
Delay and Area Optimization for Compact Placement

by Gate Resizing and Relocation

Weitong Chuang
AT&T Bell Laboratories

600 Mountain Ave.
Murray Hill, NJ 07974

Ibrahim N. Hajj
Dept. of Electrical & Computer Eng.

and Coordinated Science Lab.
University of Illinois

Abstract

In this paper, we �rst present an e�cient algorithm for the
gate sizing problem. Then we propose an algorithm which
performs delay and area optimization for a given compact
placement by resizing and relocating cells in the circuit lay-
out. Since the gate sizing procedure is embedded within the
placement adjustment process, interconnect capacitance in-
formation is included in the gate size selection process. As
a result, the algorithm is able to obtain superior solutions.

1 Introduction

A standard cell library typically contains several ver-
sions of any given gate type, each of which has a di�erent
gate size with di�erent driving capacity. The gate sizing
problem is that of choosing optimal gate sizes from the
library to minimize a cost function (such as total circuit
area), while meeting the timing constraints. This is usually
done after technology mapping, where the logic function
of each gate is determined, and before placement. A draw-
back of such an approach is that accurate interconnect
wire lengths are not available during the gate sizing pro-
cedure. The gate size selected optimally at that stage may
no longer be optimal after the physical design stage where
large interconnect capacitances are introduced at the out-
put of each gate. This problem is emerging as the size of
today's VLSI circuits become increasingly larger, the de-
lays of a circuit become dominated by interconnect delays.
To deal with this problem, it is desirable that gate sizing
and placement be incorporated into a single procedure.

In this paper, we �rst present an e�cient algorithm for
the gate sizing problem. Then we propose an algorithm
which combines the gate sizing problem and timing-driven
placement into one procedure. By considering these two
problems together, the value of interconnect capacitance
is known during the selection stage of the automatic sizing
procedure. Therefore, optimal gate sizes can be chosen for
each gate based on layout information. In this work, we use
row-based layout style. In the following, the terminologies
\gate" and \cell" are used interchangeably. Both refer to
a module in the circuit.

2 Automatic Gate Sizing

The sizing problem can formulated as

minimize Area

subject to Delay � Tspec: (1)

In the discrete gate sizing problem for standard-cell
based designs, only a limited number of choices are avail-
able for each gate. This problem has been shown to be
NP-complete [1].

2.1 Delay modeling

The delay of a gate gi, denoted by di, in a standard cell
library can be expressed by

di = R
i
out �C

i
out + �i =

Ru

wi

�C
i
out + �i1 �wi + �i2 (2)

Ri
out is the equivalent output resistance of gi, Ci

out is
the output load capacitance of gi, Ru represents the on-
resistance of a unit transistor, �i is the intrinsic delay of
the gate, wi is called the nominal gate size of gi. Therefore,

the delay of each gate can be parameterized by a number,
w, referred to as the (nominal) gate size.

The output load capacitance of logic gate j (size = wj)
as seen by logic gate i can be approximated by [2]

cap(i; j) = �ij � wj + �ij (3)

Based on (2) and (3), we deduce that the delay of a gate
is a sum of functions of the form g(w; z) = z=w; the nu-
merator is proportional to the size of the gate to be driven,
and the denominator is proportional to that of the driv-
ing gate. It can be observed that the function z=w is fairly
smooth and \nearly" convex. It follows that the gate delay
D(wi; w1; : : : ; wf) of gate gi with size wi, and fanout gate
sizes w1 � � �wf can be approximated by a convex piecewise
linear function with q regions, (R1; � � � ;Rq), as follows [2]:

di = D̂(wi; w1; � � � ; wf)

=

8><
>:
â1wi + b̂1;1w1 + � � �+ b̂1;fwf + ĉ1; (wi; w1 � � �wf) 2R1

...

