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Abstract

Existing built-in self test (BIST) strategies require

the use of specialized test pattern generation hardware

which introduces signi�cant area overhead and perfor-

mance degradation. In this paper, we propose a novel

method for implementing test pattern generators based

on adders widely available in data-path architectures

and digital signal processing circuits. Test patterns

are generated by continuously accumulating a constant

value and their quality is evaluated in terms of the

pseudo-exhaustive state coverage on subspaces of con-

tiguous bits. This new test generation scheme, along

with the recently introduced accumulator-based com-

paction scheme facilitates a BIST strategy for high per-

formance datapath architectures that uses the function-

ality of existing hardware, is entirely integrated with

the circuit under test, and results in at-speed testing

with no performance degradation and area overhead.

1 Introduction

The increasing complexity of VLSI circuits in the
absence of a corresponding increase in the number of
input and output pins, has made Built-in Self Test
(BIST) an extremely successful test strategy in the
last decade. The fundamental idea in BIST is to in-
tegrate the test pattern generation and test response
compaction functions for the circuit-under-test (CUT)
on the chip itself [1].

To guarantee a high quality of testing, the test pat-
tern generators used for BIST must be able to exer-
cise most of the faults in the CUT, and the compactor
should be able to preserve this coverage. These func-
tions till now have been performed by specialized ded-
icated hardware. Even though, as in BILBO [2] this
hardware may share registers from the CUT, it re-
sults in substantial hardware overhead and signi�cant
performance degradation due to the addition of mul-
tiplexors in the signal paths.
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General purpose computing structures based on
data-path architectures, as well as specialized dig-
ital signal processing circuits can perform powerful
arithmetical and logical operations which can be ex-
ploited for test pattern generation and response com-
paction. A novel scheme for parallel compaction of test
responses using existing accumulators with minimal
area overhead, no performance degradation and simi-
lar aliasing probability to that of LFSRs has been pro-
posed in [3]. If such existing arithmetical and logical
structures could also be used to generate test patterns,
then the need for additional hardware to implement
a BIST strategy on such circuits would almost com-
pletely be eliminated. These vectors can then be dis-
tributed to di�erent modules of the system since arith-
metic and logic units (ALUs) or even simple adders
usually constitute the core of such systems (Fig. 1).
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Figure 1: Typical Data-path Core

Extensive studies have been performed to analyze
the testing properties of sequences generated by LF-
SRs and cellular automata [1], [4]. In contrast, though
sequences generated using arithmetic and logical oper-
ations have been widely studied as sources of random
numbers for Monte-Carlo simulation [5], their proper-
ties with respect to testing are largely unknown.

In this paper we propose a new test generation
scheme that uses existing accumulators to generate
parallel test patterns with no area overhead or per-
formance degradation. In this scheme, the accumu-
lator with an n-bit adder is used to generate a se-
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quence of binary patterns by continuously accumu-
lating a constant value. The patterns produced are
pseudo-exhaustive [6], [7] in nature and can be used to
test modules with physically adjacent input lines. The
pseudo-exhaustive state coverage of such a scheme is
analyzed and the best generators are identi�ed.

2 Preliminaries

An n-bit ALU or accumulator featuring a binary
adder can be used to implement a scheme in which
a constant binary vector is successively transferred to
the adder and added to the previous contents of the
register R3 (Fig. 1). The state Xi of the register after
i external vectors have been applied is given by

Xi = Xi�1 + a (mod 2n) (1)

The contents of the register R3 can now be used as a
source of test patterns to test the accumulator itself or
other modules in the circuit. The generation scheme
(1) is described completely by its width n, initial state
X0 and the constant increment value a and can be
compactly denoted by the triple (a;X0; n).

An attractive method of evaluating the quality of
the test pattern generator is to examine the state cov-
erage that it provides. The state coverage gives the
number of di�erent patterns that can be produced and
is an indication of the real capacity of the signals that
appear on the output of the generator.

