
Multi-Way VLSI Circuit Partitioning Based on Dual Net Representation

Jason Cong, Wilburt Labio, and Narayanan Shivakumar
UCLA Computer Science Department

University of California, Los Angeles, CA 90024

Abstract

In this paper, we study the area-balanced multi-way
partitioning problem of VLSI circuits based on a new dual
netlist representation named the hybrid dual netlist
(HDN). Given a netlist, we first compute a K-way parti-
tion of the nets based on the HDN representation, and
then transform a K-way net partition into a K-way module
partitioning solution. The main contribution of our work
is the formulation and solution of the K-way module con-
tention (K-MC) problem, which determines the best
assignment of the modules in contention to partitions,
while maintaining user-specified area requirements, when
we transform the net partition into a module partition.
Under a natural definition of binding factor between nets
and modules, and preference function between partitions
and modules, we show that the K-MC problem can be
reduced to a min-cost max-flow problem. We present
efficient solutions to the K-MC problem based on network
flow computation. Extensive experimental results show
that our algorithm consistently outperforms the conven-
tional K-FM partitioning algorithm by a significant mar-
gin.

1. Introduction

The K-way partitioning problem is one of partitioning
the modules in a network into K subsets (partitions) of
"approximately" the same size while minimizing the
number of interconnections between the K partitions.
This problem has many applications in VLSI circuit
design ranging from circuit layout to logic simulation and
emulation.

The existing partitioning algorithms in the literature
can be grouped into two-way partitioning (bipartitioning)
algorithms and multi-way partitioning algorithms. The
bipartitioning algorithms include the iterative improve-
ment methods [KeLi70, FiMa82, Kr84, KiGV83], the
graph spectral method [Bo87, HaKa91], and the net-based
partitioning method [HaKa92b, CoHK92]. The multi-way
partitioning algorithms include the recursive bi-
partitioning by Kernighan and Lin [KeLi70], a generaliza-
tion of the FM-algorithm with lookahead by Sanchis
[Sa89], the primal-dual algorithm [YeCL91], and a gen-
eralization of the graph spectral-based partitioning method
to multi-way ratio-cut by Chan, Schlag, and Zien

[ChSZ93]. To reduce the computational complexity for
partitioning very large circuits, cluster-based partitioning
methods have been introduced based on various clustering
techniques, such as random-walk clustering [CoHK91,
HaKa92], multicommodity-flow based clustering
[YeCL92], clique based clustering [CoSm93], geometric
embedding with min-diameter clustering [AlKa93], and
clustering based on maximum fanout-free cones (MFFCs)
[CoLB94].

Since the objective of the partitioning problem is to
minimize the number of nets to be cut, we believe that
assigning nets, instead of modules, to partitions will lead
to better partitioning solutions in general. The net-based
bipartitioning algorithm by Cong, Hagen, and Kahng
[CoHK92] is therefore of particular interest to us. This
algorithm first computes a bipartitioning of the nets using
the graph spectral method, and then transforms the net
bipartitioning solution into a module bipartitioning solu-
tion by solving the module contention problem. It was
shown that the module contention problem for bipartition-
ing can be solved optimally by computing a minimum
vertex covering in a bipartite graph, and very encouraging
experimental results were reported. However, the
minimum vertex covering formulation for the module
contention problem is inherent to bipartitioning and can-
not be easily generalized to multi-way partitioning.

In this paper, we present a K-way net-based partition-
ing algorithm with consideraton of the area balance con-
straint. We introduce a new dual netlist representation
named hybrid dual netlist (HDN). Given a netlist, we first
compute a K-way partition of the nets based on the HDN
representation, and then transform the K-way net partition
into a K-way module partition. The main contribution of
our work is the formulation and solution of the K-way
module contention (K-MC) problem.

The rest of the paper is organized as follows. We
present the problem formulation and terminologies in Sec-
tion 2. Section 3 presents the hybrid dual netlist represen-
tation and our K-way partitioning algorithms. Section 4
presents experimental results. We conclude the paper in
Section 5 with some observations and directions for future
work.

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0056 $3.50

2. Problem formulation

Given a netlist NL to be partitioned into K partitions,
we use M = { m 1, m 2, ..., mp } to denote the set of
modules in NL, N = { n 1, n 2, ..., nq } to denote the set of
nets in NL, and P 1, P 2, ..., PK to denote the K partitions,
where p is the number of modules, and q is the number of
nets in NL. The modules may have different areas.

