
Algorithm Selection: A Quantitative Computation-Intensive Optimization Approach

Miodrag Potkonjak Jan Rabaey
C&C Research Laboratories Dept. of EECS
NEC USA University of California at Berkeley
Princeton, NJ 08540 Berkeley, CA 94720

Abstract

Given a set of specifications for a targeted application, algo-
rithm selection refers to choosing the most suitable algorithm
for a given goal, among several functionally equivalent algo-
rithms. We demonstrate an extraordinary potential of algo-
rithm selection for achieving high throughput, low cost, and
low power implementations.

We introduce an efficient technique for low-bound evaluation
of the throughput and cost during algorithm selection and
propose a relaxation-based heuristic for throughput optimiza-
tion. We also present an algorithm for cost optimization using
algorithm selection. The effectiveness of methodology and
algorithms is illustrated using examples.

1.0 Motivations

There is a wide consensus among CAD researchers and
system designers that rapidly evolving hardware-software
codesign research is a backbone of future CAD technology
and design methodology [3, 5, 6, 12, 13].

At a very coarse level of resolution, hardware-software
codesign is usually associated with the assignment of various
blocks of the targeted computation to either a programmable
architecture or to a custom ASIC, so that the cost of the
system is minimized while the given performance criteria are
met. At a finer level, the current efforts in hardware-software
codesign address a selection of a specific implementation
platform (e.g. a particular model of a particular DSP
processor) for a given task.

We recast the hardware-software codesign task from a more
global perspective. It is recognized that for a specified
functionality of the application, the user not only has a choice
of implementation platform, but also may select among a
variety of functionally equivalent algorithms. As it is
documented in the next section, even on a small example, a
properly selected algorithm reduces a silicon area of
implementation or power by more than an order of magnitude
for a given level of performance. This difference in the
resulting quality of the design is often significantly higher

than the difference produced by using different synthesis and
compilation tools.

Considering simultaneously the selection of both algorithm
and architecture is, obviously, often a formidable and
cumbersome problem. As the first step, we study the more
restr ic ted algor i thm select ion problem. The fixed
implementation is assumed. The restricted problem is
interesting on its own. As it is presented in Sections 3 and 4,
many of the results for the algorithm selection problem can
be easily generalized and applied on the overall algorithm-
architecture selection problem.
We have two primary goals. The first is to establish the

importance of the algorithm selection task as a design and
CAD optimization step, and give an impetus to the
development of this important aspect of system level design.
The second goal is to build foundations, design methodology,
CAD environment, and specific algorithms which support
effective algorithm selection. To realize this goal, we treat
algorithm selection using quantitative, optimization intensive
methods.

2.0 Issues and Classification

2.1 Why there are many different black box
algorithms for a given application?

Transformations are changes in the structure of a
computation, so that the functionality (the input/output
relationship) is preserved. It is sometimes argued that all
algorithms for a given set of functional specifications can be
derived using the automated application of transformations.
In this subsection we present four sets of conditions which
indicate that the existence of a variety of different,
functionally equivalent algorithms are an unavoidable reality,
and that their role must be recognized outside of the role of
transformations. Actually, as it will be demonstrated through
the paper, transformations and algorithm selection are
distinct, but closely related, synthesis tasks. For the highest
quality implementations both tasks have to be considered, as
well as the interaction between them.

We conclude this subsection by itemizing classes of sources
Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0090 $3.50

which dictate a need and cause existence of different,
functionally equivalent algorithms.

1. Clever use of algebraic and redundancy manipula-
tion transformations. For many commonly used com-
putational procedures algorithm developers invested
significant efforts to derive a specific set of transforma-
tions and their specific ordering which are exceptionally
effective only on the targeted functionality. A deep, spe-
cialized mathematical and theoretical computer science
knowledge is applied using a sophisticated sequence of
transformations steps. One of the most illustrative exam-
ples of this type of functionally equivalent algorithms
are families of Winograd’s fast Fourier algorithms
(WFT) [2].

2. Different approximations and use of semantic trans-
formations. Often the user specifies an application in
such a way that there is no exact corresponding control-
data flow graph (CDFG), or the user requirements are
such that allow a margin of tolerance. For example many
compression schemes are lossy, i.e. they do not preserve
all information, but only that which is larger than the
user specified threshold.