For an n-bit generator whose output bits are
denoted as bn�1bn�2 : : : b1b0, consider the subspace
formed by the k contiguous bits bi+k�1bi+k�2 : : :

bi+1bi, denoted as Sk
i . Clearly, there are n�k+1 such

subspaces of size k, for i = 0, 1, : : : ,n � k (Fig. 2).
The state coverage analysis will be with respect to
such contiguous subspaces. Such an analysis is jus-
ti�ed since data-path architectures have a strongly bit

organized character and contain internal busses that
are partitioned into physically adjacent lines.

b0b1b2b3b4b5b6b7

Figure 2: 4 bit contiguous subspaces for an 8 bit space

We say a sequence of n-bit vectors, Q =
fX0; X1; : : : ; Xp�1g, produced by the generator A =
(a;X0; n) under the scheme (1), exhaustively cov-
ers a speci�ed k-bit contiguous subspace Sk

i , if all
2k di�erent patterns appear on the bit positions
bi+k�1bi+k�2 : : : bi+1bi de�ning Sk

i .
Fig. 3 shows how the state coverage for 12 and 14 bit

subspaces increases with the number of patterns pro-
duced by the generator A = (13264529; 0; 32). The �g-
ure clearly shows how some subspaces are exhaustively

covered fairly quickly while others (of the same size)
require substantially more patterns. Note for instance
that for k = 14, the subspaces S145 ; S146 ; S147 ; S148 and
S149 get covered exhaustively within 32768 patterns
while the subspace S1415 requires as many as 1021199
patterns i.e. more than 30 times as many patterns.

In the following de�nitions, we provide a framework
for evaluating di�erent generators in terms of their
ability to exhaustively cover subspaces consisting of
contiguous bits.

De�nition 1 Let P (Sk
i ) denote the size of the small-

est sequence (starting from X0) that exhaustively cov-

ers the k-bit contiguous subspace, Sk
i . Then, the nor-

malized number of patterns required to exhaustively

cover Sk
i is de�ned as P̂ (Sk

i ) = P (Sk
i )=2

k.

Thus, P̂ provides a means of comparing the e�-
ciency of a generator in covering di�erent subspaces
independently of their size.

De�nition 2 The latency of the generator for k-bit

subspaces is de�ned as

a) wk = maxn�k
i=0 fP̂ (S

k
i )g, in the worst case and

b) vk =
1

n�k+1

Pn�k
i=0 P̂ (Sk

i ), on average.

In other words, wk = q guarantees that all k-bit
contiguous subspaces will be exhaustively covered in q

normalized number of patterns.

Example Consider the 4-bit sequence Q = f0000;
1011; 0110; 0001; 1100; : : :g generated by A =
(11; 0; 4). Here, the subspace S20 consisting of bits b1b0
is exhaustively covered by the �rst four patterns in the

sequence, while the subspaces S21 and S22 consisting of

bits b2b1 and b3b2 respectively, require �ve patterns.

Thus, P̂ (S20 ) = 4=4 = 1:0 and P̂ (S21 ) = P̂ (S22) =
5=4 = 1:25. This indicates that S20 can be exhaus-

tively covered optimally, but S21 and S22 require 25%

more patterns than the optimal. Now the worst case

latency for the 2-bit subspaces is w2 = 1:25 while the

average latency is only v2 = (1+1:25+1:25)=3 = 1:167.

Theorem 1 Given a generator A, wk � 2wk+1 and

vk � 2vk+1, for all k.

Proof. Follows directly from the fact that P (Sk
i ) �

P (Sk+1
i ) for all i and k.