An optimal area-balanced K-way partitioning solution
of a given netlist NL satisfies the following conditions:

(i) Each module is assigned to exactly one partition.

(ii) The total area of the modules in each partition are
within the user-specified area bounds, i.e.

(1 − α).
K
Ahh ≤ Ai ≤ (1 + α).

K
Ahh

for each partition Pi , where A is the total area of all
the modules in NL, Ai is the total area of all the
modules in partition Pi , and α is a user-specified
parameter controlling the allowable slack in the
area constraint.

(iii) The number of nets being cut is minimized.

Given a netlist NL (for example, shown in Fig. 1(a)),
we introduce the following definitions:

(i) Netlist Hypergraph: NH = (V(NH), H(NH)), where
each vertex in V(NH) represents a module mi

(1 ≤ i ≤ p) and each hyperedge in H(NH) represents
a net nj (1 ≤ j ≤ q) (see Fig. 1 (b)).

(ii) Net Intersection Graph (NIG): NIG =(V(NIG),
E(NIG)), where each node in V(NIG) represents a
net ni (1 ≤ i ≤ q), and there is an edge in E(NIG)
between ni and nj iff ni ∩ nj ≠ φ (i.e the two nets
share common modules). Note that NIG is a graph
instead of a hypergraph (see Fig. 1 (c)).

(iii) Dual Netlist Hypergraph (DNHG):
DNHG=(V(DNHG), H(DNHG)) where each node in
V(DNHG) represents a net and each hyperedge in
H(DNHG) represents N(mi), the set of nets incident
to module mi (1 ≤ i ≤ p) (see Fig. 1 (d)).

3. The K-DualPART algorithm

3.1. Overview of K-DualPART

Our dual netlist based K-way partitioning algorithm,
K-DualPART, consists of the following phases:

(1) We first convert the netlist hypergraph to a dual net
representation named hybrid dual netlist(HDN),
which is a combination of NIG and DNHG.

(2) Assign nets to partitions. We use the K-FM parti-
tioning algorithm [FiMa82, Sa89] to partition the

1

4

2

3

5

6

7

i

a

b

c

d

e

f

g

h

j
i

a

b

c

d

e

f

g

h

j

i

a

b

c

d

e

f

g

h

j

i

a

b

c

d

e

f

g

h

j

(a) Netlist (NL) (b) Netlist Hypergraph (NH)

(c) Net Intersection Graph (NIG) (d) Dual Net Hyper Graph (DNHG)

Figure 1 Different Circuit Representations

nets into K partitions.

(3) We transform the net partitioning solution into a
module partitioning solution by solving the K-way
module contention problem (K-MC) based on the
min-cost max-flow formulation.

(4) We further improve the module partitioning solu-
tion again using K-FM partitioning algorithm.

The subsequent subsections describe these phases in
detail.

3.2. Generating dual netlist representations

The net intersection graph (NIG) was used in
[CoHK92] since the graph spectral based algorithm used
in their method for net partitioning applies only to graphs
and cannot be used for hypergraphs. However, we notice
that for many examples, there are a large number of nets
incident on the same module (see Fig. 2(a)), and these
nets will form a large clique (complete graph) in the NIG
(see Fig. 2(b)). In this case, the memory requirement for
storing NIG is high and partitioning NIG also tends to be
more difficult and time consuming. Moreover, since NIG
can be very dense when large nets exist in the circuit,
iterative improvement based partitioning algorithms may
easily be trapped in local optima. The dual netlist hyper-
graph (DNHG) (Fig. 2(c)) defined in Section 2 is more
economical in terms of memory requirement when com-
pared to the NIG. However, our study shows that use of
DNHG directly as the dual netlist representation does not
give the best partitioning results either since DNHG
representation does not distinguish the sizes of the nets.
To avoid these problems, we introduce a threshold

parameter CF when constructing the net intersection
graph. When the number of nets incident to the same
module is more than CF, we connect these nets by a
hyperedge instead of a large clique. The resulting dual
netlist representation is called the hybrid dual netlist
(HDN) representation. Note that if we set CF to be 2,
then the HDN is the same as the DNHG. In general, HDN
(shown in Fig. 2(d)) is a combination of NIG and DNHG.
Our experimental results confirm that net partitioning
based on HDN produces better results than those based on
NIG or DNHG representations. In our implementation,
CF was chosen to be 5. Note that HDN is a hypergraph in
general. Since we use the K-FM algorithm for net parti-
tioning (see next sub-section), a hypergraph representa-
tion presents no problem to us.

