
Compression-Relaxation: A New Approach to Performance Driven

Placement for Regular Architectures�

Anmol Mathur C. L. Liu

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract

We present a new iterative algorithm for performance

driven placement applicable to regular architectures such as
FPGAs. Our algorithm has two phases in each iteration:

a compression phase and a relaxation phase. We employ

a novel compression strategy based on the longest path tree
of a cone for improving the timing performance of a given

placement. Compression might cause a feasible placement

to become infeasible. The concept of a slack neighborhood
graph is introduced and is used in the relaxation phase to

transform an infeasible placement to a feasible one using a

mincost ow formulation. Our analytical results regarding
the bounds on delay increase during relaxation are validated

by the rapid convergence of our algorithm on benchmark cir-

cuits. We obtain placements that have 13% less critical path
delay (on the average) than those generated by the Xilinx

automatic place and route tool (apr) on technology mapped

MCNC benchmark circuits with signi�cantly less CPU time
than apr.

1 Introduction

With the advent of advances in VLSI technology, the
size of modules in integrated circuits is becoming smaller
and the density of modules on a chip is increasing. Con-
sequently, intra-module delays are becoming smaller and
total delay in the circuit is being dominated by delays in
the interconnections between the modules. The commu-
nication bounded nature of total circuit delay, along with
more stringent performance requirements due to more ag-
gressive design style, have made performance driven layout
an important area of study. To meet the needs of a fast ex-
panding electronics industry, high-performance chips must
be designed in a short period. Accordingly, a design ow
which incorporates timing analysis and veri�cation into the
physical design process is desirable.

The problem of performance driven placement has been
studied extensively [1, 2, 4, 6, 9]. The traditional ap-
proaches to this problem can be broadly classi�ed into path-
based methods [4, 9], and net-based methods [1, 2, 6]. In
this paper, we present a new algorithm for performance
driven placement that is applicable to architectures with a
regular structure. Thus, the placement problems for Field
Programmable Gate Arrays (FPGAs), restricted cell based

�
Work partially supported by NSF under grant MIP 92-22408

and by Fujitsu Company.

designs and some Wafer Scale Integration (WSI) architec-
tures fall within the scope of this paper. Our algorithm uses
an iterative approach. In each iteration there is a compres-
sion phase and a relaxation phase. The compression phase
attempts to make the placement delay feasible by compress-
ing the long paths that cause some of the primary output
signals to arrive too late. However, the compression phase
may produce an infeasible placement with some of the slots
occupied by two (but no more than two) modules. This al-
lows the compression phase more exibility and often allows
it to achieve the required decrease in delay. If the compres-
sion phase produces an infeasible placement, we require the
relaxation phase to obtain a feasible placement. In that
case, the relaxation phase carries out a performance driven
recon�guration of the infeasible placement to produce a fea-
sible placement. We use the concept of a slack neighbor-
hood graph to achieve a provably good recon�guration, in
the sense that the delays in the critical paths are guaran-
teed not to increase beyond a certain bound. The neigh-
borhood graph is computed using the slacks in the current
placement. It captures the freedom of movement, without
violating the timing constraints, of the various modules.

Our approach can be viewed as a combination of both
path-based and net-based approaches, since the compres-
sion phase is path-based while the relaxation phase is net-
based. Also, our algorithm simultaneously places the input-
output pins and the logic modules. Most iterative place-
ment algorithms proposed in the literature [3] used very
local transformations, such as pairwise swap, to move from
one con�guration to another. Our algorithm makes more
global transformations, using ows in weighted slack neigh-
borhood graphs to ensure that the new placement is good.
Further, since the ow-based recon�guration step of our
algorithm transforms an infeasible placement (with over-
lapping modules) into a feasible one, this step can also be
used as the back-end for some other performance-driven
placement algorithms [9].

