
Precomputation-Based Sequential Logic Optimization

for Low Power

Mazhar Alidina�, Jos�e Monteiro, Srinivas Devadas
Department of EECS
MIT, Cambridge, MA

Abhijit Ghosh
MERL

Sunnyvale, CA

Marios Papaefthymiou
Department of EE
Yale University, CT

Abstract

We address the problem of optimizing logic-level se-
quential circuits for low power. We present a power-
ful sequential logic optimization method that is based
on selectively precomputing the output logic values of
the circuit one clock cycle before they are required, and
using the precomputed values to reduce internal switch-
ing activity in the succeeding clock cycle. We present
two di�erent precomputation architectures which ex-
ploit this observation.

We present an automatic method of synthesizing pre-
computation logic so as to achieve maximal reductions
in power dissipation. We present experimental results
on various sequential circuits. Upto 75% reductions
in average switching activity and power dissipation are
possible with marginal increases in circuit area and de-
lay.

1 Introduction

Average power dissipation has recently emerged as an
important parameter in the design of general-purpose
and application-speci�c integrated circuits. Optimiza-
tion for low power can be applied at many di�erent
levels of the design hierarchy. For instance, algorith-
mic and architectural transformations can trade o�
throughput, circuit area, and power dissipation [5], and
logic optimization methods have been shown to have a
signi�cant impact on the power dissipation of combina-
tional logic circuits [12].

In CMOS circuits, the probabilistic average switch-
ing activity of a circuit is a good measure of the average
power dissipation of the circuit. Average power dissi-
pation can thus be computed by estimating the average
switching activity. Several methods to estimate power
dissipation for CMOS combinational circuits have been
developed (e.g., [7, 10]). More recently, e�cient and
accurate methods of power dissipation estimation for
sequential circuits have been developed [9, 13].

In this work, we are concerned with the problem of
optimizing logic-level sequential circuits for low power.
Previous work in the area of sequential logic synthe-
sis for low power has focused on state encoding (e.g.,

�Currently at AT&T Bell Laboratories, Allentown, PA

[11]) and retiming [8] algorithms. We present a power-
ful sequential logic optimization method that is based
on selectively precomputing the output logic values of
the circuit one clock cycle before they are required, and
using the precomputed values to reduce internal switch-
ing activity in the succeeding clock cycle.

The primary optimization step is the synthesis of the
precomputation logic, which computes the output val-
ues for a subset of input conditions. If the output values
can be precomputed, the original logic circuit can be
\turned o�" in the next clock cycle and will not have
any switching activity. Since the savings in the power
dissipation of the original circuit is o�set by the power
dissipated in the precomputation phase, the selection of
the subset of input conditions for which the output is
precomputed is critical. The precomputation logic adds
to the circuit area and can also result in an increased
clock period.

Given a logic-level sequential circuit, we present an
automatic method of synthesizing the precomputation
logic so as to achieve a maximal reduction in switching
activity. We present experimental results on various
sequential circuits. For some circuits, 75% reductions
in average power dissipation are possible with marginal
increases in circuit area and delay.

The model we use to relate switching activity to
power dissipation can be found in [7]. In Section 2
we describe two di�erent precomputation architectures.
An algorithm that synthesizes precomputation logic so
as to achieve power dissipation reduction is presented
in Section 3. In Section 4 we describe a method for
multiple-cycle precomputation. In Section 5 we de-
scribe additional precomputation architectures which
are the subject of ongoing research. Experimental re-
sults are presented in Section 6.

2 Precomputation Architectures

We describe two di�erent precomputation architectures
and discuss their characteristics in terms of their impact
on power dissipation, circuit area and circuit delay.

2.1 First Precomputation Architecture

Consider the circuit of Figure 1. We have a combina-
tional logic block A that is separated by registers R1

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0074 $3.50

AR1 R2 f

x1
x2

xn

Figure 1: Original Circuit

AR1

g1

g2

LE

FF

FF

f

x1x2

xn

R2

Figure 2: First Precomputation Architecture

and R2. While R1 and R2 are shown as distinct regis-
ters in Figure 1 they could, in fact, be the same register.
We will �rst assume that block A has a single output
and that it implements the Boolean function f .