âqwi + b̂q;1w1 + � � �+ b̂q;fwf + ĉq; (wi; w1 � � �wf) 2Rq

= max
1�i�q

(âiwi + b̂i;1w1 + � � � b̂i;fwf + ĉi)

8 (wi; w1 � � �wf) 2
S

1�i�q
Ri (4)

2.2 Formulation of the linear program

The delay speci�cation states that all path delays must
be bounded by Tspec. Since the number of PI-PO paths
could be exponential, the set of constraining delay equa-
tions could potentially be exponential in number. We thus
introduce additional variables, mi, i = 1 � � � M (M =
number of gates), to reduce the number of constraints; mi

corresponds to the worst-case delay from the primary in-
puts to the output of gate i. Using these variables, for each
gate i with delay di, we havemj+di � mi;8 j 2 Fanin(i):
We now formulate the linear program as

minimize
PM

i=1

i �wi

subject to For all gates i = 1 � � �M
mj + di �mi8 j 2 Fanin(i)

mi � Tspec8 gates i at PO
0s

di � D̂(wi; wi;1; � � � ; wi;fo(i))
Minsize(i) � wi �Maxsize(i)

(5)
where
i is the area coe�cient, a constant associated with
gate i. The area of gate i is
i �wi if gate i has size wi.

2.3 Mapping algorithm

The set of permissible sizes for gate i is Si =
fwi;1 � � �wi;pig, where pi is the cardinality of Si. In gen-
eral, the solution of the linear program provides a gate
size wi 62 Si. If so, we consider the two permissible gate
sizes that are closest to wi; we denote the nearest larger
(smaller) size by wi+ (wi�).

We formulate the following smaller problem:

For all i = 1 � � �M : Select wi = wi+ or wi�

such that Delay � Tspec.

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0145 $3.50

Although the complexity has been reduced from
O(
QM

i=1
pi) to O(2M), this is still an NP-complete prob-

lem. In this section we present an implicit enumeration
algorithm for mapping the gate sizes obtained using linear
programming onto permissible gate sizes.

The rationale behind our enumeration algorithm is
based on the following observation. Given the solution
of the linear programming, the majority of the gates re-
main at their smallest sizes. Only a small portion of the
gates in the circuit are moved to a larger size. This may be
explained as follows. For a typical circuit, although there
may be a huge number of long paths, the number of gates
on these long paths are, in general, relatively small.

Based on this observation, during the implicit enumer-
ation procedure we may ignore those gates which are as-
signed to have their smallest size by the solution of the
linear programming, and concentrate on those gates that
have been assigned larger sizes in the LP solition and are
probably on long paths. We call them critical gates.

We modify the circuit topology by adding a source node
so and a sink node si [3]. A dummy edge is added from
node so to each of the input nodes and from each of the
output nodes to the node si. Next, for each gate i we
de�ne max-delay-to-sink, denoted by mds(i), to be the
maximum of the delays of all the possible paths start-
ing from gate i to the sink node si. That is mds(i) =
maxj2fo(i)fmds(j) + djg

A breadth-�rst search is applied to levelize the circuit
from the sink node backwards. The level of a gate gi in this
levelization is called its backward circuit level, c level(gi).
By de�nition, c level(si) = 0. Starting from si, we form
a state space tree by implicitly enumerating critical gates.
During the enumeration, non-critical gates remain at their
minimum size and need not be enumerated. Each level in
the state space tree corresponds to a critical gate. The
corresponding critical gate of level i is gate k. We also
de�ne a function F(i), which is used to indicate the cor-
responding critical gate of level i. Therefore, if gate k is
the corresponding critical gate of level i, then k = F(i).
Similarly, the corresponding level of a critical gate k in the
state-space tree is called the gate's tree level, t level(k).
Therefore t level(F(i)) = i. Each node at level i in the
state-space tree is a cell con�guration, which represents a
possible realization of its corresponding gate. Let C(i; j)
denote the jth node at level i, and anc(i; j) be its ancestor
node.

