
Synthesis of Concurrent System Interface Modules with Automatic Protocol
Conversion Generation�

Bill Lin Steven Vercauteren

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium, Email:fbilllin,vercautg@imec.be

Abstract — We describe a new high-level compiler called Integral
for designing system interface modules. The input is a high-level con-
current algorithmic specification that can model complex concurrent
control flow, logical and arithmetic computations, abstract communi-
cation, and low-level behavior. For abstract communication between
two communicating modules that obey different I/O protocols, the
necessary protocol conversion behaviors are automatically synthe-
sized using a Petri net theoretic approach. We present a synthesis
trajectory that can synthesize the necessary hardware resources, con-
trol circuitry, and protocol conversion behaviors for implementing
system interface modules.

1 Introduction
Today, complex digital electronic systems utilizing a wide range
of IC technologies are being designed. Example technologies in-
clude application-specific ICs, FPGAs, DSPs and video processors,
�-processors, memories, system bus modules, and other off-shelf
components. These different hardware and software modules can
be used in combination to create complex heterogeneous hardware-
software systems. These modules often interact and communicate in
complex ways by transferring information and synchronizing their in-
puts and outputs. A key bottleneck in system integration is the design
of system interface modules, which are special system modules re-
quired for interconnecting and synchronizing the information transfer
between communicating system-level components. This is required
because in general each of the communicating components may be
using arbitrary and incompatible I/O protocols to communicate with
its environment.

To clarify what is meant by the term “system interface module”,
two examples are provided to give a sense for the key issues and
difficulties involved in designing interface modules. The first exam-
ple, depicted in Figure 1, is an interface module that performs the
data transfer from two source optical links to two destination storage
buffers. The interface module first waits for a rising transition on
the reset line followed by a rising transition on the start line. When
this occurs, the interface module is responsible for reading 60 sam-
ples from the first optical link and inserting the samples into the first
storage buffer. Concurrently, it has to read 500 samples from the sec-
ond optical link and insert them into the second storage buffer. The
I/O protocol used by the optical links is a simple two-phase protocol
whereas the storage buffers use a four-phase protocol, as depicted in
Figure 1. This example illustrates the need for concurrent control
flow, asynchronous hardware resources like asynchronous counters
and registers, protocol conversion from two-phase to four-phase, and
low-level specification at the level of signal transitions.

The second example (taken from [16]) is shown in Figure 2. It
is a system bus interface providing read and write access from the
VME system bus to the shared memory port of a processor module.
During a write access, the VMEbus [21] is the source of address
and data information, while the processor port is the destination
of address and data. In the read transfer, address information still
flows from the VMEbus to the processor port, but data flows in
the opposite direction. The read and write access also requires the
decoding of the upper VME address bits to determine if the processor
address space has been selected. Accordingly, the interface exercises

�This research was sponsored in part by the European Commission under
the OMI/EXACT project in ESPRIT No. 6143.

rcvD

rcvD

Req

Ack

Req

Ack

Host

Optical
Link

Optical
Link

Storage FIFOs

Interface Module

reset

start

done

DATA<31:0>

DATA<31:0>

Req

Ack

DATA

SRC<31:0>

SRC<31:0>

rcvD

SRC

done
startreset

Figure 1: Interface for dual-optical source to FIFO buffers.

conditional control over the communications. To synchronize the
transfer with their environment, both the VMEbus and processor port
use a signaling protocol exercised on control signals, as depicted with
timing diagrams in Figure 2. The protocols shown are somewhat
simplified to clarify the example. The actual protocols are more
complex, requiring the synchronization of address lines, data lines,
and the write status signal. Both modules use different protocols,
so the interface module has to also be responsible for the protocol
conversion between them. This example illustrates the fact that
communication actions on different “channels” may be dependent
and inter-related.

In this paper, we describe a new high-level compiler called Inte-
gral that can be used for the automated design of such system inter-
face modules. The input to this compiler is a high-level concurrent
algorithmic specification that can conveniently be represented as an
annotated Petri net model [15] extended with CSP-style rendezvous
communication. With this model, complex high-level control involv-
ing concurrent threads of execution, data and information processing,
abstract communication based on CSP’s rendezvous model, and low-
level behavior such as signal transitions (e.g. rising s+ and falling
s� transitions) may be described.

Also provided to the compiler is a library that captures the actual
I/O protocols and timing information used by the different hardware-
software modules in the system. These I/O protocols are specified
using the signal transition graph model [6], which is also a Petri
net model but with only signal transitions as possible actions. This
specification of the module I/O protocol is “encapsulated” into the
library. In the high-level input model, communication actions be-
tween communicating modules can be specified in an abstract way.
This permits a non-expert designer to specify high-level communica-
tion between modules without a detailed understanding of the actual
communication protocol characteristics employed in each individual
module. For example, in Figure 2, the designer simply has to specify

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0101 $3.50

AS_L

DS_L

DTACK_L

10ns min

10ns min 30ns
min

DATA

ADDR

CS

Done
40ns min

WRITE_L
DS_L, AS_L

DTACK_L
CS

Done

We

Interface Module

P
ro

ce
ss

or

sh
ar

ed
 m

em
−p

or
t

DATA<7:0>

ADDR<15:1>

DATA<7:0>

ADDR<10:1>

ADDR,
DATA,
We

V
M

E
bu

s

Figure 2: Interface between VMEbus and processor memory.

a “receive” operation along the VMEbus channel without specifying
“how” this is achieved. The “protocol behavior” required to imple-
ment this “receive” operation will be automatically synthesized.