The �rst precomputation architecture is shown in
Figure 2. Two Boolean functions g1 and g2 are the
predictor functions. We require:

g1 = 1) f = 1 (1)

g2 = 1) f = 0 (2)

Therefore, during clock cycle t if either g1 or g2 evalu-
ates to a 1, we set the load enable signal of the register
R1 to be 0. This means that in clock cycle t+1 the in-
puts to the combinational logic block A do not change.
If g1 evaluates to a 1 in clock cycle t, the input to reg-
ister R2 is a 1 in clock cycle t + 1, and if g2 evaluates
to a 1, then the input to register R2 is a 0. Note that
g1 and g2 cannot both be 1 during the same clock cycle
due to the conditions imposed by Equations 1 and 2.

A power reduction in blockA is obtained because for
a subset of input conditions corresponding to g1+g2 the
inputs to A do not change implying zero switching ac-
tivity. However, the area of the circuit has increased
due to additional logic corresponding to g1, g2, the two
additional gates shown in the �gure, and the two ip-
ops marked FF. The delay between R1 and R2 has
increased due to the addition of the and-or gate. Note
also that g1 and g2 add to the delay of paths that orig-
inally ended at R1 but now pass through g1 or g2 and
the nor gate before ending at the load enable signal of
the register R1. Therefore, we would like to apply this
transformation on non-critical logic blocks.

The choice of g1 and g2 is critical. We wish to include
as many input conditions as we can in g1 and g2. In
other words, we wish to maximize the probability of g1
or g2 evaluating to a 1. In the extreme case this proba-

bility can be made unity if g1 = f and g2 = f . However,
this would imply a duplication of the logic block A and

A

R1

R3

g1

g2

LE

R2

f

x1x2

xn

Figure 3: Second Precomputation Architecture

no reduction in power with a twofold increase in area!
To obtain reduction in power with marginal increases
in circuit area and delay, g1 and g2 have to be signi�-
cantly less complex than f . One way of ensuring this is
to make g1 and g2 depend on signi�cantly fewer inputs
than f . This leads us to the second precomputation
architecture of Figure 3.

2.2 Second Precomputation Architecture

In the architecture of Figure 3, the inputs to the block
A have been partitioned into two sets, corresponding to
the registers R1 and R2. The output of the logic block
A feeds the register R3. The functions g1 and g2 satisfy
the conditions of Equations 1 and 2 as before, but g1
and g2 only depend on a subset of the inputs to f . If g1
or g2 evaluates to a 1 during clock cycle t, the load en-
able signal to the register R2 is turned o�. This implies
that the outputs of R2 during clock cycle t+ 1 do not
change. However, since the outputs of register R1 are
updated, the function f will evaluate to the correct log-
ical value. A power reduction is achieved because only
a subset of the inputs to block A change which should
produce reduced switching activity in most cases.

As before, g1 and g2 have to be signi�cantly less com-
plex than f and the probability of g1 + g2 being a 1
should be high in order to achieve substantial power
gains. The delay of the circuit between R1/R2 and R3

is unchanged, allowing precomputation of logic that is
on the critical path. However, the delay of paths that
originally ended at R1/R2 has increased.

The choice of inputs to g1 and g2 has to be made �rst,
and then the particular functions that satisfy Equations
1 and 2 have to be selected. A method to perform this
selection is described in Section 3.