2 Problem Formulation

The underlying architecture that is used to implement
the given circuit is assumed to have the following two prop-
erties:

� Discreteness: It is assumed that there are prede-
�ned slots in the underlying architecture on which
the modules are to be placed. This allows the use of
graph based techniques that would not be applicable if
the modules can be placed anywhere in the placement

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0130 $3.50

area.

� Regularity: It is assumed that the modules are to be
placed in identical slots.

FPGAs, identical standard cell based architectures and
WSI arrays of blocks having a regular structure are the ma-
jor architectures that satisfy the above requirements. Under
these restrictions, the underlying architecture can be viewed
as a set of discrete, identical slots: S = fS1; S2; : : : ; Smg,
along with routing resources (routing channels, pre-placed
interconnections, programmable switches, etc.). Another
characteristic common to all these architectures is that it is
easy to estimate interconnection delay without performing
detailed routing because of regularity. Also, in the case of
FPGAs, all the routing resources are already present, mak-
ing the prediction of routing delay easier. We assume that
the input and output pins are restricted to the periphery of
the grid of slots, while the other modules are placed in the
core of the grid.

The input to the performance driven placement prob-
lem is a circuit, C, consisting of a set of modules
fM1;M2; : : : ;Mng, interconnected to implement the re-
quired functionality. The topology of the circuit can be ab-
stracted as a circuit graph,GC(VC ; EC), where each module
of C is represented by a vertex in VC , and an interconnec-
tion between two modules is represented by an edge in EC

between the corresponding vertices. In the subsequent dis-
cussion, we will often use Mi to denote the vertex in VC
representing the ith module. Let

PI = fx1; x2; : : : ; xkg

be the set of primary inputs to the circuit and

PO = ff1; f2; : : : ; flg

be the set of primary outputs. As part of the problem
speci�cation, the arrival times of the signals at the pri-
mary inputs, A(xi), the required arrival times, R(fi), at the
primary outputs and the delays d(Mi) associated with the
modules, are also speci�ed. The propagation delay of mod-
ules is assumed to be \block-oriented", that is, it is assumed
that the latest arriving signal determines the output. These
assumptions are introduced only for simplicity of delay com-
putations and are not inherent in the proposed algorithms.
The interconnection delay computations in our algorithm
use the general delay model that allows di�erent wire seg-
ments belonging to the same output net to have di�erent
delays. This is in contrast with the traditional net based
delay models that associate a constant delay with a net, ir-
respective of its topology. Using the general delay model is
specially important when modeling interconnection delays
in architectures that have routing resources with widely dif-
fering conductivities and capacitances, or when there are
programmable switches in the interconnecting paths (as in
FPGAs).

A placement is an injective mapping, �, from VC to the
set of slots in the placement area. A placement is said to be
delay feasible if it satis�es all the timing constraints. The
aim of the performance driven placement problem is to �nd
a delay feasible placement that is easily routable. In this
paper, we call a placement (physically) feasible if no slot is
occupied by two or more modules, otherwise it is said to be
infeasible.

STOP

Compute SNG

Compute edge costs using

congestion gradients

Genrate new placement;

Update relaxation parameter

COMPRESSION PHASE

RELAXATION PHASE

Compress longest path

Circuit Graph; Module Delays; Timing Constraints

Generate initial placement

Delay Analysis

tree of an infeasible cone

NO

YES

YES

NO

edge slacks

Use min-cost flow to find
reconfiguration mapping;

Compute and distribute

Is placement feasible?

Is the placement delay
feasible?

Figure 1: Flowchart for the iterative ow-based perfor-

mance driven placement algorithm.

3 Overview of the Algorithm

Our algorithm starts with an initial placement gener-
ated by placing the modules uniformly in the core of the
grid, and the primary inputs and outputs on the periph-
ery. A delay analysis is performed to identify the primary
outputs where the required-time constraints are violated.
Our algorithm selects, among these outputs, the one where
the di�erence between the arrival time and required time
is maximum and attempts to decrease the arrival time at
this output in a two phase process consisting of a com-
pression phase and a relaxation phase (see Fig. 1). In the
compression phase, the longest path tree of the cone of this
output is extracted, and paths in this tree are shortened by
decreasing the interconnection delays on the edges in the
tree. This is accomplished by moving modules and inputs
towards the slot occupied by the primary output. This pro-
cess is guided by the signal ow direction and is path-based.
In the compression phase up to two modules can occupy the
same slot (making these slots \overcrowded"). This allows
the compression phase to employ a more aggressive com-
pression strategy that would not have been possible if the
new placement was constrained to be a feasible one.