Closely related to the class of algorithms which repre-
sent different approximations within a given set of mar-
gins of tolerance with respect to different parameters, are
algorithms which are obtained using semantic transfor-
mations. Semantic transformations are transformations
which are particularly effective when the algorithm is
run on sets of data with a particular structures. Currently,
semantic transformations are most often in algorithms
for queries in databases.

3. Different solution mechanism. Often there exist algo-
rithms which are based on different conceptual
approaches for solving a given problem. For example,
quick sort, which uses a random selection of a pivoting
element, cannot be transformed in insertion or bubble
sort, which are fully deterministic. All three algorithms,
of course, produce the identically sorted data sets, but
the last two are based on a different solution mechanism
than the quick sort.

4. Use of higher levels of abstraction during the specifi-
cation of the application.In many situations the user is
not specifically interested that the output has a specific
exact form, as long as it satisfies some properties. For
example, as long as all statistical tests are passed, the
user is insensitive to a specific values of the sequence of
numbers generated by random-number generator. For
example, although random-numbers generators of uni-
formly distributed random numbers between 0 and 1
generate different sequences of random numbers, all ran-
dom number generators are equally acceptable, as long
as the generated sequences are generating uniformly dis-
tributed numbers between 0 and 1.

2.2 How many different algorithms are there
for a given application?

A natural and interesting question related to algorithm
selection is to ask how many different algorithms are
(usually) available as the candidates for a given functionality.
The number of options for a given functionality is interesting
not only from a theoretical point of view, but also has a
number of ramifications during the exploration of algorithm
selection in the synthesis process. For example, different
optimization approaches are the most appropriate when very
few options are available as compared to when a large
number of functionally equivalent algorithms are available.

The analysis of a number of applications indicates that the
number of instances is strongly case dependent, and that each
of the following three cases is not uncommon. The same
survey shows, however, that the first scenario is, at least
currently, dominating in practice. Therefore, we will mainly
concentrate on this case.

1. Few algorithms. In the majority of cases there exist sev-
eral algorithms, often with sharply different structural
characteristics. Usually, each of the options is superior to
all others in one (or sometimes a few) criteria, which
were explicitly targeted during the development of the
algorithm. For example, the algorithms are often
designed so that the fewest number of multiplications or
the fewest number of operations is used, that have short-
est critical path, or that the algorithm has exceptional
numerical properties.

2. Finitely many, but very large number. Sometimes a
large number of different algorithms is available. This is
the most often case when a specific design principle is
discovered, and its application results in a large number
of algorithms which can be generated. A typical example
is Johnson-Burrus FFT. Combinatorial analysis shows
that in this way we can produce several thousands of dif-
ferent FFT algorithms [2].

3. Infinitely many. The final scenario, when arbitrarily
many options can be easily generated and analyzed, is
from the methodology viewpoint of special interest. This
situation arrises when the initial definition of the algo-
rithm specification has one or more parameters which
can be set to any value from some continuous set of val-
ues. The typical example of algorithms from this class
are overrelaxation, and successive overrelaxation Jacobi
and Gauss-Seidel iterative methods for solving linear
systems of equations [1].

2.3 What is the difference in the “quality” of
different algorithms?

These questions can be answered at two levels. However,
regardless of which level is considered, the answer is
identical: there is a very high difference, usually in an order
of magnitude, in all the design metrics.

The first level is one taken by theoretical computer science
and numerical algebra and analysis communities. Foe
Asymptotic complexity theory clearly distinguishes between
algorithms of different asymptotic complexity and states that
algorithms of lower complexity will eventually, as the size of
considered instance increases, be superior to the algorithms
of higher complexity, by an arbitrarily large difference. A
similar situation is numerical analysis, where speed of
convergence to correct solutions is treated in an almost
identical fashion.

CAD treatment of the algorithm selection process enables
significantly finer resolution among algorithms. Even when
only algorithms of the identical asymptotic computational
complexity and the same asymptotic speed of convergence
are considered, they will require sharply different resources
for a given set of constraints. To illustrate credibility of this
claim, we analyzed a two dimensional 8X8 DCT.