2.3 An Example

We give an example that illustrates the fact that sub-
stantial power gains can be achieved with marginal in-
creases in circuit area and delay. The circuit we are
considering is a n-bit comparator that compares two
n-bit numbers C and D and computes the function
C > D. The optimized circuit with precomputation
logic is shown in Figure 4. The precomputation logic is
as follows.

g1 = Chn� 1i � Dhn� 1i

C > D

R1

LE

R2

C<n−1>

D<n−1>

C<n−2>

D<n−2>

C<0>

D<0>

fR3

Figure 4: A Comparator Example

g2 = Chn� 1i � Dhn� 1i

Clearly, when g1 = 1, C is greater than D, and when
g2 = 1, C is less than D. We have to implement

g1 + g2 = Chn� 1i
 Dhn� 1i

where
 stands for the exclusive-nor operator.
Assuming a uniform probability for the inputs 1, the

probability that the xnor gate evaluates to a 1 is 0:5,
regardless of n. For large n, we can neglect the power
dissipation in the xnor gate, and therefore, we can
expect to achieve a power reduction of close to 50%.
The reduction will depend upon the relative power dis-
sipated by the vector pairs with Chn�1i
 Dhn�1i = 1
and the vector pairs with Chn� 1i
 Dhn� 1i = 0. If
we add the inputs Chn� 2i and Dhn� 2i to g1 and g2
we expect to achieve a power reduction close to 75%.

3 Synthesis of Precomputation Logic

3.1 Introduction

In this section, we will describe methods to determine
the functionality of the precomputation logic, and then
describe methods to e�ciently implement the logic.

We will focus primarily on the second precomputa-
tion architecture illustrated in Figure 3. In order to en-
sure that the precomputation logic is signi�cantly less
complex than the combinational logic in the original
circuit, we will restrict ourselves to identifying g1 and
g2 such that they depend on a relatively small subset
of the inputs to the logic block A.

3.2 Precomputation and Observability Don't-
Cares

Assume that we have a logic function f(X), with X =
fx1; � � � ; xng, corresponding to block A of Figure 2.
Given that the logic function implemented by block A
is f , then the observability don't-care set for input xi is
given by:

ODCi = fxi � fxi + fxi � fxi

where fxi and fxi are the cofactors of f with respect to

xi, and similarly for f .

1The assumption here is that each Chii and Dhii has a 0:5
static probability of being a 0 or a 1.

If we determine that a given input combination is in
ODCi then we can disable the loading of xi into the
register. If we wish to disable the loading of registers
xm; xm+1; � � � ; xN , we will have to implement the
function:

g =

NY

i=m

ODCi

and use g as the (active low) load enable signal for the
registers corresponding to xm; xm+1; � � � ; xN .

3.3 Precomputation Logic

Consider the architecture of Figure 3. Assume that the
inputs x1; � � � ; xm, with m < n have been selected as
the variables that g1 and g2 depend on. We have to
�nd g1 and g2 such that they satisfy the constraints of
Equations 1 and 2, respectively, and such that prob(g1+
g2 = 1) is maximum.

We can determine g1 and g2 using universal quanti�-
cation on f . The universal quanti�cation of a function
f with respect to a variable xi is de�ned as:

Uxif = fxi � fxi

Given a subset of inputs S = fx1; � � � ; xmg, set
D = X � S. We can de�ne:

UDf = Uxm+1 . . .Uxnf

Theorem 3.1 g1 = UDf satis�es Equation 1. Fur-
ther, no function h(x1; � � � ; xm) exists such that
prob(h = 1) > prob(g1 = 1) and such that h = 1)
f = 1.

Proof. By construction, if for some input combi-
nation a1; � � � ; am causes g1(a1; � � � ; am) = 1,
then for that combination of x1; � � � ; xm and all
possible combinations of variables in xm+1; � � � ; xn
f(a1; � � � ; am; xm+1; � � � ; xn) = 1.

We cannot add any minterm over x1; � � � ; xm to
g1 because for any minterm that is added, there will
be some combination of xm+1; � � � ; xn for which
f(x1; � � � ; xn) will evaluate to a 0. Therefore, we can-
not �nd any function h that satis�es Equation 1 and
such that prob(h = 1) > prob(g1 = 1).