If the compression phase produces an infeasible place-
ment, the original modules occupying the overcrowded slots
need to be relocated. In the relaxation phase, relocation is
carried out simultaneously for all the modules using min-
cost ow in the slack neighborhood graph in such a way
that the delays do not increase by too much. Details of the
relaxation phase are described in Section 5.

We show one iteration of our algorithm for the circuit
in Fig. 2 in Fig. 3. Fig. 3(a) shows the placement at
the beginning of the iteration, along with the longest path
tree for primary output f1. The compression of this longest
path tree results in an infeasible placement shown in Fig.
3(b) (overcrowded slots are shown in black). This �gure
also shows the slack neighborhood graph. Mincost ow is
used to �nd the node disjoint paths shown in Fig. 3(c) and
these are used to recon�gure the placement to the feasible
placement shown in Fig. 3(d). Some of the details in Fig.
3 will be explained in the subsequent sections.

cone(f)1

x 1 x 2 x 3 4 x 5

 f
1

f
2

a b c

d
e

f

g h

ij

k

x

Figure 2: The boolean circuit used in the illustration of an
iteration of our algorithm in Fig. 3

4 The Compression Phase

The compression phase attempts to move the current
placement closer to a delay feasible placement by reducing
the arrival times at the outputs. A delay analysis is car-
ried out on the current placement to compute the actual
arrival times of the signals at the various outputs and the
outputs where the timing requirement is violated are iden-
ti�ed. Associated with each such output is a set of long
paths ending at the output, that are responsible for the vi-
olation of the timing requirement. We de�ne the cone of
a primary output fi to be the set consisting of fi and all
its predecessors. Thus, all the nodes that can have an ef-
fect on the arrival time of the signal at fi are in cone(fi).
The algorithm attempts to satisfy the timing requirement
at fi by moving modules in the cone to new slots so as to
decrease edge delays, a process referred to as compressing
the cone at fi. It should be noted that in the process of
compressing cone(fi), up to two modules can be placed in
the same slot. This ensures that compressing of the cone
has enough exibility to guarantee a substantial decrease
in the critical path delay of the cone. If there are several
outputs at which the arrival time exceeds the required time,
the cone of the output with the maximum violation of the
required time is chosen for compression.

x
2

1
x

x 3 x4 x 5

f
1

f
2

i, d h, g

j, e

a f

c

k

b

f
1

f
2

x
1

x
2

x
3

x
4

x
5

h gi

d j e k

b

a

f

c

(a)

(c)(d)

(b)

COMPRESSION

RELOCATION

MINCOST FLOW

f
1

f
2

x
1

x
2

x 3 x4

x5

d g

i e k
f

h

j
b

c

a

f1 f2

x1

x
2

x3 x4 x5

i, d h, g

j, e
f

k

b

c

a

: Slot with 2 overlapping modules

: Slot with 1 module

: Empty slot

Figure 3: An iteration of our algorithm on the circuit in

Fig. 2. (a) The initial placement and the longest path tree

of cone(f1). (b) The infeasible placement obtained after

compressing the longest path tree of cone(f1). The edges

of the slack neighborhood graph are shown. (c) The edges
with non-zero ow in the mincost ow computed on the

transformed SNG. (d) The new placement obtained after

relocating modules along the node disjoint paths in (c).