De�nition 3 We de�ne several metrics to evaluate

the quality of the generator A = (a;X0; n) for sub-

spaces of size r to s (both inclusive), 1 � r � s � n,

as follows

a) The worst case latency T (r; s), is given by

T (r; s) =
s

max
k=r

fwkg (2)
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Figure 3: State Coverage for the generator, A = (13264529, 0, 32)

b) The average latency in the worst case W (r; s), is
de�ned as

W (r; s) =
1

s � r + 1

sX

k=r

wk (3)

c) The average latency in the average case V (r; s),
is given by

V (r; s) =
1

s� r + 1

sX

k=r

vk (4)

These metrics characterize di�erent aspects of the be-
havior of the generator over the target range of sub-
space sizes. T (r; s) describes the worst case behavior
of the generator while the other metrics describe its
average behavior. T (r; s) = q implies that when q2j

patterns have been produced, all subspaces of size j

(r � j � s) are exhaustively covered thus guarantee-
ing exhaustive coverage of all contiguous subspaces of
size r to s within q times the optimal number of pat-
terns for that size. W (r; s) de�nes the average number
of normalized patterns that need to be produced to
exhaustively cover all contiguous subspaces of any size
between r and s while V (r; s) describes the average
number of normalized patterns required to cover any
subspace of any size between r and s.

For the metrics de�ned above, lower numbers im-
ply better generators in the sense that such generators
need to produce less number of patterns to exhaus-
tively cover subspaces of di�erent sizes, thus resulting
in shorter test lengths for the same fault coverage. We
can now state the problem as follows:
Problem Statement: Given the width of the gen-

erator n, and the sizes r; s (1 � r � s � n), of the
target subspaces, �nd values of a and X0, for which
the generator A = (a;X0; n) is optimal under one of
the metrics given in De�nition 3. In other words, �nd

that a, X0 that minimizes the relevant metric. Such
an optimal generator will be denoted as Ar;s.

Clearly, no even number a, can make up a satisfac-
tory generator since all subspaces of the form Sk

0 will
never be exhaustively covered. Also, if n is the width
of the generator, then for all odd a, P̂ (Sn

0 ) = 1, since
every odd number is relatively prime to 2n. Thus, for
r = s = n, every generator consisting of odd a is opti-
mal. The search for optimal values of a can therefore,
be restricted to odd numbers and for subspace sizes r
and s such that 1 � r � s < n.

3 Non-progressive Schemes

Non-progressive generators exhaustively cover only
the k-bit contiguous subspaces optimally in 2k steps,
i.e. only wk = 1. In other words, we restrict r =
s = k for the general problem statement above. Such
schemes are called non-progressive since, as shown
later, 2k�1 patterns need to be produced before even
all the 1-bit subspaces are exhaustively covered.

Clearly, exhaustive coverage of k-bit subspaces also
guarantees the exhaustive coverage of all subspaces of
size less than k. However, from Theorem 1 the nor-
malized number of steps required to exhaustively cover
a j-bit subspace (j < k) can, in the worst case, be as
high as 2k�j. Thus, for such schemes the optimal gen-
erator is of optimal quality only for the k-bit subspace,
and the quality may deteriorate for other smaller sizes.

Theorem 2 Given positive integers n and k (k < n),

the generator Ak;k = (a; 0; n) exhaustively covers all

k-bit contiguous subspaces in exactly 2k steps, i.e.

P̂ (Sk
i ) = 1; for all i, where a is given by

a =

dn=ke�1X

i=0

2ki (5)



Proof. The n-bit generator can be divided into dn=ke
disjoint subspaces (DS), each of which is k-bits wide,
except for the last one. The constant a, has ones on
bits 0; k; 2k; : : : i.e. on the least signi�cant position
of each DS. Thus each step of the generation process
is equivalent to adding 1 to each of the DSs. Since
X0 = 0, there is no carry out from bit position ik � 1
to bit position ik before all 2k patterns have been pro-
duced. Now consider a subspace that overlaps two
adjacent DSs. It can easily be shown that this sub-
space consists of bits weighted from 0 to k�1 (Fig. 4),
though the order depends on the relative position of
the subspace with respect to the two adjacent DSs.
Thus, the generator produces all 2k patterns on the
bits constituting the subspace in exactly 2k steps.

