
Re-Encoding Sequential Circuits to Reduce Power Dissipation�

Gary D. Hachtel Mariano Hermida
y

Abelardo Pardo Massimo Poncino
z

Fabio Somenzi

University of Colorado
Dept. of Electrical and Computer Engineering

Boulder, CO 80309

Abstract

We present a fully implicit encoding algorithm for mini-
mization of average power dissipation in sequential circuits,
based on the reduction of the average number of bit changes
per state transition.
We have studied two novel schemes for this purpose, one
based on recursive weighted non-bipartite matching, and
one on recursive mincut bi-partitioning. We employ ADDs
(Algebraic Decision Diagrams) to computate the transition
probabilities, to measure potential area saving, and in the
encoding algorithms themselves.
Our experiments show the e�ectiveness of our method in
reducing power dissipation for large sequential designs.

1 Introduction
The importance of low-power, high-throughput microelec-
tronic systems is rapidly increasing. High power dissipa-
tion limits the developments of portable applications that
demand intensive high-speed computation. Further, ex-
cessive power dissipation is a limiting factor in integrating
more transistors on a single chip.
Power directed synthesis techniques can signi�cantly re-
duce power dissipation [10, 6]. They can be viewed as
straightforward modi�cations of conventional logic synthe-
sis approaches, and are applicable to a very broad class
of digital designs. All of these works exploit the esti-
mated transition frequency (switching activity) in directing
the synthesis [9], because in CMOS circuits there is little
standby power consumption.
Regarding sequential synthesis for low power, previous work
on encoding [10] follows the paradigm of conventional FSM
encoding algorithms, such as [2, 4], where the states are re-
ferred to explicitly, and therefore cannot be applied to large
practical state machines.
We employ the recently developed ADD (Algebraic De-
cision Diagram, [1]) technology to overcome these limita-
tions. ADDs are a form of multi-terminal BDDs that sup-
port algebraic and arithmetic operations on their terminal
nodes, which can hold objects drawn from an arbitrary
set, e.g., real numbers. ADDs are the key to the Markov
analysis which gives the edge weights which drive the re-
encoding algorithm. ADDs have allowed us to solve the
Chapman-Kolmogorov equations [10, 6] for realistic ma-
chines (million of states) that are not manageable by con-
ventional sparse matrix techniques.
In this paper, we focus on power optimization of sequential
logic by re-encoding an existing circuit. We try to �nd an
encoding of the states such that the average number of bit
changes per state transition is minimized. By doing this,
besides minimizing the toggling of the latches, we possibly
reduce the switching activity in the combinational logic
that implements the next-state and the output functions.

�This work is supported in part by NSF/DARPA grant MIP-

9115432 and SRC contract 92-DJ-206.
yMariano Hermida is with the Universidad Politecnica De

Madrid, Facultad Informatica, Madrid, Spain
zMassimo Poncino is also with the Politecnico di Torino, Dipar-

timento di Automatica e Informatica, Torino, ITALY 10129.

Our method initially computes the steady-state probabili-
ties, and the state transition probabilities, as discussed in
[7]. We then re-encode the circuit so as to minimize latch
activity. We have studied two novel encoding strategies,
one based on recursive weighted non-bipartite matching,
and one on recursive mincut bi-partitioning, that combine
the well-known Dolotta-McCluskey method with the multi-
level area optimization target approach of the MUSTANG
algorithm [2] by building a weight matrix which is a convex
combination of transition probabilities and area optimiza-
tion potential. The next-state and output functions are
then re-encoded by solving a boolean equation.
While our experimental results are preliminary, they demon-
strate that our ADD technology is practically signi�cant.

2 Matching Based Re-Encoding

Our �rst method is based on recursive maximum weighted
matching, which we solve with an ADD extension of a
BDD-based mincut/max
ow algorithm [8]; the levels of
recursion correspond to encoding bits as in [3]. At each
step of the recursion the states with the greatest transition
probability are matched, and the half with the greatest
match weight are grouped in the same partition, and re-
ceive the same code bit.
Figure 1 shows the re-encoding algorithm. Variable sets x
and y encode rows and columns, respectively.