The following steps are used to accomplish the compres-
sion of a cone, cone(fi), that violates the required-time con-
straint:

1. For each node x in cone(fi), �nd a longest path from
x to fi. These paths form a tree which will be referred
to as the longest path tree (see Fig. 3(a)). This tree
can be found easily in linear time. Note that there
may be several di�erent longest paths trees of a cone.
Our algorithm chooses an arbitrary longest path tree
of the cone being compressed. Intuitively, the longest
path tree captures most of the critical paths in the
cone, and is at the same time structurally simple. This
makes the compression using longest path trees very
e�ective and relatively simple.

2. The nodes in the longest path tree are processed in
topological order starting from the tip of the cone,
and an edge (Mi;Mj) in the longest path tree is com-
pressed by moving module Mi closer to the slot occu-
pied by module Mj. The amount an edge is com-
pressed is proportional to the current delay of the
edge (long edges have more potential for compression).
When module Mi is moved to shorten edge (Mi;Mj),
the entire subtree rooted at Mi is displaced by the
same amount to ensure that displacing Mi does not
increase the arrival time of the signal atMi. The com-
pression algorithm also keeps track of the compression
achieved so far on the unique path from Mj to the
root of the longest path tree, thus allowing it to adap-
tively decrease the amount of compression forced on
edge (Mi;Mj) if enough compression has already been
achieved on the path fromMj to the root of the longest
path tree. Fig. 4 shows an example of edge compres-
sion. Note that the compression algorithm makes cer-
tain that an IO pin will not be relocated to a slot in
the core of the grid, and a logic module will not be
relocated to a slot in the periphery.

(a)

f
1

f
2

x
1

x
2

x
3

x
4

x
5

h gi

d j e k

b

a

f

c

(a)

f
1

f
2

x
1

x
2

x
3

x
4

x
5

h gi

j e k

bf

c

d

a

Figure 4: Compression of the edge from module d to module

g. (a) Longest path tree and placement before compression.

(b) Placement after compression of the edge. Notice that

module a also moves down.

Consider the compression phase for the example shown
in Fig. 3. Notice that the compression of the longest path
tree shown in Fig. 3(a) causes the inputs x1 and x2 to move
much closer to the output f1. Also, modules pairs (i, d), (h,
g), (j, e) and (x3, x4) overlap in the resulting placement.

The compression algorithm attempts to make the task of
the relaxation phase easier by relocating modules to empty
slots, if they are available at the right distance to achieve

the required compression. Further, an attempt is made to
spread out the infeasible slots to make the relocation in the
relaxation phase easier.

5 The Relaxation Phase

If the compression phase generates a placement with
overlapping modules, then the relaxation phase is used to
get back to a feasible placement. The input to the re-
laxation phase is an infeasible placement with some slots
containing two modules. During the relaxation phase the
placement is recon�gured by moving modules from the over-
crowded slots to restore feasibility. In this section we intro-
duce the concept of a slack neighborhood graph that pro-
vides a systematic framework for doing performance driven
recon�guration.

Given a particular placement, we compute the slack of
each edge in the circuit graph which is a measure of the
amount by which the delay on the edge can be increased
without violating any of the timing constraints. Since a de-
lay increase can be translated into an increase in the length
of the interconnection corresponding to the edge, the slack
can be interpreted as an upper bound on the amount by
which the length of the interconnection can be increased,
without violating the timing constraints. This has been the
basis of several performance driven placement algorithms
that compute upper bounds on the lengths of the nets and
use them to constrain the placement so that it is timing
feasible [1, 2]. However, if the underlying architecture is
regular, then it is possible to go one step further and trans-
late the bounds on the amounts by which the interconnec-
tions can be lengthened into bounds on the mobility of the
modules to which these wires are connected. Further, these
bounds on the distance that a module can move without
violating any timing constraints imply that a module can
only be moved to certain slots in the neighborhood of the
slot it currently occupies. Informally, this set of neighbor-
ing slots to which a module can be moved without violating
any timing constraints is said to be its slack neighborhood.
The graph in which the adjacency relation reects these
slack neighborhoods is referred to as the slack neighborhood
graph (see Fig. 3(b)).