Given the high-level input description and a protocol library, the
compiler first generates a set of communicating annotated Petri net
models by means of direct translation. The concurrent control flow
is specified by the flow-relation of the Petri net. The “transitions”
of the Petri net specify abstract communication actions over chan-
nels, assignment operations, function calls, logical and arithmetic
computations, and low-level signal transitions. Each annotated Petri
net is then successively refined by syntactically allocating hardware
resources (e.g. adders, incrementers, registers) for data related op-
erations. This is similar to the “macromodules” approach used by
existing high-level asynchronous compilers [20, 13, 5, 1], except that
we only use this approach for the data processing parts. In particular,
we are using “single-rail encoded” hardware modules that are orga-
nized with the data-bundling assumption [17, 5, 1]. These hardware
modules can be controlled using either a four-phase level signaling
scheme or a two-phase transition signaling scheme. We refer to the
chosen control scheme as the “primitive protocol”. There is a grow-
ing consensus that the four-phase scheme is more efficient, but our
synthesis trajectory permits the use of both schemes.

For internal communication actions, they are simply refined by
means of handshake expansion to the internal primitive protocol (i.e.
four-phase or two-phase). For external communication actions be-
tween communicating modules that obey different I/O protocols, the
refinement step requires the synthesis of the necessary protocol con-
version behaviors. For this synthesis task, we describe a novel Petri
net theoretic approach that implicitly performs protocol conversion
between two incompatible external I/O protocols by converting them
to the internal primitive protocol. This conversion is performed
automatically based on formal operations. With this approach, auto-
matic protocol conversion between complex I/O protocols involving
choices can be handled.

At the end of the refinement process, the refined Petri net contains
only simple signal transitions, which corresponds to a signal transi-
tion graph model [6] that specifies the collective control behavior.
The control signal transition graph is then synthesized to hazard-free
gate-level logic using well-optimized low-level algorithmic synthe-
sis methods [12, 6, 10, 11, 18, 3]. During the controller synthesis
phase, internal control signals introduced from the refinement pro-
cess may be flatten away. Thus, the synthesized solutions need not
be constrained by the initial refinement structure.

An important aspect of our approach is that we use an algorith-
mic synthesis approach for the control processing parts instead of a
syntax-directed translation approach [13, 5, 20, 1]. Circuit imple-
mentations obtained by syntax translation for control behavior tend
to be highly unoptimized. This is not acceptable for the application
domain considered here since a substantial portion of the behavior
is control oriented. Our refinement approach effectively employs a
syntax-directed approach with peephole optimizations for the data

processing parts, but employs an algorithmic synthesis approach for
the control parts.

The remainder of this paper is organized as follows. Section 2
describes related work. Section 3 gives an overview of our spec-
ification model. The synthesis methods for the different steps in
our synthesis trajectory are described in Section 4 and Section 5 :
Section 4 describes the steps for synthesizing the high-level compu-
tations and the internal communication actions; Section 5 describes
the steps for synthesizing the external communication actions and
protocol conversion. Section 6 describes in details the application of
our compilation method to design examples.

2 Related Work
Automated logic synthesis tools have been developed for the synthe-
sis of asynchronous control circuits [3, 6, 10, 11, 12, 18]. They are
based on a low-level specification at the level of binary signal transi-
tions, e.g. signal transition graphs [6]. Though there exist powerful
methods for synthesizing optimized hazard-free implementations, the
specification and synthesis methods are too low-level for the problem
here. Abstract communication, logical and arithmetic computations,
and other high-level commands typically found in high-level pro-
gramming languages, such as functional calls and hierarchy, are not
supported in the specification model or by the synthesis methods.
Moreover, protocol conversion behaviors are assumed to be speci-
fied by the designer, which means the designer is responsible for this
difficult and error-proned design task.

High-level asynchronous compilers, mainly based on the CSP
model [9], have also been developed [5, 13, 20, 1]. These compilers
are based on syntax-directed translation methods. They can handle
high-level logical and arithmetic computations, abstract communi-
cation, and other high-level commands. However, for the system
interface design problem here, they lack several crucial capabilities:
e.g., they do not perform automatic protocol conversion, which again
leaves this diffcult and error-proned design task to the designer, and
they generally do not handle well low-level details like signal transi-
tions and timing, which are required for specifying low-level interface
behaviors.

In [4], a compiler based on an event graph model similar to the
signal transition graph model was described. The synthesis method
is based on syntax-directed translation and template matching. This
compiler is mainly targeted towards lower level synthesis. High-level
processing and automatic protocol conversion are not handled.

In [16], a compiler designedspecifically for the synthesis of (high-
level) system interface modules was proposed. Their flow-graph
specification model provides limited means for expressing concur-
rency, does not generally permit the intermixing of high-level com-
mands with low-level details, and is not semantically well-defined.
Their compilation method is based on an ad-hoc synthesis trajectory
that produces a set of combinational data-path modules, a separate
set of logic equations for each communication action, and an ordi-
nary control finite state machine that is “clocked” by asynchronous
signals. The main shortcoming with their compiler is that none of the
hardware modules produced are ensured to be race- or hazard-free
and the interactions between the modules are not ensured to be race-
or hazard-free either. Their method also has trouble dealing with
external protocols that have “conditional behaviors”.

3 Specification Methodology
3.1 The protocol library

In order to abstract over the details of the actual I/O protocols used
for communication between different hardware-software modules in
the system, the I/O protocols along with relevant timing information
are “encapsulated” into a “protocol library”. In the high-level in-
put model of the system interface behavior itself, the communication
actions between different modules are specified in an abstract and
concise way without having to specify the actual protocol details.
This is because the knowledge of the protocol details are captured
for the user in the underlying protocol library. In fact, the actual

(a)

DATA

ADDR

REQ

ACK

(b)

REQ +

ACK +

REQ −

ACK −

DATA # ADDR #

DATA * ADDR *

Figure 3: (a) Return-to-zero port write protocol. (b) Protocol signal
transition graph for the module library.