10001000100

n ik+1 ik ik-1 k+1 k-1 1 0

01k-101k-201 k-1 k-2

k-2kik-2 Bit

Positions

Weights

Figure 4: Non-progressive scheme

Theorem 3 For the generator de�ned in Theorem 2,

the worst case latency for i-bit subspaces is given by

wi = 2�i[2k�i(2i � 1) + 1], if 1 � i � k.

Proof. When 1 � i � k, it can easily be shown that
the i-bit subspace whose most signi�cant bit is at po-
sition jk � 1, for any j, requires the most patterns
before it is exhaustively covered. These subspaces are
exhaustively covered as soon as the all 1s pattern ap-
pears on the i bits. Since no carries are generated from
position jk � 1 to jk before 2k steps, these subspaces
are exhaustively covered (except for the initial pattern

X0) after
Pi�1

j=0 2
k�1�j = 2k�i(2i� 1) patterns, which

concludes the proof.

4 Progressive Schemes

In this section we will discuss generators which ef-
�ciently cover exhaustively all subspaces within a cer-
tain range of sizes. The selection of the required range
of sizes depends, in general, on the width of the cones
of logic that drive the outputs of the network under
test. The upper limit of the range depends on the
width of the widest cone of logic that needs to be tested
and the lower limit depends on the minimum absolute
number of test patterns that should be applied.

Using k generators, a scheme for which wi < 2 (1 �
i � k), can be de�ned as shown in the following theo-
rem. An optimal (i.e. T (1; k) = 1) pseudo-exhaustive
scheme was previously developed in [8]. That scheme,
however, uses linear operations in GF (2).

Theorem 4 Given n and k (k < n), the multi-

ple generation scheme consisting of the k genera-

tors, A1;1;A2;2; : : : ;Ai;i; : : : ;Ak;k used successively,

requires at most 2 times the optimal number of pat-

terns to exhaustively cover all subspaces of size 1 to

k. The generators Ai;i are the optimal non-progressive

generators as de�ned in Theorem 2 and are each used

to generate the next 2i patterns.

Proof. From Theorem 2, it follows that the generator
Ai;i, exhaustively covers all i bit subspaces in exactly
2i patterns. Since the i � 1 previous generators have
each generated 21; 22; : : : ; 2i�1 patterns respectively, a
total of 2(2i � 1) patterns have been generated when
the i bit subspace is exhaustively covered. Thus, wi <

2, for all i.

For schemes using single generators, we will use
the worst case latency T (r; s) to evaluate the good-
ness of the generator. Clearly, this is the strongest
criterion, in that for a generator with T (r; s) = t, we
guarantee that all possible subspaces of size r to s

will be exhaustively covered in at most t times the
optimal number of patterns. Also, experimental data
reveals that all the three metrics are very strongly cor-
related. Fig. 5 shows the values of the three metrics
T (1; n);W (1; n) and V (1; n), for all generators of size
6 and 8 bits. Table 1 lists the correlation coe�cients
for �(T (1; n);W (1; n)) and �(W (1; n); V (1; n)) for all
generators A = (a; 0; n) (a is odd and 8 � n � 16).
This data indicates that the goodness of a generator is

n �(T (1;n);W (1; n)) �(W (1; n); V (1; n))

8 0.995207 0.987386
9 0.996179 0.985447

10 0.996674 0.983677
11 0.997054 0.982201
12 0.997299 0.980939

13 0.997480 0.979949
14 0.997645 0.979151

15 0.997755 0.978613
16 0.997836 0.978277

Table 1: Correlation coe�cients for T;W and V

virtually independent of the speci�c metric used and
leads to the following conjecture.