De�nition 1 A cell con�guration, C(i; j) is a triple
(Wij ;Aij;Dij),

Wij = WC(i;j) 2 fwF(i)+; wF(i)�g,
Aij = AC(i;j) =
F(i) �Wij + Aanc(i;j),
Dij = DC(i;j) = max fmds(k)g, where k is a gate in

the circuit (not necessarily a critical gate),

which satis�es c level(k) = c level(F(i)) + 2.

Aij is called the accumulated area from the root to C(i; j).
(Notice that
F(i) �Wij is the cell area of gate F(i), given
that its size is Wij .)

In the state space tree, each node has no more than two
successors since there are at most two choices for the gate
size. The root of the tree is, by de�nition, assigned a null
cell con�guration (0; 0; 0). We begin with the critical gate
that has the smallest backward circuit level, and implicitly
enumerate the two possible realizations of each gate F(i),
wF(i)+ and wF(i)�.

1 The delay of each gate is dependent
on its own size and on the size of the gates that it fans out
to. Therefore, once gF(i) has been enumerated, the delay

1If there are more than one critical gate which have the same

backward circuit level, one of them is randomly chosen.

associated with the predecessor of gF(i) can be calculated,
and the remaining critical gates can be enumerated.

During enumeration, it is possible to prune the
search space. A node C(i ; j) with a cell con�guration
(Wij;Aij ;Dij) is bounded if there is a cell con�guration,
(Wik;Aik;Dik), at the same level of the tree such that

(1) Aik � Aij and Dik < Dij, or

(2) Aik < Aij and Dik � Dij.

After all of the critical gates have been implicitly enu-
merated, we keep calculating max-delay-to-sink for each
remaining gate. However, since non-critical gates have
�xed sizes, no enumeration is necessary. Rather, we sim-
ply propagate the values toward the source node. For each
leaf node of the state space tree, the max-delay-to-sink of
the source node corresponding to that node is calculated
and denoted by D0

ij . The cell con�guration which has the
largest D0

ij, and satis�es D0
ij � Tspec is selected. By per-

forming a trace-back from the selected leaf node to the
root of the tree, the size of each critical gate is determined
from the cell con�gurations at each traversed node.

3 Timing-DrivenPlacementwith Gate Sizing

A circuit can be modeled as a set of M gates (cells),
G = fg1; � � � ; gMg, interconnected by a set of N nets, N =
fn1; � � � ; nNg, that attach to the cells at pins. For the
sake of better description, we assume that all gates in the
circuit are of single-output. Therefore, net ni is associated
with gate gi. Hence the same index i can be referred to
both a gate and a net. The physical location of a cell i
on the chip is represented by (xi; yi), where xi (yi) is the
x (y) coordinate of the center of cell i. The position of a
pin is represented by the location of the cell to which the
speci�c pin belongs. The positions of I/O pads are �xed
and located on the perimeter of the chip. These constraints
act as the boundary conditions.

There are three categories of constraints in our LP for-
mulation; namely physical, timing, and sizing constraints.

3.1 Physical constraints

We approximate the wire length of an individual net by
the half-perimeter of the smallest rectangle enclosing the
pins of the net [4]. The bounding box for net i is denoted
by four parameters, the northern most (�i), southern most
(�i), eastern most ("i), and western most (!i) extents of
the pins of the net. Mathematically, the bounding box
constraints can be expressed as follows. "i � xij ; !i �
xij; �i � yij ; �i � yij; 8 1 � j � pi, where pi is the
number of pins associated with net i, j is a pin of net i.

Let Ch and Cv denote the unit length wire capacitance
in horizontal and vertical layers, respectively. Then the
interconnect capacitance, Ci, of net i can be estimated by
Ci = Ch("i � !i) + Cv(�i � �i). Similarly, the length of
net i, li, is li = ("i � !i) + (�i � �i). Therefore the total
wire length is

PN

i=1
li.