(a) (b)

AS_L

DS_L

DTACK_L

10ns min

10ns min
30ns
min

DATA

ADDR

WRITE_L

DS_L−

DTACK_L−

AS_L+AS_L−

ADDR # ADDR *

DS_L+

DTACK_L+

DATA #

DATA *

WRITE #

WRITE *

Figure 4: (a) VMEbus write protocol. (b) Protocol signal transition
graph for the module library.

control signals for the protocol communication does not even appear
in the high-level specification model. This way, the designer only has
to specify a communication action that is required along a specified
channel that uses a certain protocol. The “protocol behavior” re-
quired to implement this communication action will be automatically
synthesized (cf. Section 5).

Module protocols are typically documented as informal timing
diagrams in data sheets and technical manuals. For example in Fig-
ure 3, a standard “return-to-zero” write protocol is depicted. The
timing diagram is shown in Figure 3(a). To formally represent this
I/O protocol, we use the signal transition graph model [6], which is
also a Petri net model but with only signal transitions as possible
actions. This signal transition graph is referred to as the “protocol
signal transition graph” of the module protocol, and it can be readily
derived from the timing diagram, as shown in Figure 3(b).

Although this is a very simple protocol, it already illustrates some
important (but subtle) points. This protocol is in fact used to “control”
two channels : a channel for transferring the address, and a channel
for transferring the data. Communication actions along these two
channels must be “coordinated”. In the protocol library, we explic-
itly associatewith each protocol definition the set of “channels” that it
controls. These channels are captured as arguments. In this example,
the associated channels are DATA and ADDR. The events tagged
with the symbols “�” and “#” are used to indicate that the correspond-
ing channel is at an “invalid” state or a “valid” state, respectively :
e.g. DATA�; DATA# and ADDR�;ADDR#.

In Figure 4, a more complex protocol is shown. This is only
the “write” cycle of the VMEbus protocol. The protocol signal
transition graph is shown in Figure 4(b). The complete protocol
(will be discussed in Section 6) is considerably more complicated
and involves conditional choices. In general, signal transition graphs
with a general underlying Petri net model and arbitrary choices are
needed to capture complex protocols. Therefore, we also use general
signal transition graphs to model protocols in the protocol library.
In addition, as illustrated by this example, timing information must
also be annotated. They are associated with the “arcs” of the signal
transition graph. For example in Figure 4, the address lines must
settle at least 10ns before the falling transition of AS L can occur.
This is reflected by the associated timing annotation in the protocol
signal transition graph. These timing constraints must be verified
after the synthesis process, using for example the timing verification
techniques reported in [2, 14, 19, 8].

protocol rtzRead;
protocol rtzWrite;

process shift send :
in signal start;
channel addrh7:0i, datah7:0i: rtzRead;
channel addr outh7:0i, data outh7:0i: rtzWrite;
f

boolean xh7:0i, yh7:0i;
start+;
addr?y k data?x;
addr out!y k data out!(x�2);
start�;

g

Figure 5: A simple shift-send example.

3.2 Input specification model

We will informally introduce our high-level input specification model
by means of an illustrative example shown in Figure 5. The input
model is specified as a set of communicating processes over a set of
CSP-style rendezvous communication channels and low-level con-
trol signals. This specification has the underlying semantics of a
high-level Petri net [15] extended with rendezvous communication
and the translation to an internal annotated Petri net representation is
straightforward. With this model, complex high-level control involv-
ing concurrent threads of execution, data and information processing,
CSP-style abstract communication, and low-level behavior such as
signal transitions (e.g. rising s+ and falling s� transitions) may be
described.

Referring again to the program text in Figure 5, the command
lines “protocol rtzRead” and “protocol rtzWrite” declare that the
module protocols “rtzRead” and “rtzWrite” in the protocol library
will be used for abstract external communication. These names
identify the protocol signal transition graphs in the module library
that denote these protocols. These two protocols are in fact based
on the protocol depicted in Figure 3. The “process” declaration
declares a module that executes concurrently with other processes
in the system interface specification. A process will restart itself
upon completion of its execution, implying that an operation within
a process will be activated at most once during each execution of the
process.

The command line “in signal” declares an input control signal
named “start”, and the command lines starting with “channel” de-
clare data communication channels. The word “rtzRead” at the end
of the first channel command line specifies that the fields “addrh7:0i”
and “datah7:0i” are related channels that are controlled by the same
module protocol “rtzRead” in the protocol library. Similarly, the
word “rtzWrite” at the end of the second channel command line spec-
ifies that the fields “addr outh7:0i” and “data outh7:0i” are related
channels controlled by the same module protocol “rtzWrite in the
protocol library. Again, the detailed knowledge of these protocol are
hidden in the protocol library.

In the body of this example, x and y denote internal variables,
start+ and start� specify that the process must wait for the en-
vironment to make a rising or falling transition on the wire start,
respectively. Note that it is possible in our model to also capture low-
level details at the signal transition level. This is very important in
practice because the specification of system interface module, though
at a “high-level”, often still requires precise specification of low-level
details. In our synthesis methodology (cf. Section 4), “high-level”
as well as “low-level” operations are handled together.