Due to its acceptance as a part of number image and video
compression standards (H261, JPEG, MPEG,...) and
widespread use, a large number of fast algorithms started for
the DCT was introduced. A recent book [11] provides a good
review of the majority DCT algorithms analyzed in the paper.

We synthesized, under the identical throughput constraints,
the following eight DCT algorithms: Lee - Lee’s recursive
sparse matrix factorization algorithm, Wang- Suehiro-
Hatori’s version of the Wang planar rotation-based sparse
matrix factorization DCT, DIT - recursive decimation in time
algorithm, DIF - recursive decimation in frequency
algorithm, QR - QR decomposition based hybrid planar
rotation algorithm, Givens - Givens rotation-based algorithm,
MCM - automatically synthesized algorithm, which applies
only one multiple constant multiplication transformation on
the generic and direct- the direct, generic definition of DCT
algorithm. Table 5 shows the area of implementations before
the application of substitution of constant multiplication by
shifts and additions and area, critical path length and the
estimates of power requirements after the application of
constant multiplication substitution with shifts and additions.
We see that difference of optimized area due to algorithm
selection is up to a factor greater than 12(35.86 vs. 2.93),
energy by a factor of 6.5 (79.57 nJ per sample vs. 12.19 nJ per

algorithm
T area
[mm2]

T power
[nJ/S]

T critical
path [nsec]

area
[mm2]

direct 35.86 79.57 380 92.96

DIF 4.29 13.39 600 9.58

DIT 4.78 16.26 620 9.62

wang 9.27 20.77 600 10.07

lee 2.93 12.19 560 9.58

QR 7.61 16.68 560 9.43

Givens 9.91 27.17 600 16.85

mcm 8.78 21.64 340 92.96

Table 1: All numbers are for 1.2 micron technology.

sample) and critical path by 82% (620 vs. 340). If we
compare the largest non-optimized design versus the smallest
optimized design, the area differential is by a factor larger
than 31.7 times. The importance of algorithm selection and
transformations is apparent.

2.4 Design Methodology

We believe that the proper way to develop the new design
methodology for algorithm selection is to explicitly use
quantitative optimization intensive methods. Only in this
case, CAD tools developers will be able to provide effective
help to both system and algorithm designers. In order to
support the algori thm select ion-based quanti tat ive
optimization intensive design methodology three major CAD/
compiler components are needed: synthesis, estimation and
transformation tools.

The need for synthesis tools is self-evident. The synthesis
process is cumbersome and involves numerous and involved
details, which often take an overwhelming part of design
efforts if conducted manually. Synthesis tools release an
application designer from this tedious task. A part of
synthesis tools are already provided by compilers and high
level synthesis tools. However, the new level of abstraction
also requires new tools. In this paper we present one of them,
for algorithm selection.

Estimations are probably the single most important tool for
both algorithm and implementation platform selection. Only
when the effect of decisions done on a high level of
abst ract ion can be proper ly corre la ted wi th fina l
implementation design metrics, it is meaningful to talk about
the way in which decisions are selected. During modeling,
both size and structural properties of both algorithm and
architecture have to be taken into account.

Transformat ions are a lgebra ic - laws, redundancy
manipulation or control flow changes in algorithms so that
functionality is not altered. They are the natural complement
to algorithm selection. From a design exploration point of
view, algorithm selection enables global, high distance
choices. Transformations, on the other hand, are enabling
local and detailed scanning of design space. While the
mechanisms for transformations can be directly transferred
from compiler and high level synthesis work, their
coordinated application with algorithm and implementation
platform selection is one of the important aspects of future
system level design.

3.0 Throughput Optimization

3.1 Problem Formulation
Figure 1 illustrates the algorithm selection problem for

throughput optimization. The overall application is depicted
by a number of basic blocks which are interconnected in a
specific, application dictated, manner. For each block, there
are a number of different CDFGs (corresponding to different

algorithms) as shown in Figure 1b. The number of options for

block Bi is denoted by ni. Each block, Bi, has mi inputs and ki
outputs. Each block is characterized, using the standard
critical path algorithm, by a mi X ki matrix which contains
distances between any two pairs of terminals. The goal is to
select for each block a CDFG, so that the overall critical path
is minimized.