Similarly, given a subset of inputs S, we can obtain
a maximal g2 by:

g2 = UDf = Uxm+1 . . .Uxnf

We can compute the functionality of the precompu-
tation logic as g1 + g2.

3.3.1 Selecting a Subset of Inputs

Given a function f we wish to select the \best" subset of
inputs S of cardinality k. Given S, we have D = X�S

and we compute g1 = UDf , g2 = UDf . In the sequel,
we assume that the best set of inputs corresponds to
the inputs which result in prob(g1+g2 = 1) being max-
imum for a given k. We know that prob(g1 + g2 = 1)
= prob(g1 = 1) + prob(g2 = 1) since g1 and g2 cannot

SELECT INPUTS(f , k):
f

/* f = function to precompute */
/* k = # of inputs to precompute with */
BEST PROB = 0 ;
SELECTED SET = � ;

SELECT RECUR(f , f , �, X , jX j � k) ;
return(SELECTED SET) ;

g

SELECT RECUR(fa, fb, D, Q, l):
f

if(jDj+ jQj < l)
return ;

pr = prob(fa = 1) + prob(fb = 1) ;
if(pr � BEST PROB)

return ;
else if(jDj == l) f

BEST PROB = pr ;
SELECTED SET = X �D ;
return ;

g
choose xi 2 Q such that i is minimum ;
SELECT RECUR(Uxifa, Uxifb,

D [xi, Q� xi, l) ;
SELECT RECUR(fa, fb, D, Q� xi, l) ;

return ;
g

Figure 5: Procedure to Determine the Optimal Set of
Inputs

both be 1 on the same input vector. The above cost
function ignores the power dissipated in the precom-
putation logic, but since the number of inputs to the
precomputation logic is signi�cantly smaller than the
total number of inputs, this is a good approximation.

A branch and bound algorithm is used to determine
the optimal set of inputs maximizing the probability of
the g1 and g2 functions. This algorithm is shown in
pseudo-code in Figure 5 and is described in detail in
[1].

3.3.2 Implementing the Logic

The Boolean operations of or and universal quanti�-
cation required in the input selection procedure can be
carried out e�ciently using reduced, ordered Binary De-
cision Diagrams (ROBDDs) [4]. We obtain a ROBDD
for the g1 + g2 function. A ROBDD can be converted
into a multiplexor-based network (see [2]) or into a sum-
of-products cover. The network or cover can be opti-
mized using standard combinational logic optimization
methods that reduce area [3] or those that target low
power dissipation [12].

3.4 Multiple-Output Functions

In general, we have a multiple-output function
f1; � � � ; fm that corresponds to logic block A in Fig-

ures 2 and 3. All the procedures described thus far can
be generalized to the multiple-output case.

The functions g1i and g2i are obtained using the
equations below.

g1i = UDfi

g2i = UDfi

where D = X � S as before. The function g whose
complement drives the load enable signal is obtained
as:

g =

mY

i=1

(g1i + g2i)

The function g corresponds to the set of input con-
ditions where the variables in S control the values
of all the fi's regardless of the values of variables in
D = X � S.

3.4.1 Selecting a Subset of Outputs

In general, it is hard to �nd a set of inputs for which
every output of a multiple-output function is precom-
putable. We have developed an algorithm, which given
a multiple-output function, selects a subset of outputs
and a subset of inputs so as to maximize a given cost
function that is dependent on the probability of the pre-
computation logic and the number of selected outputs.
This algorithm is described in pseudo-code in Figure 6
and is described in detail in [1].

Since we are only precomputing a subset of outputs,
we may incorrectly evaluate the outputs that we are not
precomputing as we disable certain inputs during par-
ticular clock cycles. If an output that is not being pre-
computed depends on an input that is being disabled,
then the output will be incorrect.