The operators “;” and ”k” mean “Sequential composition” and
“Parallel composition”, respectively. A;B means that first A is

start+

addr?y data?x

start−

addr_out!y data_out!(x<<2)

Figure 6: Annotated Petri net model for shift-send example.

executed and subsequentlyB. AkB means commands A and B are
executed concurrently. The compound command terminates when
both sub-commands are terminated. The k operator binds more than
the “;” operator. In general, the commandsA and B can be complex
hierarchical blocks involving independent threads of control flow.
Thus, complex concurrent control behavior may be specified.

The commandsaddr?y and data?x specify rendezvous“receive”
operations along channels addr and data. Unlike standard CSP, we
are able to specify that the rendezvous operation must be “synchro-
nized” with the particular protocol declared for that channel. The
protocol conversion behavior is automatically synthesized by our
compiler, as explained in the next section. Similarly, the commands
addr out!y and data out!x specify rendezvous “send” operations
along channels addr out and data out.

Besides the constructs indicated already, the input model also
supports standard procedural constructs like loops and if-then-else
statements.

4 Synthesis I
In this section and the following section, the synthesis method of our
compiler is described in detail. In the first step, the high-level input
model is translated into an annotated Petri net. This intermediate
form can be derived easily using a syntax-directed procedure, as can
be seen in Figure 6. The parallel construction, the sequencing of
actions and the choice between different actions, all have their Petri
net equivalents, which makes the procedure straightforward. This
annotated Petri net is then successively refined until all actions have
been refined to simple signal transitions. In this section, we describe
how the actions of the annotated Petri net are modeled, and how
this is used in the refinement process to synthesize the high-level
computations and the internal communication actions. Afterwards
in the next section, we explain how automatic protocol conversion is
performed to synthesize the external communication actions.

4.1 Internal action refinement
In Section 3, we informally introduced our specification model. This
specification model is internally represented using a communicating
Petri net model that we now describe more formally. Each process is
a labeled Petri net G = hA;P;!; m0i where A is a set of actions,
P is the set of places, !� P(P)� A�P(P) is the flow relation,
and m0 : P 7! f0; 1g is the initial marking.

The Petri net processes communicate and interact with each other
and the environment via the communication channels, using send
and receive commands, and the input/output wires, through low-level
handshake signal transitions.

For each action a 2 A, �a denotes the set of input places of a
and a� denotes the set of output places. Similarly, for each place
p 2 P , �p denotes the set of input actions of p and p� denotes the set
of output actions.

In our specification model, the actions inA = E [D [H [R[
Q [f�g can be of the following types.

E = (I[O)�f+;�;�g is the set of low-level signal transitions
on the input and output wires I and O. s+ and s� denote the rising
and falling transition of signal s, respectively, and s� denotes the
toggling of s to its opposite value.

D = B � f�; #g is the set of actions on data wires that specify
whether the values on the corresponding set of data wires b 2 B are
invalid (denoted by b�) or valid (denoted by b#). b can denote a single
wire or a bundle of wires corresponding to a data bus. In this case,
the width of the data bus is abstracted.

The actions in H correspond to logical or arithmetic expressions:
e.g., additions, comparisons, etc. These actions can be thought of as
data processing computations.

R = Cint � f!; ?g(�X) is the set of actions that corresponds to
internal communications. Cint is the set of internal channels where
communication takes place within a Petri net process or between two
communicating Petri net processes. “!” and “?” correspond to CSP-
style rendezvous send and receive operations, respectively. Data,
which is optional, may be communicated over a channel usingX as
data variables.

Q = Cext�f!; ?; ?�g(�X) is the set of actions that corresponds
to external communications. Cext is the set of external channels
where communication takes place with the environment. “!” and
“?” again correspond to CSP-style rendezvous send and receive op-
erations, respectively. Unlike internal communication actions, an
external communication protocol definition �(q) is associated with
each external communication action q 2 Q. Protocol conversion
must be performed to communicate with the specified external pro-
tocol. We also introduce a get command, denoted by “?�”, that is
similar to the receive command except that it doesn’t introduce a new
communication cycle.

Finally, � simply denotes a dummy transition. Function calls,
hierarchy, and other high-level commands can be reduced to the
above form.

Given a set of communicating Petri net processes Γ =

fG1;G2; : : : ;GjΓjg of the form G = hA;P;!; m0i, we succes-
sively refine each Petri net process until all actions have been refined
to simple signal transitions, which in fact corresponds to a signal tran-
sition graph model [6] that specifies the collective control behavior.
The control signal transition graph is then synthesized to hazard-free
gate-level logic using well-optimized low-level algorithmic synthesis
methods [6, 10, 11, 18, 3].

We now describe the action refinement process. The actions in
E [D [f�g � A, corresponding to low-level signal transitions,
data invalid/valid declarations, and dummy transitions, are already at
their lowest level and do not need to be refined any further. However,
actions corresponding to logical and arithmetic expressions, internal
communication, and external communication must be further refined.