Encode (G(x; y), N) f

i = 0; Gi(x; y) = G(x; y);
for (i = 0; i < N ; i+ +) f

Mi(x; y) = Max Weight Matching (Gi(x; y));

Code[i](x) = 9+y (M(x; y) � (x > y));

Pairs(x; y) = Pairs Of Matched Nodes(Mi(x; y));

Gi+1(x; y) = Total Weight(Gi(x; y); Pairs(x; y));

g
g

Figure 1: High-Level Encoding Procedure.
The procedure Encode gets the matrix G and the number
of latches of the circuit N as inputs.
Transition probabilities in G are non-zero only for states in
the terminal SCCs of the transition graph. The reduction
in the switching activity is obtained from the analysis of
this (sometimes very small) subset of the actually reachable
states. This is correct from the standpoint of averagepower
dissipation, since transient states play a negligible role in
the average power dissipation. Transient states are indeed
relevant for area minimization, and they are taken into
account for potential area savings.

At each iteration, we �rst �nd a maximum matching M i

in the matrix Gi (Max Weight Matching). Then, a \1" is
arbitrarily assigned to the i-th bit of the new encoding of
one member of each pair of matched nodes, and a \0" to
the other. The node with higher index (x > y) is chosen
as representative of each matched pair. The re-encoding is
given as a trans-coding function, which expresses the bit of
the new encoding as a function of the bits of the old one.
After assigning to every state one of the bits of the en-
coding, we shrink the graph. That is, we �nd a new

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0070 $3.50

weighted graph Gi+1
, in which the new nodes are the pairs

of matched states. After the k-th matching stage of this

recursion, a supernode corresponds to 2k original states.
Since every new node (state) gets either a \1" or a \0" in
the next least signi�cant bit of the new encoding, all the
original nodes which formed the current (super)node get
the same value for the k-th bit. Therefore, they di�er in
the bit corresponding to the iteration in which they were
matched, and possibly in bits of preceding steps.
At each stage we must match all the states; hence the
matching contains some degree of arbitrariness, since the
matching of unreachable states is irrelevant. If no area
saving weight is included, the same holds for states which
are outside the terminal SCC of the transition graph. This
degree of arbitrariness in the re-encoding can be used later
in the resynthesis phase, for example, to simplify the logical
expression or to try to minimize delay.

2.1 Weighted Non-Bipartite Matching

We now focus on �nding a maximum weighted matching
on a graph with an implicit algorithm. Our purpose is
to solve this problem for very large graphs, whose size is
beyond the possibility of traditional explicit algorithms.
The theoretical best solution is to use some implicit vari-
ant of Edmonds's matching algorithm [5]. For general
non-bipartite graphs, blossoms (odd cycles) signi�cantly
increase the complexity of the matching algorithm: It is
di�cult to deal with blossoms symbolically. On the other
hand, we can trade o� accuracy for time and memory by
targeting an approximate solution to the problem.
In the following we deviate from Edmonds's algorithm in
two ways. First, we get rid of odd cycles as soon as they
appear (suppressing the edges which cause them). Sec-
ond, after reducing the graph in this manner, we �nd an
approximate maximum weighted matching.
We have developed a heuristics for quasi-maximum weigh-
ted matching that is amenable to symbolic implementa-
tion. It is based on (1) sorting the edges according to their
weight, and (2) selecting a subset of the edges in decreas-
ing order of weight. These edges are then used to �nd a
�rst maximum unweighted matching. If this matching is
not complete, we then add more edges to the selected set
of edges and try to match nodes which are not yet match.
The process is continued until a complete matching is ob-
tained.
The core of the matching is based on growing alternat-
ing trees from every unmatched node, in order to �nd an
alternating path to another unmatched node. We build
alternating paths rooted at exposed nodes till they meet
another exposed node. However, to make our approach
symbolic, we grow trees from every exposed node, and ter-
minate the growth when they meet another tree. In this
sense, our symbolization of Edmonds's algorithm is similar
to the symbolization of Dinits's algorithm in [8].
Figure 2 shows the augmenting paths growing algorithm.
The parameter E is the edge relation of the graph, and M
is an initial matching; i represent the iteration index.