5.1 Computing Slacks

Using the delay model described in Section 3, we asso-
ciate a delay d(e) with each edge e in the circuit graph GC .
We use a function of the semi-perimeter of the bounding
box as an estimate of the edge delay. It is assumed that the
signals arriving early wait for the later arriving signals. So,
if the inputs to a module Mi are denoted by IN(Mi) then
the arrival time at the output of Mi is given by

A(Mi) = max
Mj2IN(Mi)

fA(Mj) + d(Mj;Mi)g+ d(Mi):

Similarly, the required times at the outputs of the modules
is given by

R(Mi) = min
Mi2IN(Mj)

fR(Mj)� d(Mj)� d(Mi;Mj)g:

The arrival times and required times can be computed by
the method of dynamic programming using a forward and
backward topological sweep of the DAG GC , in time linear
in the size of the circuit graph.

The slack, s(e), at an edge e = (Mi;Mj) is de�ned as
the di�erence between the required and arrival times at the
input to Mj on edge (Mi;Mj). Thus,

s(e) = (R(Mj)� d(Mj))� (A(Mi) + d(Mi;Mj)):

Notice that this de�nition of the edge slacks does not
allow us to increase the delay at all the edges by an amount
equal to their slack without incurring the violation of some
timing constraints. So, we need to distribute the slacks at
the primary outputs among the edges of the circuit graph.
This is accomplished using a variant of the zero slack algo-
rithm [8]. The distributed edge slack at edge e is denoted
by ds(e).

5.2 The Relaxation Parameter

As observed earlier, in the early iterations, we allow the
modules higher mobility than that dictated by the slacks
on their interconnections. This enables the algorithm to ex-
plore more freely placement con�gurations that would oth-
erwise have been unreachable from the initial placement.
This expansion in neighborhood is accomplished by using
a relaxation parameter (�) that is added to the slacks of
all the interconnections. The edge slacks with the relax-
ation parameter added are referred to as the relaxed slacks
(rs(e)). Thus,

rs(e) = ds(e) + �:

The value of the relaxation parameter is decreased in suc-
cessive iterations according to a shrinking schedule. How-
ever, if the relaxation phase in an iteration is not able to
recon�gure an infeasible placement, the relaxation parame-
ter is increased to expand the slack neighborhoods. In our
experiments we halved the relaxation parameter from one
iteration to the next.

5.3 Constructing the Slack Neighborhood
Graph

Given the current placement (�) and the relaxed slacks
of all the edges in the circuit graph, we can use them to
de�ne the slack neighborhood for each slot Si = �(Mi) as

�(Si) = fSj 2 S � Sijd
0(e)� d(e) � rs(e) for all

edges e incident to module Mig;

where d0(e) is the delay in edge e when the module Mi is
moved from Si to Sj , everything else remaining the same.
So, the slack neighborhood of a slot contains all the slots to
which the module in the slot can be moved without increas-
ing the delay in any of the edges incident to the module by
an amount more than that dictated by the relaxed slacks
of the edges.

These slack neighborhoods can be used to de�ne a slack
neighborhood graph (SNG) GN (VN ; EN), where there is a
vertex in VN for each slot in S, and the there is an edge
(Si; Sj) if and only if Sj 2 �(Si) (We are using Si to rep-
resent the vertex in GN corresponding to Si). Fig. 3(b)
shows the SNG for the placement generated after compress-
ing cone(f1). Note that the slots occupied by two modules
have no edges directed into them and empty slots have no
edges directed out.

The computation of the slack neighborhoods can be car-
ried out with varying levels of accuracy. A crude approxi-
mation can be computed by using Manhattan distances to

estimate the increases in the delays of various interconnec-
tions when module Mi is moved from slot Si to slot Sj . This
is what is done in our current implementation. A more ac-
curate computation would do the local rerouting necessary
whenMi is moved from Si to Sj and use the actual increase
in propagation delays in the interconnecting wires to �nd
the neighborhoods.