Logical and arithmetic expressions are refined using a “macro-
modules” approach by means of syntax-directed translation, as in
[20, 13, 5, 1]. That is, hazard-free hardware implementations nec-
essary for performing the logical and arithmetic computations are
assumed to be available in a pre-defined library. The necessary hard-
ware resource allocations and their proper interconnections are done
in the same way as [20, 13, 5, 1]. Compound actions are refined
to more primitive actions using an action grammar. The interested
reader can refer to these works for details. In particular, we are using
“single-rail encoded” hardware modules that are organized with the
data-bundling assumption [17, 5, 1]. These hardware modules can
be controlled using either a four-phase level signaling scheme or a
two-phase transition signaling scheme (cf. Figure 7). We refer to the
chosen control scheme as the “primitive protocol”. These protocols
are used to trigger the computations and to detect their completions.
For the sake of exposition, we will use the four-phase level signaling
scheme as the primitive protocol for the remainder of the paper, but
either scheme can be used. Using the single-rail encoded modules
with the data-bundling assumptions,delays may need to be inserted to
ensure proper handshaking. This is a well-studied problem [17, 5, 1]
and we are using similar techniques. However, unlike [20, 5, 1],
the control logic is not syntactically allocated, but the corresponding

a comp~

a init~

reqa +

a ack+

a req−

a ack−

reqa

a ack

a init

a comp

hardware
resource

2φ
hardware
resource

4φ

(a) (b)

Figure 7: Hardware resource blocks. (a) 4-phase. (b) 2-phase.

(a) (b)

start−

addr_out!y (x<<2)

data_out!

(c)

addr_out!y

start−

data_out!

ack−shift

req−shift

ack+shift

req+shift

shifter
module

reqshift

ackshift

Figure 8: Example expression refinement for the shift-send example.

control behavior is refined into the Petri net itself, which is then later
synthesized algorithmically at the end of the refinement process.

In Figure 8, an expression refinement is shown. An asynchronous
shifter is allocated. The corresponding control signal transitions are
shown in the partially refined annotated Petri net of Figure 8.

The refinement of internal communication actions is done in a
similar way as expression refinement. In particular, “send” and “re-
ceive” commands are refined to the corresponding primitive protocol
sequences. The expanded primitive protocol sequence, e.g. the four
phase protocol, actually implements a full rendezvous handshake
protocol. The necessary registers and multiplexing hardware are
allocated for implementing the transfers.

5 Synthesis II : Protocol Conversion
After the refinement of expressions and internal communication ac-
tions (cf. Section 4), we are left with a refined Petri net that only
has low-level actions and external communication actions. In this
section, the refinement of external communication actions and the
problem of protocol conversion are discussed. We first informally
introduce our protocol conversion method by means of examples.
Then, we will describe the procedures and operations more formally.

5.1 Examples

Consider first the example depicted in Figure 9. We wish to refine
the external communication action D!x, which corresponds to the
“sending” of x along the channel D from the interface module to
the external module. For this action, the interface module is in fact
the “sender” and the external module is the “receiver”. The external
protocol � (cf. Section 3.1) used by the external module to control
channelD is shown in Figure 9(b). In this external protocol definition,
the pair of events “D�” and “D#” are used to indicate when the data
on the channel is “invalid” and “valid”, respectively. When the data
is valid for the external module to safely “receive”, it expects the
“sender” to raise its input wire STRB. When it has processed the

data, it toggles its output wire SACK to acknowledge to the sender
that it has read the data, and the protocol cycle is completed when
the sender lowers STRB. Using this protocol, the external module
assumes the data is “invalid” in the region from D� to D#, but it
assumes that the data is “valid” in the region from D# to D�, and
hence can be safely processed.

STRB

SACK

req

ack

interface
module
‘‘core’’

protocol
conversion
behavior

‘‘sender’’‘‘receiver’’

External
module

Interface Module

(a)

D
D ! x

req +

ack −

ack +

req −

D #

D *

ρ ‘‘primitive
protocol’’=

(b)

STRB +

SACK ~

STRB −

D #

D *

External Protocolπ =

STRB +

SACK ~

STRB −

D #

D *

req +

ack −

STRB +

SACK ~

STRB −

D #

D *

req +

ack −

ack +

req −

(d) || ρmirror ())mirror (π’Ω = (c) π()π’ = Modify

Figure 9: Simple conversion example. Part (d) is the synthesized
Protocol conversion Signal Transition Graph Ω.

The refinement of an external communication action is achieved
in two steps. First it is refined in the specification graphG in the same
way as an internal communication action, i.e., by means of handshake
expansion into a “primitive protocol” sequence; in this case, we are
using the 4-phase handshake scheme as the primitive protocol with
the wires req and ack. The primitive protocol signal transition graph
� for a “send” operation is shown in Figure 9(b). It also has a pair of
events with the names “D�” and “D#” to indicate when the data on
the channel is “invalid” and “valid”, respectively. In the second step,
we synthesize a protocol conversion signal transition graph Ω that
specifies the protocol conversion behavior for converting between
the external protocol � and the internal primitive protocol �.

The basic idea in our protocol conversion synthesis method is
“compose” the “mirror” of the external protocol � with the “mirror”
of the internal primitive protocol �, synchronizing on the data events
D� andD#. The “mirror” of the external (internal primitive) protocol
� (�) simply results in an interchange of the input and output wire
sets. This is because the “output” of the external (internal primitive)
protocol is in fact the “input” of the protocol conversion specification,
and vice versa, as shown in Figure 9(a). Parallel composition [7]
implicitly computes the protocol conversion behavior. Both of these
operators are defined in Appendix A. This is nearly correct. However,
there is a problem in the interpretation of �. Following this protocol
graph, the protocol conversion “behavior” has to raise the strobe line
STRB as soon as it knows the data on the channel is really “stable”,
hence “valid”. But the protocol conversion “behavior” cannot know
when exactly the channel has become stable until it has received an
input req+ from the interface module “core” confirming this event.
In the same way, the interface module core may not lower the ack
line before the external module is ready for it, i.e. after lowering the
ack line the sender can invalidate the channelD, while the receiver
may still be processing it.