3.2 Lower-Bound Estimations
We proved that the algorithm selection problem for

throughput optimization is an NP-complete problem, by
using a transformation from the graph coloring problem [8].
It has been documented that sharp estimation bounds are
directly useful in the number of synthesis and evaluation
tasks, such as schedul ing, assignment, al locat ion,
transformations and partitioning [10].

An effective and very efficient low bound can be easily
derived for throughput optimization using algorithm
selection. The algorithm is given by the following simple
three-step pseudo-code:

1. Find for each block super-algorithm implementation;

2. Implement each block using its super-algorithm.

3. Using the standard critical path calculate the critical
path.

The superalgorithm is a new option for each block. It has as
distances between its pairs of inputs and outputs the shortest
distance which can be achieved by any of the algorithms that
can be used for this block.

3.3 Relaxation Based Heuristic
One of the most important uses of estimations is that they

provide a suitable starting point for the development of
algorithms for solving the corresponding problem. Using this
idea, we developed the algorithm for throughput optimization
using algorithm selection, given by the following pseudo-
code:

1. Eliminate all inferior options for each block;

D

1 2 3 6

4

5

In1
In2

Out2

Out2
Out1

Figure 1: Critical Path optimization using
Algorithm Selection: An introductory

example: (a) Complete Application; (b)
Algorithm Option for one of blocks

1

1.n

1.2

1.1

.

.

.

(a)

2. Assign to each block the list of all non-inferior
algorithm;

 while there is a block with more than one option {

3. Findε-critical network;

4. For each block find all pairs on inputs/outputs on
the critical network;

5. For each block onε-critical network calculate sum
of differences between super-algorithm and each of
choices.

 6. Find the block which has the greatest sum of
differences;

 7. Select the algorithm for this block which makes the
current overall critical path minimal;

}

The first preprocessing step eliminates all options which are
uniformly inferior to some of the other candidates.

The general idea of the algorithm is to start with the most
critical choices (selections which influence the solution most)
first, and make them early, so that their bad effects are
minimized later with successive steps. Low-impact choices
are left for the end when there is no more time to minimize
their bad effects using successive selection steps.ε-critical
network and set of differences are an efficient way to abstract
the most important parts of overall design which are the most
relevant to the final solution.

3.4 Experimental Results
Table 6 illustrates the effectiveness of the throughput

optimization using algorithm selection on one audio (LMS
DCT domain filter) and two video applications. The average
reduction of critical path is by 48%, resulting in an average
improvement of throughput by 108%. In all cases lower
bounds were tight, indicating that the relaxation based
heuristic achieved the optimal solution.

4.0 Cost Minimization

Once the throughput requirements are ensured, often the
dominant metrics of quality of design is its cost. We now
address the problem of optimizing cost under throughput
constraints using algorithm selections. A single thread of
control is assumed and full custom ASIC is targeted. The
generalization to the fully general case is conceptually
simple, but a more complex optimization algorithms and

Example
Initial Rate

[nsec]
Optimized Rate

[nsec]

LMS DCT filter 780 420

NTSC formater 1,060 480

DPCM coder 2,160 1000

Table 2: Sampling Rate (critical path) optimization
using Algorithm Selection

more complex set of estimation tools are needed. The most
important principle behind the methods presented in this
section is that all techniques are built by limited modification
of already available high level synthesis algorithms. We
believe that the most effective way for developing techniques
for a system level problem is to reuse high quality, already
proven in practice, high level synthesis algorithms whenever
it is possible. In particular, we used the techniques from the
Hyper high level synthesis system [9].

4.1 Problem Formulation, Computational
Complexity and Lower-Bound Computation

The cost optimization using the algorithm selection problem
can be formulized in the same way as the critical path
optimization problem. The only difference is, of course, that
now the goal is the minimization of the implementation cost
under the critical path constraint. We assume that the
implementation platform is custom ASIC, as provided by the
Hyper system.

The problem is NP-hard, because even when the application
has only one algorithm and only one choice for an algorithm,
finding the minimal cost is NP-complete. This is so, because
scheduling is an NP-complete problem.