5.4 Congestion Gradient and Costs

One of the important objectives of the placement step
is to ensure routability. We use a congestion metric as a
guide to preferentially direct the recon�guration process to
move modules into areas with lower congestion. The moti-
vation for this being that a placement with low congestion
gradient (or a placement with more uniform congestion) is
more likely to be routable.

The computation of congestion gradients requires the
division of the given chip area into subareas or precincts.
These precincts may be de�ned by dividing the chip area
into rectangular subregions. The congestion in a precinct
is the number of occupied slots in the precinct and the con-
gestion gradient between precincts is the di�erence in their
congestion. The congestion gradient measures the variation
in congestion in various directions and is used to de�ne a
cost for each edge in the slack neighborhood graph. The
cost of an edge e = (Si; Sj) in the SNG is given by

c(e) = cong grad(Si ; Sj) + is occ(Sj);

where cong grad(Si; Sj) is the di�erence in congestion be-
tween the precinct containing Sj and the precinct contain-
ing Si, and is occ(Sj) is 1 if Sj is occupied and 0 if it is
empty. Thus, the cost of an edge is higher if it goes into a
highly congested area or if it goes to an occupied slot.

5.5 Flow Based Recon�guration

Recon�guring the infeasible placement can be accom-
plished by �nding node disjoint paths that start at over-
crowded slots and end at empty slots in the slack neighbor-
hood graph. We use a min-cost ow algorithm on a trans-
formed version of the slack neighborhood graph to �nd these
paths. It should be noted that the structure of the SNG and
the distribution of the empty slots and overcrowded slots
will determine whether a su�cient number of such node
disjoint paths exist. If a su�cient number of node disjoint
paths do not exist, then we need to increase the relaxation
parameter (making the SNG denser), or make the compres-
sion less aggressive reducing the number of overcrowded
slots.

The nodes corresponding to the overcrowded slots and
those corresponding to the empty slots serve as the sources
and sinks, respectively, in the ow network. Let Vs and Vt
represent the sets of sources and sinks in GN , respectively.
GN can be transformed into a ow network, G0

N , with one
source and one sink by the addition of a dummy source
vertex, s, and a dummy sink vertex, t, along with zero cost,
in�nite capacity edges of the form (s; v) and (w; t), for all
v 2 Vs and w 2 Vt.

Now that we have a weighted ow network, G0

N , we can
use a mincost ow algorithm [10] to �nd node disjoint paths
in G0

N from the sources to the sinks. We set the capacity
of all the nodes in G0

N other than s and t to 1. The fol-
lowing theorems (stated without proof due to space limita-
tion) establish the correctness of the ow based algorithm

for computing the recon�guration that maps the infeasible
placement to a new feasible placement.
Theorem 1. (Integral Flow Theorem) Given a ow
network with integer capacities, there exists a mincost max-
imum ow in which the ows through all the edges are in-
tegral values.

If we restrict our attention to integral ows, the min-
imum ow through any path having non-zero ow is one
unit. Further, all nodes have capacity 1, so no two paths
with non-zero ow can share a node (except s and t). These
observations yield the following theorem:
Theorem 2. (Disjoint Paths Theorem) In any integral
feasible ow f of valueW in G0

N , the edges in EN with non-
zero ow can be decomposed into W vertex disjoint paths.
Further, each path starts at a vertex x 2 Vs and terminates
at a vertex y 2 Vt.