In Section 5.4, we describe a systematic procedure for modifying
the external protocol so that the composed behavior corresponds

Cack −

Bsack ~

Bstrb +

Bstrb −Astrb −

Astrb +

Asack ~

Areq +

Aack −

A *

A #

Areq +

Aack −

Breq +

Back −

B #

B *
Breq +

Back −

Csack ~

Creq −

Creq +

Cack +

Cstrb ~

C #

C *

Astrb

Asack

‘‘core’’

External

module

Interface Module

Areq

Aack

B

A

Bsack

Bstrb Breq

Back
C ?* x;
if (x > 0) {
 A ! x
} else {
 B ! x
}

Cstrb

Csack

Creq

Cack

C

(a)

mirror mirror ()() ||mirror mirror ()() ||Ω = ||ρ
c
’π’ ρ

a
ρ

b

(d)

External Protocolπ = (b)

Csack ~

Bsack ~

B #

B *

Bstrb +

Bstrb −Astrb −

A #

A *

Astrb +

Asack ~

Cstrb ~

C *

C #

C *

C #

Creq +

Cack +

Creq −

Cack −

ρ
c

C #

C *

Csack ~

Cstrb ~

Creq +

Cack +

Creq −

Cack −

ρ
c

ρ
c
’ = Modify ()

(c)

Bsack ~

Bstrb +

Bstrb −Astrb −

Astrb +

Asack ~

Areq +

Aack −

A *

A #

Breq +

Back −

B #

B *

Csack ~

Cstrb ~

C *

C #

ππ’ = Modify ()

Figure 10: Multi-channel example with choice. Part (d) is the syn-
thesized protocol conversion Signal Transition Graphs Ω.

exactly to a correct protocol conversion behavior. In general, it
is the “receiver’s” protocol that must be modified. The modified
external protocol � is shown in Figure 9(c). If we compose the
modified “mirrored” behavior of the modified external protocol with
the “mirrored” behavior of the primitive protocol, we get the desired
protocol conversion signal transition graph, as shown in Figure 9(d).
Once we have synthesized the desired protocol conversion signal
transition graph, we can compose it with the refined specification
graph of the interface module so that the protocol conversionbehavior
is incorporated.

Consider now the second example shown in Figure 10. We have
to refine three communication actions that are in fact related because
they are being controlled by the same protocol. The external protocol
�, shown in Figure 10(b), involves “choices”. It acts as a “sender”
along channel C , but it acts as a “receiver” along channels A and
B. To read channel C , we use the get command (C?�X) instead
of a receive command to indicate that, when sending the register X
back to the external module, we want to “talk” to the same external
protocol communication cycle. In fact, if specify e.g. C?�X;C?Y
then the contents of register X and Y will always be the same. If
however we specify e.g. C?X;C?Y , the contents of X and Y in
general may not be the same, becauseafter the first receive command,
a new communicationcycle will start, possibly placing some different
data on channelC .

The external module is the “receiver” along channelA and B, so
we can apply the same modifications to the protocol signal transition
graph as mentioned in the example of Figure 9. This can be seen
in Figure 10(c). For channel C , the interface module acts as the
“receiver”. In this case, the primitive protocol has to be modified
in the same way, as can be seen also in Figure 10(c). The modified
primitive protocol is denoted as �0. After mirroring and composing,

the resulting synthesized protocol conversion signal sransition graph
then looks like Figure 10(d).

5.2 Overall Procedure
In this section, the protocol conversion method is described more for-
mally. In the first step, the external communication actions are refined
in the same way as the internal communication actions. Afterwards
all external communication actions are grouped into sets of actions
that are “interacting” on a particular protocol instance. These sets are
called clusters and together with the appropriate protocol instances,
they build up the protocol conversion “behaviors” (cf. examples).
For each protocol conversion “behavior”, the “receivers” are adapted
to the “sender”, by introducing some event anchors. Afterwards, the
behaviors of the “receivers” can be composed with the behavior of
the “sender”, to become the desired protocol conversion behaviors.
In order to become the behavior of the complete interface module,
the behavior of the interface module ”core”, derived by refining all
actions to low-level actions, must be composed with all the neces-
sary protocol conversion behaviors. This results into the following
algorithm.

Algorithm 5.1 (Protocol Conversion)

RefineExtComm (G) f
Σ = FindClusters (G);
For each � 2 Σ f

let � be the external protocol to control �;
let Ψ = ;;
For each q 2 � f
G = Refine (G);
create primitive protocol�;
(�; �) = SetEventAnchors (�; �);
Ψ = Ψ k mirror(�);

g
Ω = Ψ k mirror(�);
G = G k Ω;

g
Return (G);

g

In the following sections, the functions used in Algorithm 5.1 will be
outlined.

5.3 Find clusters

In the first step of the procedure, we have to identify all communi-
cation actions that are “interacting” on a particular external protocol
instance. The set of all these communication actions is called a
cluster. We say that all elements of a cluster belong to the same
protocolcommunication cycle. In order to find these clusters, we first
have to label each external communication action q with a instance
number L(q) of the external I/O protocol it is communicating with.
The labeling algorithm reduces to a breadth-first traversal of the Petri
net specification graph, keeping a counter that runs over the instance
numbers of each external I/O protocol. A cluster for a certain protocol
j with instance number i can then be defined as follows:

�
i

j = fqn 2 Q j 8q1; q2 2 Σj ; L(q1) = L(q2) = i

and �(q1) = �(q2) = jg

We define Σ simply as the set of all these clusters.

5.4 Make synchronization
In this section some synchronization points are introduced. In order
to get a correct data transfer, the “receiver” must know exactly when
the data on the channel is valid and hence can be processed. The
“receiver” must also make sure that it has completely finished reading
the channel, before it allows the “sender” to disable it. Therefore, we
have to modify the the “receiver” part of the protocol to adapted it to
its “sender” counterpart.

