constraint dmax of Table 1 is set to be 85% of the maximum
delay obtained by Maple without constraints. v is the number of
violations for constraints. d is the maximum delay of the paths with
constraints.

References
[1] N. B. Bhat and D. D. Hill, \Routable Technology Mapping

for FPGA's," Proc. ACM/SIGDA Int. Workshop on FPGAs
(FPGA'92), pp. 143-148, Feb. 1992.

[2] M. A. Breuer, \Min-Cut Placement," J. Design Automation
and Fault Tolerant Computing, Vol. 1, No. 4, pp. 343-362,
1977.

[3] S. D. Brown, R. J. Francis, J. Rose and Z. G. Vranesic, Field-
Programmable Gate Arrays, Kluwer Academic Publishers,
1992.

[4] C. -S. Chen, Y. -W. Tsay, T. T. Hwang, A. C. H. Wu and
Y. -L. Lin, \Combining Technology Mapping and Placement
for Delay-Optimization in FPGA Designs," Proc. ICCAD-
93, pp. 123-127, 1993.

[5] J. Cong, Y. Ding, A. Kahng, P. Trajmar and K. C. Chen,
\An Improved Graph-Based FPGA Technology Mapping for
Delay Optimization," Proc. 1992 IEEE Int. Conf. on Com-
put. Design, pp. 154-158, 1992.

[6] J. Cong and Y. Ding, \An Optimal Technology Mapping
Algorithm of Delay Optimization in Lookup-Table Based
FPGA Designs," Proc. ICCAD-92, pp. 48-53, 1992.

[7] R. J. Francis, J. Rose and K. Chung, \Chortle: A Technol-
ogy Mapping Program for Lookup Table-Based Field Pro-
grammable Gate Arrays," Proc. 27th DA Conf., pp. 613-619,
1990.

[8] R. J. Francis, J. Rose and Z. Vranesic, \Chortle-crf: Fast
Technology Mapping for Lookup Table-Based FPGAs,"
Proc. 28th DA Conf., pp. 227-233, 1991.

[9] R. J. Francis, J. Rose and Z. Vranesic, \Technology Map-
ping of Lookup Table-Based FPGAs for Performance," Proc.
ICCAD-91, pp. 568-571, 1991.

[10] H. -C. Hsieh, W. S. Carter, J. Ja, E. Cheung, S. Schreifels,
C. Erickson, P. Freidin, L. Tinkey and R. Kanazawa, \Third-
Generation Architecture Boosts Speed and Density of Field-
Programmable Gate Arrays," Proc. IEEE 1990 Custom In-
tegrated Circuits Conf., pp. 31.2.1-31.2.7, 1990.

[11] K. Kawana, H. Keida, M. Sakamoto, K. Shibata and I.
Moriyama, \An E�cient Logic Block Interconnect Archi-
tecture for User-Reprogrammable Gate Array," Proc. IEEE
1990 Custom Integrated Circuits Conf., pp. 31.3.1-31.3.4,
1990.

[12] S. Kirkpatric, C. D. Gelatt, Jr. and M. P. Vecchi, \Opti-
mization by Simulated Annealing," Science, Vol. 220, No.
4598, pp. 671-680, 1983.

[13] U. P. Lauther, \Top Down Hierarchical Global Routing
for Channelless Gate Arrays Based on Linear Assignment,"
Proc. VLSI '87, pp. 109-120, 1987.

[14] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton and A.
Sangiovanni-Vincentelli, \Logic Synthesis for Programmable
Gate Arrays," Proc. 27th DA Conf., pp. 620-625, 1990.

[15] R. Murgai, N. Shenoy, R. K. Brayton and A. Sangiovanni-
Vincentelli, \Improved Logic Synthesis Algorithms for Ta-
ble Look Up Architectures," Proc. ICCAD-91, pp. 564-567,
1991.

[16] R. Murgai, N. Shenoy, R. K. Brayton and A. Sangiovanni-
Vincentelli, \Performance Directed Synthesis for Table Look
Up Programmable Gate Arrays," Proc. ICCAD-91, pp. 572-
575, 1991.

[17] M. Schlag, J. Kong and K. Chan, \Routability-Driven Tech-
nology Mapping for Look Up Table-Based FPGAs," Proc.
1992 IEEE Int. Conf. on Comput. Design, pp. 86-90, 1992.

[18] R. E. Tarjan, Data Structures and Network Algorithms, Mc-
Graw Hill, 1983.

[19] N. Togawa, M. Sato and T. Ohtsuki, \Simultaneous Place-
ment and Global Routing Algorithm for FPGAs," Proc. IS-
CAS'94, pp. 483-486, 1994.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