Once a set of outputs G � F and a set of pre-
computation logic inputs S � X have been selected,
we need to duplicate the registers corresponding to
(support(G) � S) \ support(F � G). The inputs that
are being disabled are in support(G) � S. Logic in the
F �G outputs that depends on the set of duplicated in-
puts has to be duplicated as well. It is precisely for this
reason that we maximize prG � gates(G)/total gates
rather than prG in the output-selection algorithm as
we want to reduce the amount of duplication as much
as possible.

4 Multiple Cycle Precomputation

4.1 Basic Strategy

It is possible to precompute output values that are not
required in the succeeding clock cycle, but required 2 or
more clock cycles later. We give an example illustrating
multiple-cycle precomputation.

Consider the circuit of Figure 7. The function f com-
putes (C+D) > (X+Y) in two clock cycles. Attempt-
ing to precompute C +D or X + Y using the methods
of the previous section do not result in any savings be-
cause there are too many outputs to consider. However,
2-cycle precomputation can reduce switching activity
by close to 12:5% if the functions below are used.

g1 = Chn� 1i �Dhn� 1i �Xhn� 1i � Y hn� 1i

SELECT OUTPUTS(F = ff1; � � � ; fmg, k):
f

/* F = multi-output func. to precompute */
/* k = # of inputs to precompute with */
BEST COST = 0 ;
SEL OP SET = � ;
SELECT OREC(�, F , 1, k) ;
return(SEL OP SET) ;

g

SELECT OREC(G, H , proldG, k):
f

lf = gates(G [H)/total gates � proldG ;
if(lf � BEST COST)

return ;
BEST PROB = total gates/gates(G[H)

� BEST COST ;
if(G 6= �)

if(SELECT INPUTS(G, k) == �)
return ;

prG = BEST PROB ;
cost = prG � gates(G)/total gates ;
if(cost > BEST COST) f

BEST COST = cost ;
SEL OP SET = G ;

g
choose fi 2 H such that i is minimum ;
SELECT OREC(G [fi, H � fi, prG, k) ;
SELECT OREC(G, H � fi, prG, k) ;

return ;
g

Figure 6: Procedure to Determine the Optimal Set of
Outputs

g2 = Chn� 1i �Dhn� 1i �Xhn� 1i � Y hn� 1i

where g1 and g2 satisfy the constraints of Equations 1
and 2, respectively. Since prob(g1 + g2) =

2

16
= 0:125,

we can disable the loading of registers Chn � 2 : 0i,
Dhn�2 : 0i, Xhn�2 : 0i, and Y hn�2 : 0i 12:5% of the
time, which results in switching activity reduction. This
percentage can be increased to over 45% by using Chn�
2i through Y hn � 2i. We can additionally use single-
cycle precomputation logic (as illustrated in Figure 4)
to further reduce switching activity in the> comparator
of Figure 7. More examples of this technique can be
found in [1].

5 Other Precomputation Architectures

In this section, we describe additional precomputation
architectures. We �rst present an architecture that is
applicable to all logic circuits and does not require, for
instance, that the inputs should be in the observability
don't-care set in order to be disabled. This was the case
for the architectures shown in Section 2. We also extend
precomputation so that it can be used in combinational
logic circuits.

R1

R2

R3

R4

+ R5

+ R6

> R7 f

D

C

X

Y

K

L

Figure 7: Adder-Comparator Circuit

R1

R2

R4

R3

LE

LE

f
1
0

x[2:n]

x1

fx1

fx1

Figure 8: Precomputation Using the Shannon Expan-
sion

5.1 Multiplexor-Based Precomputation

All logic functions can be written in a Shannon expan-
sion. For the function f with inputs X = fx1; � � � ; xng,
we can write:

f = x1 � fx1 + x1 � fx1 (3)

where fx1 and fx1 are the cofactors of f with respect
to x1.

Figure 8 shows an architecture based on Equation 3.
We implement the functions fx1 and fx1 . Depending on
the value of x1, only one of the cofactors is computed
while the other is disabled by setting the load-enable
signal of its input register. The input x1 drives the
select line of a multiplexor which chooses the correct
cofactor.