The lower bound estimation algorithm is built on top of
Hyper estimation tools and the notion of super block. We
assume that the reader is familiar with Hyper estimation
techniques (for detail exposition see [9, 11]). First each block
is treated individually. For each algorithm for the block and
each type of resource (e.g. each type of execution unit or
interconnect) a hardware requirements graph is built for all
values of available time, starting from the critical path time to
the time when only one instance of the resource is required.
Then, requirements for each block are build by selecting for
each type of resource the best possible algorithm selection,
taking this resource exclusively into account. Note that for
different resources in general, different algorithms are
selected. We refer to requirements of such an implementation
for a block as superalgorithm implementation. The
implementation costs of the superalgorithm for each block are
used as entries in the Hyper’s hierarchical estimator, which
optimally, in polynomial time, allocates time for each
resource so that the final implementation cost is minimized.
This cost is the lower bound for the final implementation.

4.2 Algorithm for Area Optimization
The algorithm for cost optimization has two phases. In the

first phase, we use min-bounds to select the most appropriate
algorithm and to allocate the available time for each block. In
the second phase, the solution is implemented using the
Hyper hierarchical scheduler and the procedure for resource
alocation.The first phase of the algorithm for the cost
optimization using algorithm selection is given using the
following pseudo-code:

1. Using superalgorithm selection for each block construct

Resource Utilization Table for each Resource; while
there exists block for which the final choice is not made{

2. Select the most critical block;

3. Select the most suitable implementation for the
block;

4. Recompute allocated times for each block;

5. Recompute estimated Final Cost;

}

Table 2 shows a typical example of Resource Utilization

Table. The table is constructed in the identical way as the
initial allocation in Hyper. For detailed exposure of Hyper
scheduling tools see [7]. Each row has as an entry the
es t imat ion requ i rements fo r the supera lgor i thm
implementations (see Section 4.1). The bottom row has as the
entries the maximum entry in each column for a particular
resource.

The most critical block is the block that is evaluated as the
block which influences the most the final requirements. The
order in which blocks are selected is dictated by an objective
function which combines four criteria:

1. How many dominant entries the row has. The dominant
entry is the entry which has the maximal value in some
column. If there are many dominant entries in the row,
this block dictates the overall hardware requirements. It
is important to make the selection for this block early to
get the correct picture of final requirements as soon as
possible.

2. How many different algorithms are composing the supe-
ralgorithm. If there are requirements of many different
algorithms composing the superalgorithm requirements,
after the particular selection, many of the entries for this
row will increase. This can lead to a high increase in the
overall cost.

3. How many different algorithms are contributing to dom-
inant values. The intuition is similar to the previous case.

4. How sensitive the superalgorithm and choices are to
time changes. The choices which are the most sensitive
to time should be made first, so that redistribution of
time is correctly driven.

All four criteria are combined in the rank-based objective

Block cycles IO/Cycle */Cycle Reg *->+

block1 t1 1 0 37 0

block2 t2 0 .5 24 2.2

block3 t3 .3 2 39 1.3

total t = Âti 1 2 39 3

Table 3: Resource Utilization Table used in the
optimization procedure for cost optimization using

algorithm selection. The shaded entries are the
dominant entries. (see Section 4.1)

function. Once the block is selected, all choices for this block
are evaluated. The most suitable algorithm is one which least
increases the current overall cost (given in the last row). Steps
4 and 5 are updates which provide the accurate picture of the
partial solution after each decision

The second phase is the direct application of the Hyper tools
for allocation, scheduling and assignment.

Table 3 shows the area reduction due to algorithm selection.
The average improvement is by factor larger than 21 times. In
all cases the discrepancy between the lower bound and the
final area was less than 10%.

5.0 Related Work and Future Directions

To the best of our knowledge this is the first work which
addresses the algorithm selection process as a quantitative
optimization intensive CAD effort.

Interestingly, the related and more difficult task of algorithm
design has been addressed much more often. For example, the
AI community devoted remarkable efforts to develop
transformation-based algorithm design tools [4]. However,
except for a very limited domain, this effort did not produce a
significant impact.