Thus, the disjoint paths in the SNG computed by the
mincost maximum ow start at an overcrowded slot and
end at an empty slot with all intermediate slots being singly
occupied. Hence, we have the following theorem:
Theorem 3. (Recon�guration Theorem) Let f be
an integral maximum ow of value jVsj in G0

N , then the
recon�guration function � : VN ! VN de�ned as

�(x) =

�
y if f(x; y) = 1
x otherwise

transforms the infeasible placement into a feasible one.
Fig. 3(c) shows the node disjoint paths computed in the

SNG shown in Fig. 3(b). The path (given by the coordi-
nates of the slots; coordinates increase from left to right
and from top to bottom) (5; 2) ! (4; 2) ! (3; 2) causes
module i to be moved to slot (4; 2) and module a to be
moved to the empty slot (3; 2). The node disjoint paths
computed using the mincost maxow algorithm de�ne a
recon�guration function that transforms the current infea-
sible placement into a new feasible placement. It should
be noted that the more local recon�guration patterns used
in other algorithms, such as pairwise swap or �xed length
cycles[3], are special cases of the recon�guration patterns
generated by out algorithm. In fact, many of the tradi-
tional iterative improvement algorithms for placement can
be subsumed within our approach. Since the ow is biased
using congestion gradients the resulting placement is likely
to be routable. Due to lack of space, we omit the results
showing that the relaxation phase results in a bounded in-
crease in delay. Details can be found in [7].

6 Experimental Results

We implemented our algorithm on a Sparc 10. We will
refer to the package implementing our algorithm as sysdias
(an acronym for systolic-diastolic, reecting the compres-
sion and relaxation phase in each iteration). Sysdias was
tested on a set of MCNC benchmarks and compared to the
apr (Automatic Place and Route) tool provided by Xilinx
for their 3000 series FPGAs. The MCNC benchmarks were
technology mapped and then placed and routed using apr to
obtain the arrival times at the primary outputs. These ar-
rival times were used as the required times at the outputs
for our algorithm. Our placement algorithm was allowed
to continue even after it generated a placement that sat-
is�ed the required times at all the outputs by decreasing
the required times, until it was no longer able to achieve

signi�cant delay reduction in an iteration. The placement
produced was then routed using apr to compute the ac-
tual critical path delay. The results of these experiments
are shown in Table 1. The critical delay after routing for
the placement generated by sysdias is less than that for the
placement generated by apr by 13 percent, on the average.
For all the benchmarks sysdias terminated in less than 50
iterations (that took a maximum of 6.5 minutes). This is
signi�cantly faster than the simulated annealing based apr.
The total time taken over all the benchmarks by sysdias
is less than the total time taken by apr by a factor of 5.
Further, the most signi�cant gains are on the large circuits
: C880 and alu2, thus demonstrating the ability of sysdias
to handle large circuits e�ciently.

To demonstrate the convergence rate of our algorithm,
we ran sysdias on some larger, randomly generated circuits
with up to 800 modules. Even for such large examples the
convergence rate of our algorithm is very good. Typically,
the number of iterations is around 100 and the running
time is no more than 10-15 minutes. The results for some
of these large circuits are shown in Table 2. Since these
circuits are too big to be placed and routed on the Xilinx
3000 series architecture, we have no information on the ac-
tual critical path delays for these circuits. The required
times at the outputs were generated using the depth of the
output as an estimate. The Initial Delay column gives the
estimated delay of the critical path in the initial placement
and the Final Delay column gives the (estimated) critical
path delay in the �nal placement. Notice that when the
circuit Random4 is placed on a larger grid, the convergence
is faster, possibly due to the fact that compression can be
done more aggressively due to low congestion.

It is interesting to observe the manner in which the vec-
tor of arrival times at the primary outputs changes from it-
eration to iteration. Table 3 shows the arrival times at the
outputs of a randomly generated example with 100 mod-
ules, 10 inputs and 3 outputs, being placed in a 12 by 12
array of slots. In most of the iterations there is a substan-
tial decrease in one of the arrival times, corresponding to
the cone that is compressed in that iteration. The arrival
times at the other outputs might increase slightly due to
the relaxation phase in an iteration. However, the use of
slack neighborhoods for relaxation ensures that the delay
increase is bounded. In fact, the sum of the arrival times
at the outputs decreases from one iteration to the next,
most of the time (in Table 3 the exception is from iteration
4 to iteration 5). This provides strong evidence that our
iterative compression-relaxation based algorithm converges
well.