3.2 Timing and sizing constraints

The delay of gate gi can be contributed to loading ca-
pacitance of its fanout gates, plus wire capacitance of its
fanout net ni. Let CL

i
ij represent the loading capacitance

of gate gij as seen by gi. Then the delay of gate gi is

di =
Ru

wi

� (Ci +
P

j2fo(i)
CLiij) (6)

=
Ru

wi

� fCh("i � !i) +Cv(�i � �i) +
X

j2fo(i)

(�ij �wij + �ij)g

where fo(i) is the fanout set of gate i. As in section 2.1,
this is a sum of functions of the form z=w. Therefore, it
can be approximated by a piecewise linear function.

3.3 Objective function

The objective function of our optimization problem can
be formulated as

min (
PM

i=1

i �wi +� �

PN

i=1
li) (7)

where li is the length of net i, � is a constant that is
related to the sum of the width of interconnect wire and
the minimum distance between two adjacent wires.

The objective function in this formulation represents
two important quantities to be minimized in physical de-
sign. The �rst term is the total area of cells. The second
term represents the total area taken by interconnect wires.

3.4 Final LP

After introducing the constraints and objective func-
tion, we are in a position to formulate the following linear
programming.

minimize (
P

M

i=1

i �wi +� �

P
N

i=1
li)

subject to For all gates i = 1 � � �M
mj + di �mi 8 j 2 Fanin(i)
mi � Tspec 8 gates i at PO0s

di � ~D(wi; wi;1; � � � ; wi;fo(i); "i; !i; �i; �i)
Minsize(i) � wi �Maxsize(i)
"i � xij; !i � xij; �i � yij ; �i � yij

8 1 � j � pi (8)

The above is a linear program in the variables
wi;mi; di; xi; yi; "i; !i; �i, and �i.

4 A Uni�ed Algorithm for Adjusting Place-
ment and Gate Sizing

Although it is possible to solve Eq.(8) directly, due to
the large number of variables and constraints, the execu-
tion time may be excessively large. In this section, we
present an algorithm which tackles this problem indirectly.

Timing-driven placement algorithms generally require
that gate sizes be selected before placement procedure; and
gate sizes are �xed during placement [4, 5]. This imposes
a restriction on the placement tool in searching for a good
placement with minimum wire length. On the other hand,
although conventional placement tools can obtain place-
ment with minimal wire length, the delay of the circuit
based on that placement may exceed timing constraints.
Recently, it has been suggested that a placement which
violates the timing constraint could be made to satisfy de-
lay bound by adjusting sizes of some gates, followed by
altering the placement in an iterative loop [6]. However,
if gate sizing is separated from the placement procedure,
excessively large loading capacitances may have been in-
troduced to cells on critical paths for a given placement.
In that case, any resizing e�ort will not be able to obtain a
solution. However, if, in addition to gate resizing, cells are
allowed to move to di�erent locations at the same time,
large wiring capacitances introduced by placement could
be reduced. That way, it becomes possible to obtain so-
lutions even for tight delay constraints. In the following,
we propose an algorithm which combines gate resizing and
relocation in one procedure to satisfy timing constraints
for a given compact placement; in the meanwhile the total
circuit area (including cell area and wire length) is kept
minimum.

First, all of the gates in the circuit are set to their min-
imum sizes. A compact placement is obtained with the
objective of minimizing total wire length. This can be
done by using existing placement packages. After that,
wiring capacitance associated with the output of each gate
is calculated. Based on this information, together with the
circuit structure, optimal gate sizes are selected using the

ALGORITHM Resizing & Relocation()
1. do initial placement;
2. do initial gate sizing for all cells;

3. while (timing constraints not satisfied) f
4. select gates belonging to type 1, 2, and 3;
5. formulate LP (Eq. 8) for these gates;

(remaining cells serve as boundary conds.)
6. solve the LP;
7. use mapping algorithm (sec.2.3) to obtain

permissible size for each gate;
8. adjust cell locations to avoid overlap;
9. g

10. report final placement;
Figure 1: Resizing & Relocation algorithm.

gate size optimization algorithm described in section 2. In
general, some gates will be selected to have larger sizes.
This may cause overlap between cells. This problem can
be solved by shifting cells to avoid overlap. In general,
however, the perturbation on the delay of individual gate
may cause the circuit delays to exceed delay constraints.
Once the algorithm detects such delay violations, a num-
ber of gates are selected as described below. These gates
will be resized and/or moved to di�erent locations in or-
der to satisfy time constrains and to minimize total circuit
area (including cell area and wire length). The outline of
our algorithm is shown is Figure 1.