Algorithm 5.2 (Make Synchronization Points)

SetEventAnchors (�; �) f
let D the communication channel for �;
If � is sender f

(�; �) = ModifyProtocol (�; �);
g Else f

(�; �) = ModifyPrimitive (�; �);
g
Return (�; �);

g

Both the external module and the primitive protocol of the interface
module “core” can act as a “receiver”. These two possibilities are
treated in the following sections.

5.4.1 Modifying the external protocol
In this case the external module is the “receiver” and the primitive
protocol is the sender. In the external protocol signal transition
graph, different actions are specified to happen after the channel
has become stable. However, the “receiver” cannot know when the
channel has become stable until it has received a �req+ from the
primitive protocol. So, any action that is specified to occur after
D# in the protocol signal transition graph can only occur after �req+ .
Therefore we have to replace every instance of aD# eventby the same
D# event followed by a �

req+ event. Another problem is that the
“receiver” must have finished reading the channel before the �ack�
event of the sending primitive protocol occurs. Therefore we have to
replace every instance of a D� event by a �ack� event followed by
the same D� event. The algorithm can be defined as follows.

Algorithm 5.3 (Modifying the external protocol)

ModifyProtocol (� = hA�; P�;!�; m0� i; � = hA�P�;!�;m0�i) f
For each D#;D� 2 � f
!�=!� �(�D

#;D#;D#�)� (�D�;D�;D��)
[(�D#;D#; pactv)

[(pactv; �req+ ;D
#�)

[(pterm;D
�;D��)

[(�D�; �ack� ; pterm);
A� = A� [�req+ [�ack�;
P� = P� [pactv [pterm;

g
Return (�; �);

g

5.4.2 Modifying the primitive protocol

In this case the external module is the “sender” and the primitive
protocol is the receiver. In fact, this is nearly the same algorithm
as in Section 5.4.1, but with the arguments interchanged. The only
difference is that in Section 5.4.1, the primitive protocol is acting as
the sender, and thus only one�req+ eventand one �ack� are possible.
Because in this case the external module is the “sender”, possibly
having a very complex protocol structure,different events can confirm
the becoming stable of a channel, and different events can lead to
disabling of the channel. Therefore we have to pick only one possible
combination of input events confirming the channel becoming stable,
and one possible combination of output events leading to the disabling
of the channel. With these assumptions, the algorithm is in fact the
same as Algorithm 5.3 and can be defined as follows.

Assumption 5.1 Let D the communication channel for �. Then for
all fanout places of all D#, all successor actions must be output
transitions.

Assumption 5.2 Let D the communication channel for �. Then for
all D�, there must exist at least one fanin place such that all its
precessor actions are input transitions.

Algorithm 5.4 (Modifying the primitive protocol)

ModifyPrimitive (� = hA�; P�;!� ;m0� i; � = hA�P�;!�;m0�i) f
!�=!� �(�D#;D#;D#�)� (�D�;D�;D��)
[(�D#;D#; pactv)
[(pterm;D

�;D��);
For each D#

i 2 � f
Select a fanout place p 2 D#

i
;

For each t 2 p� f
!�=!� [(pactv; t; ��req+);
A� = A� [ftg;

g
g
For each D�

i 2 � f
Select a fanin place p 2 D�

i ;
For each t 2 �p f
!�=!� [(�ack��; t; pterm);
A� = A� [ftg;

g
P� = P� [pactv [pterm ;

Return (�; �);
g

extern function decode (address); /* addr dec */
protocol vme; /* VME protocol */
protocolmem; /* memory protocol */

process vme to mem :
channel addr1h14:1i, data1h7:0i, write : vme;
channel addr2h10:1i, data2h7:0i, we : mem;
f

boolean mode, xh14:1i, yh7:0i, zh7:0i;
write?*mode k addr1?*x ;
if (decode (xh14:11i)== 1) f

if (mode == 0) f /* read mode */
addr2!x k we!mode k f data1?y ; data2!y g

g else f /* write mode */
addr2!x k we!mode k f data2?z ; data1!z g

g g g

Figure 11: Specification of VMEbus to processor memory interface.

6 Implementation and Experience
The techniques described in this paper have been implemented in a
new high-level compiler called Integral. This compiler is linked to
our asynchronous circuit compiler called Assassin [12]. Assassin can
synthesize from a signal transition graph description to a hazard-free
gate-level design. We use this compiler to synthesize the control and
protocol conversion behaviors derived from the Integral compiler.

We have worked out a number of actual-design examples. In
this section, we show the VME bus interface example described in
Section 1. The purpose of this experiment is to show that our method
can handle the communication between multiple modules having
arbitrary protocols, and indeed provides a powerful mechanism for
connecting and synchronizing modules into a system.

The program text is shown in Figure 11. The I/O protocols of the
full VME system bus and the memory port are shown in Figure 12.
Note that the full VME protocol involves choices.

After the refinementprocess, the resulting control signal transition
graphs are then synthesized to the gate-level using our asynchronous

circuit compiler Assassin [12, 18, 10]. The resulting circuit imple-
mentation is shown in Figure 12.