Conjecture 1 The goodness of a generator Ar;s =
(a;X0; n), relative to other generators (with the same

value of n;X0), as determined by the worst case la-

tency T (r; s) is virtually similar to that determined by

the average latency in the worst case W (r; s), and the

average latency in the average case V (r; s).

Thus, the search for good generators can be made with
respect to any of the metrics.

Till now, it has been assumed that the initial value
X0 is equal to 0. This assumption is reasonable, since
the impact of X0 on the quality of the generator has
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Figure 5: T (1; n);W (1; n) and V (1; n) vs. A = (a; 0; n)

been observed to be greatest for the smallest size sub-
spaces and diminishes rapidly for larger sizes. Also,
experimental data reveals that the worst case latency
T of a generator for the optimal value of X0 is only
marginally better than when X0 = 0. In particular,
Fig. 6 shows the impact of X0 on the worst case la-
tency, T (1; n), of the generators A = (91; X0; 8) and
A = (467; X0; 10).

Thus, we have the following conjecture.

Conjecture 2 The goodness of the generator Ar;s =
(a;X0; n) for the optimal value of X0 is only

marginally better than for the value X0 = 0.

Corollary Given n, the search for the optimum value

of a and X0 is orthogonal. Thus, the best generator can

be located by �rst searching for the optimum value of

a with X0 = 0 and then using that value of a to search

for the optimum value of X0.

The non-linearity of the addition operation makes
a theoretical study of this generation scheme complex.

Therefore, the next section presents the results ob-
tained from extensive experiments to identify the best
generators for a variety of generator widths.

5 Experimental Results

Extensive experiments have been conducted to
identify the best generators for di�erent widths and
for di�erent ranges of subspace sizes.

For 4 � n � 16 the best generators Ar;s = (a; 0; n)
have been identi�ed for all subspaces of size r to s

by exhaustive search of the entire solution space (i.e.
by examining all odd a < 2n). For 17 � n � 32,
an exhaustive search becomes infeasible. Hence, upto
50,000 values of a were randomly sampled for each n in
order to identify the good generators. For these cases,
the largest size subspaces that have been considered

are 16 bits wide. In all experiments, it is assumed
that the initial value X0 = 0.

The best values of T (r; s) and the corresponding
values of a for di�erent values of r; s are presented in
Tables 2, 3 and 4. Only selected results are presented
here; further details can be found in [9].

T (r; s) values have been rounded up and are listed
in the tables as [t], while the values of a are listed
in hexadecimal notation. For instance, the value of
T (5; 8) for n = 15 is listed in the upper triangular half
of Table 3 in the column labeled 5 and the third row
of the group of rows labeled 8 and is equal to 2.079.
The value of A5;8 is listed below that as 214F (hex).

r

s n 1 2 3 4

5 7 [1.875] [1.750] [1.688] [1.469]

5B 13 69 31

4 7 [1.875] [1.625] [1.438]

5B 1B 27

6 [1.625] [1.500] [1.438]

1B 25 19

3 7 [1.625] [1.500]

5B 25

6 [1.625] [1.500]

1B 25

5 [1.625] [1.500]

1B 5

2 7 [1.500]

2D

6 [1.500]

15

5 [1.500]

D

4 [1.500]

5

Table 2: Best generators for 4 � n � 7

It should be noted that values of a for r = s are not
listed since these can be synthesized using Theorem 2.
Also, since wn = 1 for all a, T (r; n) = T (r; n � 1).
Thus, Ar;n = Ar;n�1. This implies that the the best
generator for any range of subspace sizes can be ob-
tained by only evaluating subspaces upto size n� 1.

From the experimental data for 4 � n � 16, it
was observed that Ar;n�1 = Ar;n�2, for all r � n � 3
i.e. the best generator for subspace sizes r to n � 2
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Figure 6: Impact of X0 on the quality, T (1; n) of the generators A = (a;X0; n)

is also the best generator for sizes r to n � 1. It was
also seen that the best generator An�2;n�1, is always
3. Thus in the tables for 4 � n � 16, the values for
Ar;n;Ar;n�1;An�2;n and An�2;n�1 are not listed.