The main advantage of this architecture is that it ap-
plies to all logic functions. The input x1 in the example
was chosen for the purpose of illustration. In fact, any

f

A

B

x1
x2
x3

x4
x5

(a) Original Network

A

B f

x1
x2
x3

x4
x5

g

(b) Final Network

Figure 9: Combinational Logic Precomputation

input x1; � � � ; xn could have been selected. Unlike the
architectures described earlier, we do not require that
the inputs being disabled should be don't-cares for the
input conditions which we are precomputing. In other
words, the inputs being disabled do not have to be in
the observability don't-care set. A disadvantage of this
architecture is that we need to duplicate the registers
for the inputs not being used to turn o� part of the logic.
On the other hand, no precomputation logic functions
have been added to the circuit.

The algorithm to select the best input for this archi-
tecture is also quite di�erent. We will not discuss this
algorithm in detail, except to mention that in this case,
we are interested in �nding the input that yields the
most area e�cient fx1 and fx1 functions.

5.2 Combinational Logic Precomputation

The architectures described so far apply only to sequen-
tial circuits. We now describe precomputation of com-
binational circuits.

Suppose we have some combinational logic function
f composed of two sub-functions A and B as shown in
Figure 9(a). Suppose we also want to precompute this
function with the inputs x4 and x5. Figure 9(b) shows
how this can be accomplished. For simplicity, pass tran-
sistors, instead of transmission gates, are shown. The
function g with inputs x4 and x5 drives the gates of
the pass transistors. As in the previous architectures,
g = g1 + g2. Hence, when g is a 0, the pass transistors
are turned o� and the new values of logic block A are
prevented from propagating into logic block B. The in-
puts x4 and x5 are also inputs to the logic block B just
as in the original network in order to ensure that the
output is set correctly.

For the combinational architecture, there is an im-
plied delay constraint, i.e. the pass transistors should

be o� before the new values of A are computed. In the
example shown, the worst-case delay of the g block plus
the arrival time of inputs x4 or x5 should be less than
the best-case delay of logic blockA plus the arrival time
of the inputs x1, x2, or x3. The arrival time of an in-
put is de�ned as the time at which the input settles to
its steady state value [6]. If the delay constraint is not
met, then it may be necessary to delay the x1, x2, and
x3 inputs with respect to the x4 and x5 inputs in order
to get the switching activity reduction in logic block B.

6 Experimental Results

At �rst we present results on datapath circuits such as
carry-select adders, comparators, and interconnections
of adders and comparators in Table 1. The precompu-
tation architecture of Figure 3 was used in all examples
and the selection of outputs and inputs to use for pre-
computation was done manually for examples csa16,
add comp16 and add max16 and automatically (us-
ing the algorithms outlined in Figures 5 and 6) for the
rest. For each circuit, the number of literals, levels
of logic and power of the original circuit, the number
of inputs, literals and levels of the precompute logic,
the �nal power and the percent reduction in power are
shown. All power estimates are in micro-Watts and are
computed using the techniques described in [7]. A zero
delay model and a clock frequency of 20MHz was as-
sumed. The rugged script of sis was used to optimize
the precompute logic.

Power dissipation decreases for almost all cases.
For circuit comp16, a 16-bit parallel comparator, the
power decreases by as much as 60% when 8 inputs are
used for precomputation. Multiple-cycle precomputa-
tion results are given for circuits add comp16 and
add max16. The circuit add comp16 is shown in
Figure 7, and the circuit add max16 is the same cir-
cuit with the comparator replaced by a maximum func-
tion. For circuit add comp16, for instance, the num-
bers 4/8 under the �fth column indicates that 4 inputs
are used to precompute the adders in the �rst cycle and
8 inputs are used to precompute the comparator in the
next cycle.