CS−

Done−

CS+

Done+

data2 *

data2 #

addr2 *

addr2 #

We *

We #

CS−

Done−

CS+

Done+

data2 *

data2 #

addr2 *

addr2 #

We *

We #

We
We

protocol of the memory port

DS−

ACK−

AS+AS− DS+

ACK+

data1 *

data1 #

write *

write #

addr1 *addr #

DS−

ACK−

AS+ AS−DS+

ACK+

data1 *

data1 #

write *

write #

addr1 * addr #

We We

protocol of VME System Bus

C

adr2

C

start

adr1?_i

We write

write?_i

C

adr1

regX_i

regX_c

regY_i

regY_c
C

C

data2

data2?_i

C

C

adr2!_i/0

adr2!_c/0

We!_i/0

We!_c/0

en1_i

en_c

en2_i

en2_c

regZ2_i

data1?_i

regZ1_i

regZ1_c

data1

adr2!_i/1

adr2!_c/1

We!_i/1

Cs

Done

C

CCCC

C

CCCC

C

AS

DS

C

C

C

C

Ack

DECODE

BOOL

EN

BOOL

EN

Figure 12: I/O protocol of the full VME system-bus and the memory
protocol. Synthesized implementation

A Petri Net Algebra
The parallel composition of two general Petri nets is defined below. It
is defined to be the synchronization of common actions. This compo-
sition works on general nets with possibly “multiple occurrences” of
the same action. The operator works without explicit unfolding, but
produces the necessary replication of actions and places implicitly
for correct construction.

Definition A.1 (Parallel Composition) [7] Let for i 2 f1; 2g,Gi =

hAi; Pi;!i;m0i i be two Petri nets with P1 \ P2 = ;. The parallel
composition of two nets is defined as:

G1kG2 = hA1 [A2; P1 [P2;!;m01 [m02 i

where
! = f(PI; a; PO) 2!1 [!2j a 62 A1 \A2g [

f(PI1 [PI2; a; PO1 [PO2) j a 2 A1 \A2 ^

(PI1; a; PO1) 2!1 ^(PI2; a; PO2) 2!2g

When some of the actions are “events” of inputs and output wires,
then the parallel composition of two nets is only defined when they
have disjoint output wires. Let I1 and O1 be the inputs and outputs
wires, respectively, for G1, and I2 and O2 be the inputs and outputs
wires, respectively, for G2. Then in the composed Petri net G =

G1kG2, O = O1 [O2 and I = (I1 [I2)� O.

Definition A.2 (Mirror) LetG = hA;P;!;m0i be a Petri net. Let
(I;O) be a set of input and outputs wires associated with G. The
mirror of G, denoted as mirror(G), is simply the same Petri net,
but with (O; I) as the input and output wires, respectively.

The mirror operator simply interchanges the input and output wire
sets. A full Petri net algebra has been developed and described in [7].
The interested reader is referred to that paper for details.

References
[1] V. Akella and G. Gopalakrishnan. Shilpa: a high-level synthesis system for self-

timed circuits. In InternationalConference on Computer-Aided Design, November
1992.

[2] T. Amon, H. Hulgaard, S. Burns, and G. Borriello. An algorithm for exact bounds
on the time separation of events in concurrent systems. In IEEE International
Conference on Computer Design, October 1993.

[3] P.A. Beerel and T. Meng. Automatic gate-level synthesis of speed-independent
circuits. In InternationalConference on Computer-Aided Design, November 1992.

[4] G. Borriello. A new interface specification methodology and its application to
transducer synthesis. Ph.D thesis, University of California, Berkeley, May, 1988.

[5] E. Brunvand and R. F. Sproull. Translating concurrent programs into delay-
insensitive circuits. In International Conference on Computer-Aided Design,
November 1989.

[6] T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic specifica-
tions. Technical Report MIT-LCS-TR-393, 1987.

[7] G. de Jong and B. Lin. A communicating Petri net model for the design of
concurrentasynchronousmodules. In ACM/IEEE Design Automation Conference,
June 1994.

[8] D. Doukas and A. S. LaPaugh. Clover : A timing constraints verification system.
In 28th ACM/IEEE Design Automation Conference, June 1991.

[9] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, pages 666–677, August 1978.

[10] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A. Yakovlev. Ba-
sic gate implementation of speed-independendent circuits. In ACM/IEEE Design
Automation Conference, June 1994.

[11] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algorithms for syn-
thesis of hazard-free asynchronous circuits. In ACM/IEEE Design Automation
Conference, June 1991.

[12] Ch. Ykman Couvreur, P. Vanbekbergen, and B. Lin. Assassin: An Asynchronous
I/O Interface Synthesis System. Tutorial and reference manual. IMEC Lab.,October
1993.

[13] Alain J. Martin. Compiling communicating processes into delay-insensitive VLSI
circuits. Distributed Computing, 1:226–234, 1986.

[14] K. McMillan and D.L. Dill. Algorithms for interface timing verification. In IEEE
International Conference on Computer Design, October 1992.

[15] J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-Hall Inc.,
Englewood Cliffs, NJ, 1981.

[16] J. S. Sun and R. W. Brodersen. Design of system-level interfaces. In Proceedings
of the International Conference on Computer-Aided Design, November, 1992.

[17] I. E. Sutherland. Micropipelines. Communications of the ACM. The 1988 ACM
Turing Award Lecture., June 1989.

[18] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man. A generalized state
assignment theory for transformationson signal transition graphs. In International
Conference on Computer-Aided Design, November 1992.

[19] P. Vanbekbergen, G. Goossens, and H. De Man. Specification and analysis of
timing constraints in signal transition graphs. In European Design Automation
Conference, March 1992.

[20] K. van Berkel. Handshake circuits: an intermediary between communicating
processes and VLSI. Ph.D thesis, Philips Research Laboratories, Eindhoven, The
Netherlands, 1992.

[21] VITA. VMEbus specification manual. PRINTEX Publishing, 1985.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