3 Mincut Based Re-Encoding

The alternative to maximum weighted matching is recur-
sive mincut bi-partiti-oning. We extend the original work
by Lin and Kernighan to the symbolic BDD/ADD based
setting. Although our symbolic version gives up the linear
complexity update of the Kernighan-Lin scheme, symbolic
processing vastly extends capacity in cases amenable to
BDD representations.
The idea is illustrated in Figure 3. Given an initial par-
tition of the states into L and R, migration groups MR
(Move Right) and ML (Move Left) are computed as fol-
lows. MR is the set of states s for which the sum of the
weights of edges going from s 2 L to R, minus the sum of
the weights of edges going from s 2 L to L is less that �
(a user-de�ned threshold). ML is similarly de�ned. This

Tree Matching (E;M; i) f

i = 0; Matchingi = M ;

while (Matchingi = Matchingi+1)f

Roots = Matchingi;

if (odd cycle = 0) f
Remove Odd Cycles (Roots);

continue;

g
if (augmenting path = 0) f

Matchingi = Modify Matching(Roots);

continue;

g

New Interior Pointsi = Interior Points(Roots);

New Exterior Pointsi = Exterior Points(Roots);

if (New Interior Pointsi = 0) return (Matchingi);

if (odd cycle = 0) f
Remove Odd Cycles (New Exterior Points);

continue;

g
if (augmenting path = 0) f

Matchingi = Modify Matching(New Exterior Points);

continue;

g

return (Matchingi);

g
g

Figure 2: High-Level Tree Matching Procedure.

process is iterated until no such states exist. The process
may then be repeated with a smaller �, if appropriate.

2

1

53

4

7

6

8

9

10

11 12

13

14 15

16

17

18

L R
MR

ML

Figure 3: Basic Step in the Group Migrate Procedure.

Once the partition on the global set of states is obtained,
we assign one binary value to each block of the partition,
corresponding to the most signi�cant bit of the encoding,
and we recur on the two halves. At the end, every node
will have a distinct code. States having high mutual tran-
sition probabilities will get low-distance encodings. The
algorithm is shown in the following �gures. The high level
procedure is shown in Figure 4. In the following, r and c
variables encode row and column indices.
The procedure Recursive Mincut gets the current weight
(sub)matrix A(r; c), the partition (L;R), the coding func-
tions Codes, and the current index of the state bit n as
inputs. Initially, A is the transition probability matrix, L
and R are the tautology, Codes is the zero function, and n
the number of state bits. Codes is a trans-coding function,
which will give each bit of the new encoding as a function
of the old coding bits.
Line 1 shows the termination condition. When the current
subspace consists of two states only, we do not attempt
futher moves, and immediately update the LSB of the new

encoding. In Line 2, an initial partition (eL; eR) is computed
by split set. We cannot simply split on the top variable

since eL and eR must have the same size. This is because we
will eventually assign a 1 in the i-th code bit to all states
of one of the two partitions, and there must be the same
number of states with a given code bit set to 1 and to 0.
The e�ectiveness of a partitioning algorithm depends on

Mincut (A(r; c); L(r);R(r); Codes(r); n) f
if (jAj = 2) f

1 Codes[0](r) = Codes[0](r) + L(r);

return;

g

2 eL(r) = Split Set(L(r)); eR(r) = L(r) � eL(r);
3 Cut = 9xy(eL(r) � A(r; c) � eR(c));
4 MR(r) = Group Migrate Right (eL(r); A(r; c); p(r); 0);
5 ML(r) = Group Migrate Left (eR(r); A(r; c); p(r); 0);
6 CS(r) =Correction Set(MR(r);ML(r); jMR(r)j � jML(r)j);

(L(r); R(r)) = Update Sets (eL(r); eR(r);MR(r);ML(r);CS(r));

NewCut = 9xy(L(r) �A(r; c) �R(c));
7 if (NewCut>Cut) f

8 L(r) = eL(r); R(r) = eR(r);
g

9 Codes[n](r) = Codes[n](r) + L(r);

10 Mincut (L(r) �A(r; c) � L(c); L(r); L(r);Codes(r); n� 1);

11 Mincut (R(r) � A(r; c) �R(c); R(r); R(r); Codes(r); n � 1);

g

Figure 4: High-Level Procedure.