Results on random logic circuits are presented in Ta-
ble 2. The random logic circuits are taken from the
MCNC combinational benchmark sets. We have pre-
sented results for those examples where signi�cant sav-
ings in power was obtained. Once again, the same pre-
computation architecture and input and output selec-
tion algorithms are used as in Table 1 and the columns
have the same meaning, except for the second and third
columns which show the number of inputs and outputs
of each circuit. It is noteworthy that in some cases, as
much as 75% reduction in power dissipation is obtained.

The area penalty incurred is indicated by the num-
ber of literals in the precomputation logic and is 3%
on the average. The extra delay incurred is propor-
tional to the number of levels in the precomputation
logic and is quite small in most cases. It should be
noted that it may be possible to use the other precom-
putation architectures for all of the examples presented
here. Some of these examples are perhaps better suited
to other architectures than the one we used do derive

the results, and therefore larger savings in power may
be possible. Secondly, the inputs and outputs to be
selected and the precomputation logic are determined
automatically, making this approach suitable for auto-
matic logic synthesis systems. Finally, the signi�cant
power savings obtained for random logic circuits indi-
cate that this approach is not restricted only to certain
classes of datapath circuits.

7 Conclusions and Ongoing Work

We have presented a method of precomputing the out-
put response of a sequential circuit one clock cycle be-
fore the output is required, and exploited this knowl-
edge to reduce power dissipation in the succeeding clock
cycle. Several di�erent architectures that utilize pre-
computation logic were presented.

In a �nite state machine there is typically a single
register, whose inputs are combinational functions of
the register outputs. The precomputation architectures
make no assumptions regarding feedback. For instance,
R1 and R2 in Figure 2 can be the same register.

Precomputation increases circuit area and can ad-
versely impact circuit performance. In order to keep
area and delay increases small, it is best to synthesize
precomputation logic which depends on a small set of
inputs.

Precomputation works best when there are a small
number of complex functions corresponding to the logic
blockA of Figures 2 and 3. If the logic block has a large
number of outputs, then it may be worthwhile to selec-
tively apply precomputation-based power optimization
to a small number of complex outputs. This selective
partitioning will entail a duplication of combinational
logic and registers, and the savings in power is o�set by
this duplication.

Other precomputation architectures are being ex-
plored, including the architectures of Section 5, and
those that rely on a history of previous input vectors.
More work is required in the automation of a logic de-
sign methodology that exploits multiplexor-based, com-
binational and multiple-cycle precomputation.

8 Acknowledgements

Thanks to Anantha Chandrakasan for providing us with
information regarding power dissipation in registers. J.
Monteiro and S. Devadas were supported in part by
the Defense Advanced Research Projects Agency un-
der contract N00014-91-J-1698 and in part by a NSF
Young Investigator Award with matching funds from
Mitsubishi Corporation.

References

[1] M. Alidina. Precomputation-Based Sequential
Logic Optimization for Low Power. Master's thesis,
Massachusetts Institute of Technology, May 1994.

[2] P. Ashar, S. Devadas, and K. Keutzer. Path-Delay-
Fault Testability Properties of Multiplexor-Based
Networks. INTEGRATION, the VLSI Journal,
15(1):1{23, July 1993.

[3] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli,
and A. Wang. MIS: A Multiple-Level Logic Op-
timization System. In IEEE Transactions on
Computer-Aided Design, volume CAD-6, pages
1062{1081, November 1987.

[4] R. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on
Computers, C-35(8):677{691, August 1986.

[5] A. Chandrakasan, T. Sheng, and R. W. Brodersen.
Low Power CMOS Digital Design. In Journal of
Solid State Circuits, pages 473{484, April 1992.

[6] S. Devadas, A. Ghosh, and K. Keutzer. Logic Syn-
thesis. McGraw Hill, New York, NY, 1994.

[7] A. Ghosh, S. Devadas, K. Keutzer, and J. White.
Estimation of Average Switching Activity in Com-
binational and Sequential Circuits. In Proceedings

of the 29th Design Automation Conference, pages
253{259, June 1992.