The tables for 4 � n � 16 show that the value
of T (1; n) increases from a low of 1.5 (for n = 4) to
a high of 2.688 (for n = 16). The values for T (r; s)
for any other r; s are lower than these limits. Simi-
larly, the value of T (5; 16) increases to a maximum of
3.829 for n = 32. Thus, for a data-path of width n, if
subspaces of sizes r to s are to be targeted, the best
value of A = (a; 0; n) can be located from the rele-
vant tables. The corresponding values of T (r; s) = t

then imply that as the number of patterns produced
increases from t � 2r to t � 2s (subject to a maximum
of 2n), the sizes of the subspaces that are exhaustively
covered increases progressively from r to s. Thus for
a 32-bit data-path, only 3:829 � 2j patterns have to be
produced to exhaustively cover a subspace of size j,
5 � j � 16, while correspondingly for a 16-bit data-
path only 2:329 � 2j patterns are needed.

6 Conclusions

In this paper we have demonstrated a completely
original scheme for generating test patterns in data-
path architectures having adders. To the best of our
knowledge, this is the �rst time arithmetic units have
been considered as sources of pseudo-exhaustive test
patterns. We have shown that the sequence of pat-
terns generated by continuously accumulating a con-
stant value is an e�ective source of high quality parallel
test patterns in terms of their pseudo-exhaustive state
coverage on subspaces of contiguous bits. Such gen-
erators exhaustively cover all the contiguous bit sub-
spaces in close to the optimal number of patterns. The
selection of the range of sizes of subspaces that must
be exhaustively covered then provides a 
exible frame-
work for tradeo�s between test application time and

test quality. Since this test generation technique uses
existing adders it has no impact on the area and per-
formance of the circuit. The compaction scheme of
[3] also uses existing accumulators to compact test re-
sponses. Thus, the arithmetic and logic units or even
simple adders found in datapath architectures can be
leveraged as test pattern generators and test response
compactors to provide the key elements of a BIST
strategy that results in at-speed testing with no area
overhead or performance degradation.
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169 2D3 2D3