the initial partition. An alternative for the initial guess
is the partition produced by a single run of the symbolic
matching algorithm described in Section 2.
In Line 3 we compute the cut-size of the current partition.
In Lines 4 and 5, the migration groups MR and ML are
computed, as detailed in Figure 5. The blocks of the initial
partition are then updated.
In general, the migration procedures compute sets of dif-
ferent size. Since the partition must be balanced, the pro-
cedure correction set (Line 6), computes a set of states
CS(r) whose size equals the di�erence j jMLj � jMRj j.
Then, we update the partition according to the migration
groups and the correction set to get the new L and R. At
this point the new cut-size is computed and compared to
the previous one. If the new one is larger, we restore the
initial partition. This case may arise since we force to move
equally sized sets of states.
In Line 9, we update the i-th code bit function with the L
function, as obtained by the migration procedures. Notice
that the coding functions are built by accumulating partial
results at the same level of recursion. We then recur on
L (Line 10). The set L(r) � A(r; c) � L(c) represents the
subgraph consisting of nodes and edges in L. In Lines 11
we repeat the same operation for states in R.
In the group migration algorithm, mindepth is a parameter
which prevents the move of too large sets of states. In the
early stages of the recursion, it is unlikely that moves of
large sets of nodes are pro�table. Since we want to reduce
the \expensive" operations, we allow them only at depth
greater than mindepth. Clearly, mindepth � n.
The procedures receives the sets L and R, the weight ma-
trix A, a function p which represents the cofactor cube,
and the maximum depth n of the recursion.

Group Migrate Right (L(r); A(r; c);R(c); p(r); n) f
1 if(L(r) � A(r; c) �R(c) = 0) return(0)
2 if(jpj � mindepth) f

3 wR(r) = 9+rc(L(r) �A(r; c) �R(c));

4 wL(r) = 9+rc(L(r) � A(r; c) � R(c));
5 if ((wR �wL) � � �wL) return group(r);

g
rn = Top Variable(L(r); A(r; c));

6 E = Group Migrate Right(Lrn ; Arn
;R(c); (p(r) � rn); n+ 1);

7 T = Group Migrate Right(Lrn ; Arn ; R(c); (p(r) � rn); n+ 1);

8 Result = ite(rn; T;E);

return (Result);

g
Figure 5: MR Computation.

In Line 1, we check whether the cutsize between L and
R is 0. Clearly, we do not move anything and return 0.
If we have reached the required depth (mindepth) in the
recursion (Line 2), we check if the current set is a candidate

for being moved. The function L(r) �A(r; c) �R(c) in Line 3
represents the subgraph consisting of the edges originating
from nodes in L, and ending on nodes ofR. By existentially
abstracting the variables r and c from this function, we get
the sum of all the edge weights (wR) over all the nodes in
L for all the end nodes in R. Since we are dealing with
ADDs, abstraction implies algebraic sum.

Similarly, L(r) � A(r; c) � R(c) in Line 4 is the subgraph
consisting of the edges from nodes in L, and into nodes
outside R; wL is the sum of the edge weights over the all
the nodes in L for all the end nodes not in R. In Line
5, we return from the recursion if L satis�es on average
the threshold requirement. With this strategy, we need
a relative threshold rather than a static one. In Line 5,
alpha is a number between 0 and 1. If the requirement is
satis�ed, we return the current L.
In Lines 6 and 7 we recur by splitting on the variable rn
corresponding to the current recursion index. We do not
recur on R, which therefore remains unchanged. Finally,
we combine the results of the recursive calls with ITE.
The algorithm for computing ML is similar to the previ-
ouse procedure: The sets L and R are interchanged, and
we now recur on R, leaving L unchanged. However, we now
take into account the already computed MR set: In com-
puting wL, we do not consider edges going from nodes of R
to nodes in MR; similarly, in computing wL, we consider
the set MR as belonging to the current R set. Further-
more, to guarantee a move which is balanced with respect
to the MR migration group, we check during the recursion
if the current set is of the same size asMR. If so, we return
without further recursion.