7 Conclusions

We present a new algorithm for performance driven
placement when the underlying architecture is regular. Our
iterative algorithm has two phases in each iteration: a com-
pression phase and a relaxation phase. We develop a novel
compression strategy based on the longest path tree of a
cone. We introduce the concept of a slack neighborhood
graph and use it to transform an infeasible placement pro-
duced in the compression phase to a feasible one using
a mincost maxow formulation. The slack neighborhood
graph approach guarantees that relaxation does not undo
the delay reduction achieved during compression. Our ana-

apr sysdias

Circuit # modules Delay (ns) Time (min) Delay (ns) # iterations Time (min)

cordic 48 56.5 1.3 45.0 25 0.8

count 85 71.5 4.7 60.2 32 1.5

bw 61 32.1 3.0 30.0 20 1.2

f51m 58 92.7 1.8 80.4 21 1.2

frg1 91 79.7 3.4 70.0 32 2.3

comp 103 90.9 7.7 77.0 40 4.3

term1 161 92.9 24.3 70.6 45 5.4

C499 144 79.6 9.5 70.0 33 4.3

C880 210 128.3 28.5 115.2 42 5.5

alu2 232 192.3 91.1 177.0 48 6.5

Table 1: Comparison of critical delay after routing for apr and sysdias.

Circuit # modules Grid Size Initial Delay (ns) Final Delay (ns) # iterations Time (min)

Random1 400 25 x 25 620 350 70 8.4

Random2 550 25 x 25 710 500 50 6.2

Random3 700 25 x 30 600 450 88 12.4

Random4 800 30 x 30 1230 700 103 15.0

Random4 800 40 x 40 1450 650 90 12.4

Table2: Results for the placement of large randomly generated circuits.

Arrival time (ns)

Iteration # Out1 Out2 Out3

0 120.5 220.0 130.6

1 130.2 150.0 125.0

2 90.0 130.0 130.7

3 95.2 135.6 90.3

4 90.2 120.0 90.3

5 100.3 115.0 100.4

6 90.0 110.0 85.0

Table 3: The arrival times at primary outputs in successive

iterations.

lytical results regarding the bounds on delay increase during
relaxation are validated by the rapid convergence of sysdias
on benchmark circuits.

References

[1] T. Gao, P. M. Vaidya, C. L. Liu, A New Performance
Driven Placement Algorithm, Proc. ICCAD, 1991, pp.
44{47.

[2] T. Gao, P. M. Vaidya, C. L. Liu, A Performance
Driven Macro-Cell Placement Algorithm, Proc. 29th
DAC, 1992, pp. 147{152.

[3] S. Goto, An E�cient Algorithm for the Two-
Dimensional Placement Problem in Electrical Circuit

Layout, IEEE Trans. Circuits Syst., Vol. CAS-28, Jan.
1981, pp. 12{18.

[4] M. A. B. Jackson, E. S. Kuh, Performance-Driven
Placement of Cell Based ICs, Proc. 26th DAC, 1989,
pp. 370{375.

[5] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi,

Optimization by Simulated Annealing, Science, 13 May
1983, Vol. 220, No. 4598.

[6] M. Marek-Sadowska, S. P. Lin, Timing-Driven
Placement, Proc. ICCAD, 1989, pp. 94{97.

[7] A. Mathur, C. L. Liu, Compression-Relaxation: A
New Approach to Performance Driven Placement for
Regular Architectures, Manuscript, 1994.

[8] R. Nair, C. L. Berman, P. S. Hauge, E. J. Yoffa,
Generation of Performance Constraints for Layout,
IEEE Trans. CAD, Vol. 8, Aug. 1989, pp. 860{874.

[9] A. Srinivasan, K. Chaudhary, E. S. Kuh, RITUAL
: A Performance Driven Placement Algorithm for Small
Cell ICs, Proc. ICCAD, 1991, pp. 48{51.

[10] R. E. Tarjan, Data Structures and Network Algo-
rithms, Chap. 8, SIAM, 1983.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