3.3. Partition of dual netlist representation

After constructing the HDN hypergraph, we use the
K-way Fiduccia-Mattheyses (K-FM) algorithm [FiMA82,
Sa89] to compute a K-way partitioning of HDN to obtain
a K-way partitioning of the nets in the original netlist. We
want to minimize the number of edges cut in HDN so that
the subsequent module contention is easier to solve. We
apply K-FM to a number of random initial net partitions
as well as an initial net partition computed using a simple
deterministic greedy algorithm.

3.4. Solution to the K-MC problem

3.4.1. Problem statement

We say that a module m is in contention if there exist
two nets n 1 and n 2 containing m such that n 1 and n 2 are
in two partitions in the net partitioning solution. We use
Mcont to denote the set of modules in contention.

a

g

h

b

c

d

e

f

a

h

g

b

c

d

e

f

b c d e f g

h

a

b c d e f g

h

a

(a) Partial Netlist (b) Net Intersection Graph

(c) Dual Net Hypergraph (d) Hybrid Dual Netlist (CF=5)

Figure 2 Advantage of Hybrid Dual Netlist

The K-MC (K-way module contention) problem is to
assign modules in Mcont to proper partitions so that the
total number of nets being cut is minimized. If we start
with a good net partitioning (which is usually the case
after applying K-FM algorithm on HDN), the size of Mcont

is much smaller than the number of modules in the origi-
nal netlist. From our experiments, we see that for the
MCNC benchmarks, the percentage of modules in conten-
tion ranges from 50 - 62% for K = 2, 45 - 60% for K = 3,
40 - 50% for K = 4, and 30 - 42% for K = 5. Therefore,
the K-MC problem is much simpler than the original K-
way partitioning problem, and judging by the trend of our
results, it gets simpler with increasing K.

3.4.2. Binding factor and preference function

Good solutions to the K-MC problem should minimize
the number of nets being cut under the area constraint.
Since this problem is NP-Hard in general, we resort to
efficient heuristic algorithms. We introduce a metric to
approximate the number of nets cut when a module is
assigned to partition Pi . Intuitively, a net nj has a high
affinity for a module mk in contention if it has a high pro-
bability of being satisfied (uncut) after attracting mk into
its partition, and a low affinity if it is most likely to be cut
even after obtaining mk . We introduce a binding factor
(bf) metric to measure this affinity between a net and a
module. Let nj be a net and mk ∈ nj be a module in con-
tention. The binding factor bf (nj , mk) should depend on
the following factors:

(i) S(nj), the number of modules in nj: As the number
of modules in a net increases, the probability of the
net being satisfied (uncut) is reduced. So the
bf (nj , mk) should be inversely proportional to the
net size S(nj).

(ii) C(nj), the number of modules in contention in net
nj: If C(nj) is high, the probability of the net being
satisfied is low. Hence, the bf (nj , mk) should be
inversely proportional to C(nj).

(iii) S (nj) − C (nj), the number of modules of net nj in
its partition already, i.e. the number of modules in
nj not in contention. The bf (nj , mk) should be
directly proportional to this factor since the proba-
bility of the net being satisfied increases as this
number increases.

Therefore, we consider the ratios
S(nj)

S (nj) − C (nj)hhhhhhhhhhhh and

C (nj)

S (nj) − C (nj)hhhhhhhhhhhh to be of primary importance in determin-

ing the binding function bf. From the two ratios, we
define the binding function of net nj for module mk to be

bf (nj, mk) =
S (nj)× C(nj)

(S(nj) − C (nj))2
hhhhhhhhhhhhhhh

We define that bf(nj , mk) = 0 if mk is not in nj. Also, if
two modules mk and ml in net nj are already assigned to
two different partitions (i.e. nj is already cut), then
bf (nj , mi) = 0 for any mi ∈ nj .

Based on the definition of the binding factor, we define
the preference function pf (Pi, mk) between a module mk

in contention and a partition Pi as follows:

pf (mk , Pi) =
n ∈ Pi

Σ bf (n,mk)

That is, the preference function between module mk and
partition Pi is the sum of binding functions between mk

and all nets in partition Pi . Our objective is to find an
optimal assignment of the modules in Mcont to the parti-
tions such that the cumulative preference over all assign-
ment edges is maximized.