4 Area Minimization

If we use only the transition probabilities matrix as the
underlying graph of the algorithm, we may get an encoding
that, though optimal for minimizing the transition on the
state lines, may cause an increase in the circuit area. This
increase in area, besides being undesirable by itself, could
eventually mask the saving in power, since the extra gates
will dissipate some power. Therefore, we need a mechanism
which allows to control the area build up. Since area is
not the main concern of our algorithm, we can accept a
relatively simple measure, which is easily amenable to a
symbolic formulation, like the one used in MUSTANG [2].
In MUSTANG, the attractive force between states is re-
lated to the ability of extracting common cubes from ei-
ther the next state or output functions, according to the
two variants (fanout-oriented and fanin-oriented) of the al-
gorithm. In the fanout-oriented algorithm, states that have
a common fanout state are attracted; in the fanin-oriented,
states that have a common fanin state are attracted. Both
algorithms build a weight matrix, which expresses the at-
traction between pairs of states. We compute the weight
matrices symbolically, by representing them as ADDs. In
the following description, T (s; x; t) represents the transi-
tion relation of the STG.

Fanout-oriented algorithm. First we build a matrix
S(s; t); entry sij gives the number of input patterns that
label the transition between si and state sj. (10 � �1
yields a value of 4, because it represents four patterns.) S
is obtained as:

S(s; t) = 9
+
x (T (s; x; t)):

Then we build a second matrix Z(s; o), having one row for
each state, and one column for each output. Entry zij gives
the number of input patterns that, on the arc from state
si, assert output zj. To compute Z, we need the output
functions �(x; s). The variables denoted with o encode
primary outputs by randomly selecting a binary code for
each output variable. The i-th column of Z is given by

Zi(s) = (9
+
x (�i(s; x))):

Then, the weight matrix is obtained as:

W (s; t) =
Nb

2
� (S(s; u)� S

T
(u; t)) + (Z(s; o)� Z

T
(o; t)):

Nb is the number of encoding bits. The factor
Nb

2
says that

the number of occurrences of the common cube depends on
the number of 1's in the next state code. In the end, W
is a square matrix with as many rows and columns as the
number of states.

In a similar fashion we compute the weight matrix fW (t; s)
for the fanin-oriented algorithm. The two variants may
be used either separately or together. In the second case,
we get a weight matrix whose elements are the average of

the weight values of W and fW . The overall weight matrix
is an input to the encoding algorithm, together with the
transition probability matrix.

5 Experimental Results

We have applied our encoding algorithm to examples taken
from the ISCAS'89 and MCNC benchmarks. Table 1 shows
the results obtained on a DECstation 5000/200 with 80 MB
of memory. The columns labeled Bit Changes give the
average number of bit changes in the encoding, for both
the original circuit (column Orig) and the re-encoded one
(column Re-enc). This quantity corresponds to the cost of
the encoding C =

P
i;j
wij �d(ei; ej), where wij is the value

of the weight matrix, and d(ei; ej) is the Hamming distance
between the codewords ei and ej. The values in Table 1 are
obtained with the matching algorithm, and show that this
cost function is signi�cantly reduced in most examples.

Circuit Latches States Bit Changes Time
Orig Re-enc

s27 3 8 0.90 0.89 0.2
keyb 5 32 0.83 0.65 1.8
tbk 5 32 1.53 1.21 2.0
styr 5 30 1.26 0.61 3.9
s820 5 32 0.78 0.74 1.6
s1488 6 64 0.82 0.35 9.0
s386 6 64 1.03 1.00 3.3
scf 7 128 2.32 1.31 18.6
s208 8 256 0.50 0.50 1.3
tlc 10 1024 1.98 1.72 4.6
s298 14 16384 1.96 1.80 134.6
s420 16 65536 0.50 0.50 165.6
s400 21 2e6 1.99 1.37 1204.3

Table 1: Encoding Results.

To get an estimate of the actual dissipated power, we
have used the method by Ghosh et al. [6]. In the fol-
lowing experiments, the circuits are optimized using the
script.rugged sis standard script when the size of the
circuit makes it possible, and with script.algebraic oth-
erwise. The circuit are mapped with the map -AFG -n
1 command using the lib2 and lib2 latch standard li-
braries. Since the delay of the circuit plays a role in de-
termining the dissipated power, we mapped to reduce the
circuit delay, rather than area.
To ensure a high similarity in the structure of the two
circuits, each re-encoded circuit is translated to a multi-
level representation obtained from their BDDs. We keep
a similar structure in the compared circuits in order to
isolate the e�ect of re-encoding.
We ran experiments comparing the re-encoded circuit with
the original circuit. We should emphasize that our method
targets multi-level circuits, and that we are interested in
the problem of re-encoding an already existing circuit. There-
fore, we do not compare with traditional encoding methods
that start from a symbolic speci�cation of a STG (e.g., a
description in KISS format). In this sense, the compari-
son with multi-level sequential designs is more challenging,
since they are synthesized under some encoding which is
likely to be close to the optimum, at least for area.
Table 2 shows the comparison of the original and the re-
encoded circuits. The values in Column \Logic" are the
numbers of literals in factored form after optimization (Col-
umn OPT), and the area of the mapped circuit (Column
Area). Power dissipation is computed assuming a unit-