[1.625] [1.750] [2.000] 11
D9 169 1A7

[1.625] [1.750] [2.000] 10
D9 97 D3

[1.625] [1.750] [2.000] 9
D9 97 5B

[1.500] [1.625] [1.938] 8
D9 E5 5B

[1.594] [1.813] [1.813] [2.000] 12 5
285 4D9 4D9 9D3

[1.594] [1.813] [1.813] [2.000] 11
85 463 4D9 1D3

[1.594] [1.750] [1.750] [2.000] 10
85 D9 D9 1D3

[1.500] [1.750] [1.750] [2.000] 9
D1 D9 D9 5B

[1.469] [1.688] [1.750] [1.938] 8
31 69 69 5B

[1.594] [1.594] [2.000] [2.000] [2.188] 12 6
885 885 1D3 1D3 69D

[1.485] [1.594] [2.000] [2.000] [2.000] 11
39F 85 1D3 1D3 1D3

[1.485] [1.594] [1.813] [1.813] [2.000] 10
61 85 D9 D9 1D3

[1.454] [1.594] [1.750] [1.750] [2.000] 9
1F5 85 D9 D9 1D3

[1.438] [1.594] [1.750] [1.750] [1.938] 8
F5 85 D9 D9 5B

[1.493] [1.829] [1.938] [2.063] [2.063] [2.438] 12 7
C1 3A9 A1 727 727 AE7

[1.493] [1.610] [1.938] [2.063] [2.063] [2.375] 11
C1 457 A1 D9 727 1D3

[1.461] [1.610] [1.813] [1.813] [1.813] [2.000] 10
73 57 D9 D9 D9 1D3

[1.461] [1.610] [1.750] [1.750] [1.750] [2.000] 9
73 57 D9 D9 D9 1D3

[1.489] [1.602] [1.875] [2.102] [2.125] [2.250] [2.438] 12 8
2B 1FB AF7 9F 769 769 AE7

[1.458] [1.602] [1.829] [1.938] [2.125] [2.125] [2.375] 11
123 1FB 2F7 343 769 769 1D3

[1.454] [1.594] [1.750] [1.938] [2.000] [2.000] [2.000] 10
2DD 205 109 343 1D3 1D3 1D3

[1.454] [1.606] [1.868] [1.954] [2.102] [2.188] [2.375] [2.500] 12 9
559 6A9 22D E0B 9F C87 1D3 375

[1.454] [1.606] [1.829] [1.915] [1.938] [2.157] [2.375] [2.375] 11
559 6A9 691 6F9 343 631 1D3 1D3

[1.457] [1.600] [1.774] [1.926] [2.000] [2.102] [2.188] [2.500] [2.500] 12 10
5A5 805 CB 79B 60B 9F C87 375 375

9 8 7 6 5 4 3 2 1 n s
r

r

s n 1 2 3 4 5 6 7 8 9 10 11 12 13

14 16 [2.688] [2.688] [2.688] [2.396] [2.329] [2.329] [2.117] [2.106] [2.000] [1.963] [1.778] [1.600] [1.455]

92ED 92ED 92ED AF61 26C1 26C1 A033 ACC9 67FD B509 4009 8005 5559

13 16 [2.688] [2.625] [2.590] [2.396] [2.329] [2.329] [2.117] [2.029] [2.000] [1.880] [1.601] [1.455]

92ED EC8B 1375 AF61 26C1 26C1 A033 C26B 67FD CDE9 6AA9 4445

15 [2.590] [2.590] [2.590] [2.282] [2.176] [2.120] [2.104] [1.997] [1.962] [1.784] [1.601] [1.455]

1375 1375 1375 2F61 26C1 127F 6B6B 3403 E4B 2CCB 6AA9 4445

12 16 [2.688] [2.625] [2.590] [2.396] [2.329] [2.258] [2.042] [1.997] [1.882] [1.601] [1.489]

92ED 62CB 1375 AF61 26C1 E91 D6E1 3403 155B 1FFB A131

15 [2.590] [2.590] [2.590] [2.282] [2.176] [2.120] [2.042] [1.997] [1.882] [1.601] [1.455]

1375 1375 1375 2F61 26C1 127F 56E1 3403 155B 1FFB 1D89

14 [2.500] [2.500] [2.391] [2.102] [2.102] [2.102] [2.000] [1.963] [1.780] [1.600] [1.455]

1375 1375 2BD1 109F 109F 109F 1575 1ED3 1491 2005 1D89

11 16 [2.688] [2.625] [2.547] [2.282] [2.282] [2.120] [2.000] [1.882] [1.615] [1.489]

92ED 62CB 6791 509F 509F 127F 6603 E927 3AA9 7C59

15 [2.590] [2.590] [2.547] [2.172] [2.172] [2.120] [2.000] [1.882] [1.601] [1.489]

1375 1375 6791 20F5 20F5 127F 19FD 6927 4557 3A7

14 [2.500] [2.500] [2.391] [2.102] [2.102] [2.020] [2.000] [1.882] [1.601] [1.455]

1375 1375 2BD1 109F 109F A71 1575 2927 557 B

13 [2.500] [2.500] [2.391] [2.102] [2.079] [1.985] [1.946] [1.778] [1.601] [1.455]

1375 1375 BD1 109F 114F D03 D69 7F7 557 B

10 16 [2.657] [2.625] [2.547] [2.282] [2.211] [2.032] [1.950] [1.600] [1.498]

AEE7 62CB 6791 509F F64B 8189 3663 8805 AB

15 [2.590] [2.590] [2.532] [2.172] [2.157] [1.985] [1.874] [1.600] [1.490]