3.4.3. Flow-based formulation of K-MC prob-
lem

We use the min-cost max-flow algorithm to compute
the optimal module assignment. First, we construct a
assignment network (AN) as follows. We construct a
bipartite graph in which the nodes represent the modules
in Mcont and the partitions in P and each directed edge
(mk , Pi) connects module mk to partition Pi . Then, we
add a source node s to AN and connect it to every module
node mk in AN. Similarly, we add a sink node t to AN and
connect every partition node Pi to the sink t. Fig. 3 shows
an example of the assignment network. For each edge e in
the assignment network, we define its capacity cap (e) and
cost cost (e) as follows:

(i) if e = (s, mk), cap(e) = 1, cost(e) = 0;

s t

a

b

c

d

e

1

2

3

4

Modules M Partitions P

Figure 3 Assignment Network (AN)

(ii) if e = (Pi, t), cap(e) = cap (Pi), cost(e) = 0, where
cap (Pi) is the number of modules that partition Pi

can accept without violating its area constraints.

(iii) if e = (mk, Pi), cap(e) = 1, cost(e)
= MAX − pf (Pi , mk), where MAX is a positive con-
stant larger than any preference function value.

Let m = c Mcont c. In general, we have

(C1)
i =1
Σ
q

cap (Pi) ≥ m (= | Mcont |).

That is, the total excess capacity in all partitions is larger
than the number of modules in contention. (It is easy to
show that when all modules are uniform in size, condition
C1 is always true. When module sizes vary significantly,
we can only use cap (Pi) to estimate the maximum
number of modules allowed in Pi without violating the
area balance constraint, and such estimation usually tends
to be conservative. In practice, if we relax the area con-
straint parameter α as defined in Section 2, we can always
satisfy condition C1.) When condition C1 is true, we have
the following results (proofs of these results can be found
in [CoLS94]).

Lemma The value of the maximum flow in the assign-
ment network is m.

Theorem 1 The min-cost max-flow in the assignment
network induces a module assignment whose total prefer-
ence function is maximum.

In fact, it is easy to see that the max-flow in the assign-
ment network consists of m edge disjoint paths from s to t.
Each path includes exactly one edge of type (mk , Pi),
which defines the assignment of module mk to partition Pi .
Moreover, the cost of the max-flow equals m .MAX minus
the total preference function of the corresponding module
assignment.

We use the augmenting path algorithm [FoFu62] for
computing a minimum-cost maximum-flow in the assign-
ment network. We start with a flow of value zero. At
each step, we compute the minimum cost augmenting path
in the residual graph of the assignment network. Then, we
augment the flow value by one, and update the residual
graph of the assignment network. The augmentation pro-
cess stops after m steps. It is easy to show that the time
complexity of the minimum-cost maximum-flow compu-
tation in our case is O (K.m 2). After we obtain a min-cost
max-flow, we can determine the assignment of modules in
contention in linear time.

When condition C1 is not satisfied (it occurs in rare
cases when the area slack parameter α is very small and
the module sizes vary significantly), the max-flow in the

assignment network has a value less than m, which means
that some modules in Mcont are left unassigned. In this
case, we remove the assigned modules from Mcont and the
assignment network, update the excess capacity estima-
tion cap (Pi) for each partition Pi based on the knowledge
of newly assigned modules, and update the binding factors
and preference functions associated with the unassigned
modules in Mcont . Usually, the partition capacity estima-
tion is much more accurate after considering the newly
assigned modules. Therefore, condition C1 is very likely
to be satisfied for the remaining unassigned modules.
Then, we can perform another min-cost max-flow compu-
tation on the assignment network to compute the assign-
ment of modules in Mcont . In theory, we may need to go
through a number of flow computation steps to assign all
the modules in contentions. In practice, however, for
most real circuits and reasonable choice of the area slack
parameter (such as 10%), we need to go through flow
computation only once.

3.4.4. Dynamic updating of binding factors

One problem with the solution presented in the preced-
ing sub-section is that the static preference functions are
not reflective of the changes of the binding factors of the
nets as more and more modules are assigned during flow
computation. In Fig. 4, when m 1 is assigned to P 2 based
on n 3’s strong affinity, it is clear that bf (n 4,m 2) should
increase since the probability of its net being satisfied is
increased, and hence the pf (P 2,m 2) increases. Also,
bf (n 1,m 2) should be assigned zero since n 1 is being cut,
and pf (P 1, m 2) should be decreased accordingly.