[8] J. Monteiro, S. Devadas, and A. Ghosh. Retiming
Sequential Circuits for Low Power. In Proceedings
of the Int'l Conference on Computer-Aided Design,
pages 398{402, November 1993.

[9] J. Monteiro, S. Devadas, and B. Lin. A Methodol-
ogy for E�cient Estimation of Switching Activity
in Sequential Logic Circuits. In Proceedings of the
31st Design Automation Conference, pages 12{17,
June 1994.

[10] F. Najm. TransitionDensity, A Stochastic Measure
of Activity in Digital Circuits. In Proceedings of the

28th Design Automation Conference, pages 644{
649, June 1991.

[11] K. Roy and S. Prasad. SYCLOP: Synthesis of
CMOS Logic for Low Power Applications. In Pro-
ceedings of the Int'l Conference on Computer De-
sign: VLSI in Computers and Processors, pages
464{467, October 1992.

[12] A. Shen, S. Devadas, A. Ghosh, and K. Keutzer.
On Average Power Dissipation and Random Pat-
tern Testability of Combinational Logic Cir-
cuits. In Proceedings of the Int'l Conference on
Computer-Aided Design, pages 402{407, Novem-
ber 1992.

[13] C-Y. Tsui, M. Pedram, and A. Despain. Exact and
Approximate Methods for Switching Activity Esti-
mation in Sequential Logic Circuits. In Proceedings
of the 31st Design Automation Conference, pages
18{23, June 1994.

Circuit Original Precompute Logic Optimized
Lits Levels Power I Lits Levels Power % Reduction

comp16 286 7 1281 2 4 2 965 25
4 8 2 683 47
6 12 2 550 57
8 16 2 518 60
10 20 2 538 58

add comp16 3026 8 6941 4/0 8 2 6346 9
4/8 24 4 5711 18
8/0 51 4 4781 31
8/8 67 6 3933 43

max16 350 9 1744 8 16 2 1281 27
csa16 975 10 2945 2 4 2 2958 0

4 11 4 2775 6
6 18 4 2676 9
8 25 5 2644 10

add max16 3090 9 7370 4/0 8 2 7174 3
4/8 24 4 6751 8
8/0 51 4 6624 10
8/8 67 6 6116 17

Table 1: Power Reductions for Datapath Circuits

Circuit Original Precompute Logic Optimized
I O Lits Levels Power I Lits Levels Power % Reduction

apex2 39 3 395 11 2387 4 4 1 1378 42
cht 47 36 167 3 1835 1 1 1 1537 16
cm138 6 8 35 2 286 3 3 1 153 47
cm150 21 1 61 4 744 1 1 1 574 23
cmb 16 4 62 5 620 5 10 1 353 43
comp 32 3 185 6 1352 6 13 2 627 54
cordic 23 2 194 13 1049 10 18 2 645 39
cps 24 109 1203 9 3726 7 26 3 2191 41
dalu 75 16 3067 24 11048 5 12 2 7344 34
duke2 22 29 424 7 1732 9 24 3 1328 23
e64 65 65 253 32 2039 5 5 1 513 75
i2 201 1 230 3 5606 17 42 5 1943 65
majority 5 1 12 3 173 1 1 1 141 19
misex2 25 18 113 5 976 8 16 3 828 15
misex3 25 18 626 14 2350 2 2 1 1903 19
mux 21 1 54 5 715 1 0 0 557 22
pcle 19 9 71 7 692 3 3 1 486 30
pcler8 27 17 95 8 917 3 3 1 571 38
sao2 10 4 270 17 1191 2 2 1 422 65
seq 42 35 1724 11 6112 2 1 1 2134 65
spla 16 46 634 9 2267 4 6 1 1340 41
term1 34 10 625 9 3605 8 14 3 2133 41
too large 38 3 491 11 2718 1 1 1 1756 35
unreg 36 16 144 2 1499 2 2 1 1234 18

Table 2: Power Reductions for Random Logic Circuits

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