1375 1375 6989 20F5 193F 4D03 7663 805 3E5D

14 [2.500] [2.500] [2.391] [2.102] [2.084] [1.985] [1.874] [1.600] [1.490]

1375 1375 2BD1 109F 314F D03 3663 805 1A3

13 [2.500] [2.500] [2.391] [2.102] [2.079] [1.985] [1.874] [1.600] [1.457]

1375 1375 BD1 109F 114F D03 1663 805 5A5

9 16 [2.657] [2.375] [2.375] [2.172] [2.172] [1.985] [1.727] [1.499]

AEE7 51D3 2E2D 20F5 20F5 4281 6A9 301

15 [2.590] [2.375] [2.375] [2.172] [2.118] [1.985] [1.727] [1.499]

1375 51D3 2E2D 20F5 3E0B 3D7F 6A9 301

14 [2.500] [2.375] [2.375] [2.102] [2.084] [1.946] [1.633] [1.491]

1375 11D3 11D3 109F 314F 22D 6A9 7CD

13 [2.500] [2.375] [2.375] [2.102] [2.000] [1.922] [1.633] [1.491]

1375 11D3 5E9 109F 1983 34D 6A9 7CD

8 16 [2.465] [2.250] [2.125] [2.125] [2.118] [1.891] [1.602]

5AE7 3769 3769 3769 41F5 36A5 1E05

15 [2.465] [2.250] [2.125] [2.125] [2.079] [1.602] [1.497]

1AE7 3769 3769 3769 214F 1E05 3E7F

14 [2.465] [2.250] [2.125] [2.102] [1.891] [1.602] [1.497]

1AE7 3769 3769 109F 36A5 1E05 181

13 [2.465] [2.250] [2.125] [2.102] [1.875] [1.602] [1.489]

1AE7 1769 1769 109F 1AF7 1FB 1FD5

7 16 [2.438] [2.250] [2.125] [1.938] [1.922] [1.524]

5AE7 3769 3769 50A1 50A1 C815

15 [2.438] [2.250] [2.125] [1.938] [1.922] [1.524]

1AE7 3769 3769 10A1 50A1 4815

14 [2.438] [2.063] [2.063] [1.938] [1.860] [1.524]

1AE7 3727 8D9 10A1 1F3 815

13 [2.438] [2.063] [2.063] [1.938] [1.829] [1.500]

1AE7 1727 8D9 F5F AF7 F41

6 16 [2.188] [2.188] [2.125] [1.875] [1.672]

CE9D 51D3 3769 477B 17A1

15 [2.188] [2.188] [2.125] [1.875] [1.672]

4E9D 11D3 2E2D 3885 17A1

14 [2.188] [2.063] [2.063] [1.594] [1.594]

E9D 3727 8D9 1885 1885

13 [2.188] [2.063] [2.063] [1.594] [1.594]

69D 1727 8D9 1885 1885

5 16 [2.000] [1.813] [1.813] [1.594]

39D3 64D9 64D9 4285

15 [2.000] [1.813] [1.813] [1.594]

39D3 64D9 C63 1885

14 [2.000] [1.813] [1.813] [1.594]

E5B 24D9 4D9 285

13 [2.000] [1.813] [1.813] [1.594]

E5B 4D9 4D9 285

4 16 [2.000] [1.750] [1.688]

39D3 25A7 3769

15 [2.000] [1.750] [1.688]

1697 12D3 969

14 [2.000] [1.750] [1.688]

E5B 969 969

13 [2.000] [1.750] [1.688]

5A7 5A7 969

3 16 [1.625] [1.500]

B6DB A5A5

15 [1.625] [1.500]

36DB 25A5

14 [1.625] [1.500]

16DB 25A5

13 [1.625] [1.500]

16DB 5A5

Table 3: Best generators for 8 � n � 16
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Table 4: Good generators for 29 � n � 32
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