Circuit Original Circuit Re-Encoded Circuit
Logic Power Logic Power

OPT Area (�W) OPT Area (�W)

s820 348 508080 860 296 448688 649
s386 101 194416 280 98 181888 273
s1488 833 1127056 1840 995 1316832 1263
scf 1533 1698240 4034 1722 1931168 2921
s208 45 85376 102 43 82592 78
cnt8 70 134560 412 108 208336 210

Table 2: Estimated Power Results.

delay model, to allow estimation for larger circuits. Power
roughly scales with area, but for cnt8, s1488, and scf, de-
spite an increase in area, the resulting power is lower.
The largest circuits of Table 1 are missing from Table 2
because the experimental procedure has two major bot-
tlenecks. First, computing the next-state and output func-
tions of the re-encoded circuit is rather expensive, in terms
of memory. Moreover, the blif �les generated from the
BDDs are, in some cases, too large to be processed by sis.
Second, the power estimator of [6] is very memory inten-
sive. Therefore, although we have been able to generate
encodings for some large circuits, we could not evaluate
the dissipated power.

6 Conclusions and Future Work
We have described two symbolic methods for re-encoding
a circuit to reduce the dissipated power; they have proven
e�ective for designs that are too large for traditional en-
coding techniques. Although the experimental results are
promising, the synthesis procedure still needs further re-
�nements in both the circuit transformation and the power
estimation phases.
The matching algorithm gives more accurate results, while
the mincut approach takes less memory, and therefore can
be applied to larger circuits.
We are currently investigating the possibility to account
for unreachable states already in the encoding processes.
This implies executing the algorithms on a subgraph that
contains only the reachable states. The coding functions
obtained in this case would be incompletely speci�ed, and
the problem of assigning a distinct code word to each state
can be addressed in the transformation phase.
This technique may especially bene�t the mincut approach,
where we address nodes. In the matching approach, where
we match edges, the impact may be more limited.

References
[1] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,

and F. Somenzi. Algebraic decision diagrams and their applications. In

Proceedings of the International Conference on Computer-Aided Design,

pages 188{191, Santa Clara, CA, November 1993.

[2] S. Devadas, H.-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli.

MUSTANG: State assignment of finite state machines for optimal multi-

level logic implementations. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, CAD-7:1290{1300, December

1988.

[3] T. A. Dolotta and E. J. McCluskey. The coding of internal states of

sequential machines. IEEE Transactions on Electronic Computers, EC-

13:549{562, October 1964.

[4] X. Du, G. D. Hachtel, and P. H. Moceyunas. MUSE: A MUltilevel Sym-

bolic Encoding algorithm for state assignment. In Proceedings of the

Hawaii International Conference on Systems Science, pages 367{376, Jan-

uary 1990.

[5] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics,

17:449{467, 1965.

[6] A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estimation of average

switching activity in combinational and sequential circuits. In Proceed-

ings of the Design Automation Conference, pages 253{259, Anaheim, CA,

June 1992.

[7] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Probabilistic analysis

of large finite state machines. In Proceedings of the Design Automation

Conference, San Diego, CA, June 1994.

[8] G. D. Hachtel and F. Somenzi. A symbolic algorithm for maximum

flow in 0-1 networks. In Proceedings of the International Conference

on Computer-Aided Design, pages 403{406, Santa Clara, CA, November

1993.

[9] F. N. Najm. Transition density, a stochastic measure of activity in digital

circuits. In Proceedings of the Design Automation Conference, pages 644{

649, San Francisco, CA, June 1991.

[10] K. Roy and S. Prasad. SYCLOP: Synthesis of CMOS logic for low power

applications. In Proceedings of the International Conference on Computer

Design, pages 464{467, Cambridge, MA, October 1992.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