We introduce the required signal arrival time, ri. The
required signal arrival time, as de�ned below, is the latest
time a signal has to be present at the output of gate i in
order to satisfy delay constraints at POs.

ri =

�
Tspec; if gate i at PO
maxfrj � dj j 8 j 2 Fanout(i)g; otherwise (9)

For each gate i, we also de�ne a slack si = ri �mi: An
active gate i is a gate with si < 0. The timing of a circuit
layout is said to be satis�ed if and only if si � 0 for every
gate i in the circuit.

The uni�ed optimization algorithm begins by calculat-
ing the slack of each gate. Then three types of gates are
selected for improvement.

1. The �rst type is active gates. These gates will be
allowed to change their sizes and to move to new lo-
cations.

2. The second type involves those gates with nonnega-
tive slacks less than a small speci�ed value, �. During
this phase output load capacitances of certain gates
will be perturbed, which results in delay changes.
Therefore, it is advantageous to include those gates
with small nonnegative slacks in the formulation to
avoid additional iteration.

3. The third type of gates includes those that are di-
rectly connected to the outputs of active gates. This
is because in order to reduce the delays of those active
gates, besides changing their sizes, can also be accom-
plished by reducing their output load capacitances.

Gates belonging to types 1, 2, and 3 are put into the
linear program, Eq.(8), and a new solution is obtained.
In principle, to obtain a better solution, it is necessary to
include all three types of gates in the linear program. In
practice, however, to maintain the e�ciency of the pro-
gram, it is necessary to limit the number of gates to be
included. Since many gates' locations are �xed, they serve
as boundary conditions for physical constraints. To avoid
drastically changing the solution, each selected gate is al-
lowed to change to its nearest larger or smaller size only.

The solution of a such formulated linear program gives
a new size and a new position for each selected cell. The

Table 1: Performance comparison of GALANT with simulated annealing.
Circuit gates Tspec Simulated Annealing GALANT

Area Runtime Area Runtime AG=ASA

(ASA) (AG)
c432 160 16.0 2372 19m 53s 2376 4.82s 1.002

14.0 2515 21m 17s 2515 5.38s 1.000
12.0 2950 24m 27s 2983 7.72s 1.011

c2670 1193 17.0 17623 5h 22m 17623 4m 12s 1.000
16.0 17772 5h 42m 17790 4m 30s 1.001
14.0 18929 8h 12m 19079 7m 8s 1.008

c7552 3512 18.0 50557 22h 5m 50604 35m 49s 1.001
17.0 50740 23h 20m 51254 52m 27s 1.010
16.0 52069 24h 5m 52563 1h 11m 1.009

Table 2: Experimental results of PRECISE.

Circuit Tspec Iterative approach PRECISE
AP

AM

LP

LM
cell area wire length runtime cell area wire length runtime
(AM) (LM) (AP) (LP)

c432 14.0 3111 785 31.22s 3061 732 45.77s 0.984 0.922
13.0 3726 912 31.58s 3484 796 59.26s 0.935 0.873
12.0 - - - 4344 913 1m 52s - -

c2670 25.0 18015 11243 12m 31s 17680 10710 7m 26s 0.981 0.953
23.0 18648 11462 14m 14s 18408 10840 8m 11s 0.987 0.946
21.0 - - - 19692 11788 8m 57s - -

c7552 27.0 50968 43625 2h 3m 51046 42524 1h 0m 1.007 0.975
24.0 - - - 52699 43613 1h 14m - -
23.0 - - - 54088 43673 2h 2m - -

mapping algorithm described in section 2.3 is used to ob-
tain permissible gate size. Since many cells are moved to
new locations, and some of them are replaced with tem-
plates of di�erent sizes, there may be overlap among cells.
Therefore it is necessary to move cells into (slightly) di�er-
ent location to avoid overlapping. Due to space limitation,
details of the moving algorithm is omitted.