Comparative and quantitative studies of suitability of a given
algorithm for implementation has been, from time to time,
conducted in several engineering areas, most often in digital
signal processing, communications and control applications.
While in the majority of those studies the number of
operations or the length of the critical path were targeted as
the design metrics, several studies resulted in completely
built systems. For example, recently six different groups built
several HDTV systems which are current ly being
comparatively tested. Each group used different algorithms
for the same set of specifications. Algorithms have been
selected using manual ad-hoc techniques.
Although both system level design and algorithm selection

are fields in a very early stage of development, several key
directions for future efforts can be outlined by analyzing the
presented results. The directions can be classified in several
classes. Some directions are straightforward at the conceptual
level. For example, there is an apparent need to target other
design metrics in addition to throughput and area, such as
power, fault tolerance and testability.

Key future directions in algorithm selection include
development of synthesis and evaluation infrastructure,
integration of algorithm and implementation platform

Example
Initial area

[mm2]
Optimized

Area [mm2]

LMS DCT filter 92.96 9.62

NTSC formater 170.77 5.86

DPCM coder 109.77 4.43

Table 4: Optimizing Area using Algorithm Selection

selection, development of algorithm design techniques, and
development of software libraries. All future directions are
described in detail in [8].

6.0 Conclusion

As a part of an effort to establish CAD-based design
methodology for system level design, we introduced the
algorithm selection problem. After demonstrating a high
impact of the synthesis task on the final implementation, we
studied, using quantitative optimization approach, two
specific problems in system level design: optimization of
throughput and cost using algorithm selection in system level
design.

7.0 References:
[1] D.P. Bertsekas, J.N. Tsitsiklis: “Parallel and Distributed Com-

putation: Numerical Methods”, Prentice Hall, Englewood
Cliffs, NJ, 1989.

[2] R.E. Blahut: “Fast Algorithms for Digital Signal Processing”,
Addison-Wesley, 1985.

[3] P. Chou, R. Ortega, G. Borrielo: “Synthesis of Mixed Hard-
ware-Software Interfaces in Microcontroller-Based Sys-
tems”, Proc. of IEEE ICCAD-92, pp. 488-495, 1992.

[4] J. Darlington: “An experimental program transformation and
synthesis system”, Artificial Intelligence, Vol. 16, No. 1, pp.
1-46, 1981.

[5] R.K. Gupta, C.N. Coehlo, G. De Micheli: “Program Imple-
mentation Schemes for Hardware-Software System”, IEEE
Computer, Vol. 27, No. 1, pp. 48-55, 1994

[6] A. Kalavade, E.A. Lee: “A Hardware-Software Codesign
Methodology for DSP Applications”, IEEE Design & Test of
Computers, Vol. 10, No. 3, pp. 16-28, 1993.

[7] M. Potkonjak, J.Rabaey “A Scheduling and Resource Alloca-
tion Algorithm for Hierarchical Signal Flow Graphs”, 26th
IEEE/ACM Design Automation Conference, pp. 7-12, 1989.

[8] M. Potkonjak, J.Rabaey: “Algorithm Selection: A quantita-
tive computation-intensive optimization approach”, Techni-
cal Report, 1994.

[9] J. Rabaey, C. Chu, P. Hoang, M. Potkonjak: “Fast Prototyping
of Datapath-Intensive Architectures”, IEEE Design and Test
of Computers, Vol. 8, No. 2, pp. 40-51, June 1991.

[10] J.M. Rabaey, M. Potkonjak: “Estimating Implementation
Bounds for Real Time DSP Application Specific Circuits”,
IEEE Trans. on CAD of IC, Vol. 13, No. 6, pp. 669-683,
1994.

[11] K.R. Rao, P. Yip: “Discrete Cosine Transform”, Academic
Press, Inc., San Diego, CA 1990.

[12] M.B. Srivastava, R. Brodersen: “Rapid-Prototyping of
Hardware and Software in a Unified Framework”, Proc. of
IEEE ICCAD-92, pp. 152-155, 1992.

[13] W. Wolf: “Hardware-Software Co-Design of Embedded
Systems”, Proc. of the IEEE, Vol. 82, No. 7, page 967-989,
1994.

[14] W. Ye, R. Ernst, T. Benner, J. Henkel: “Fast Timing Analy-
sis for Hardware-Software Co-Synthesis”, 1993 IEEE Inter-
national Conference on Computer Design, pp. 452-457,
1994.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