If necessary, the above procedure is repeated until delay
constraints are all satis�ed.

5 Experimental Results and Conclusion

The above algorithms have been implemented in C in
programs GALANT (for gate sizing) and PRECISE (for
placement with cell resizing and relocation), on a Sun
Sparc 10 Station. Each cell in the standard-cell library
has four realizations with di�erent sizes and di�erent driv-
ing capabilities.

To prove the e�cacy of the gate sizing approach de-
scribed in section 2, a simulated annealing algorithm was
implemented for comparison. The results for 3 ISCAS 85
benchmark circuits are shown in Table 1. It should be men-
tioned that the chief component (over 95%) of the runtime
of GALANT was the linear programming algorithm; the
mapping algorithm was extremely fast in comparison.

The experimental results of the program PRECISE, is
summarized in Table 2. At present, we use Fiduccia's min-
cut partitioning algorithm [8] to obtain a compact place-
ment. More compact placement can be obtained by using
other algorithms (e.g., TimberWolf). For comparison, we
also perform placement and gate sizing based on purely it-
erative approach. That is, placement adjustment and gate
resizing are executed separately and are included in an
iteration loop. The experimental results show that PRE-
CISE is able to obtain better solutions than the iterative
approach. Moreover, for very tight timing bounds, the it-
erative approach fails to obtain solutions (indicated by \-"
in the table). This is because cell locations are �xed in the
iterative approach, and excessively large capacitances may
have been introduced at the output of some gates on criti-
cal paths. On the other hand, in addition to resizing cells,

PRECISE also moves cells to di�erent locations to reduce
large wiring capacitance. Therefore it is able to obtain so-
lutions even for tight delay bounds. Furthermore, instead
of resizing all cells, PRECISE resizes only a small portion
of cells when timing bounds are violated. As a result, its
execution time is faster in general.

In summary, for the �rst time, the gate sizing problem
is combined with placement into one formulation. The
experimental results are very encouraging. At present, we
are investigating more accurate delay models and more
powerful optimization techniques to tackle this problem.

REFERENCES

[1] P. K. Chan, \Algorithms for library-speci�c sizing of
combinational logic," in Proc. ACM/IEEE Design Au-
tomation Conf., pp. 353{356, 1990.

[2] W. Chuang, Timing and area optimization for VLSI
circuit and layout. PhD thesis, University of Illinois at
Urbana-Champaign, 1994.

[3] S. H. Yen, D. H. Du, and S. Ghanta, \E�cient algo-
rithms for extracting the K most critical paths in tim-
ing analysis," in Proc. ACM/IEEE Design Automation
Conf., pp. 649{654, 1989.

[4] M. A. Jackson and E. S. Kuh, \Performance-driven
placement of cell based IC's," in Proc. ACM/IEEE De-
sign Automation Conf., pp. 370{375, 1989.

[5] W. E. Donath, et al, \Timing driven placement us-
ing complete path delay," in Proc. ACM/IEEE Design
Automation Conf., pp. 84{89, 1990.

[6] S. Kim, et al, \APT: An area-performance-testability
driven placement algorithm," in Proc. ACM/IEEE De-
sign Automation Conf., pp. 141{146, 1992.

[7] S. Lin, M. Marek-Sadowska, and E. S. Kuh, \Delay
and area optimization in standard-cell design," in Proc.
ACM/IEEE Design Automation Conf., pp. 349{352,
1990.

[8] C. Fiduccia and R. Mattheyses, \A linear-time
heuristic for improving network partitions," in Proc.
ACM/IEEE Design Automation Conf., pp. 175{181,
1982.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