We have developed efficient procedures to update the
binding factors and preference functions after each
module assignment or re-assignment during the flow com-
putation. Details of these procedures can be found in
[CoLS94]. It is interesting to note that this dynamic
updating of binding factors and preference functions can
be easily incorporated in our min-cost max-flow algorithm
after each flow augmentation. Observe that each flow
augmenting path assigns one more module to a partition

P1 P2

n3

n4

n1

n2

m1

m2

Figure 4 Dynamic Nature of Binding Functions

and also possibly specifies re-assignment of some other
modules. Therefore, even with dynamic updating of edge
costs in the assignment network, we can still show that
flow augmentation stops after m steps. So, we have the
following results:

Theorem 2 With dynamic update of binding factors
and preference functions, the K-MC problem can be
solved in O (K.m 2) time based on min-cost max-flow
computation in the assignment network, where K is the
number of partitions and m is the number modules in con-
tention.

The K-DualPART algorithm with dynamic updating of
binding factors in the flow computation is denoted as K-
DualPART/DF, and the one with static binding factors is
denoted as K-DualPART/SF. From the results shown in
the next section, we shall see that K-DualPART/DF pro-
duces better partitioning solutions in general as compared
K-DualPART/SF. The increase in computation time due
to dynamic updating of edge costs is negligible due to the
incremental updating.

3.5. Refinement of module partitioning solution

After solving the K-MC problem, we obtain a K-FM
module partitioning solution. We apply another pass of
K-FM partitioning algorithm to further refine the module
partitioning solution. However, we observe that in all test
cases the K-FM based refinement step converges very
quickly with very few module moves, which is a strong
indication that the K-FM module partitioning solution
obtained from K-way net partitioning and module conten-
tion resolution is of very high quality.

4. Experimental results

We have implemented both the K-DualPART/SF and
K-DualPART/DF algorithms on SUN SPARC worksta-
tions and Hewlett-Packard 735 workstations. We com-
pared the two algorithms with the conventional K-FM
algorithms on a set of MCNC benchmark circuits
(Test02-06, PrimGA1, PrimGA2) and 5 large circuits pro-
vided by the Hewlett-Packard Research Lab (CPU,
GA_machine, FPU, GA_machine2, FPU2). Circuits
CPU, GA_machine and FPU consist of lookup-tables (for
multi-FPGA implementation). Circuits FPU2 and
GA_machine2 are the original netlist of FPU and
GA_machine before technology mapping.

Table 1 shows the number of modules and the number
of nets of the benchmark circuits.

Tables 2(a)-2(b) show the comparison of K-
DualPART/SF and K-DualPART/DF with the K-FM algo-
rithm for K ranging from 3 to 4. (More comparative

ii
Ckt # modules * # netsii
Test02 1724 1721ii
Test03 1664 1618ii
Test04 1541 1658ii
Test05 2650 2751ii
Test06 1813 1674ii
PrimGA1 914 902ii
PrimGA2 3121 3029ii
cpu 947 1729ii
GA_machine 6198 11049ii
FPU 8046 15901ii
GA_machine2 25452 25628ii
FPU2 30669 33826iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1. Characteristics of the Test Circuits.

results can be found in [CoLS94].) For each example, the
K-FM algorithm was run 20 times, each on a random ini-
tial module partitioning. In order to obtain a fair com-
parison, we make sure that the runtime K-DualPART/SF
and K-DualPART/DF are comparable with that of the K-
FM algorithm. As a result, the K-DualPART algorithms
were run once with the greedy net partition, and then

approximately 10 times1, each on a random initial net par-
titioning of the dual netlist representation (HDN). The
area slack parameter α was set to be 10% in both K-FM
and K-DualPART algorithms. While this area slack
parameter can be satisfied in most cases, there were a few
cases where the area of the largest module is almost the
same or even larger than the allowed partition area (e.g.
this happens to Test02 when K = 4 or 5). In those cases,
the area slack parameter was relaxed to 25% - 45% for
both K-FM and K-DualPART algorithms.

One can see from Tables 2(a) - 2(b) that the K-
DualPART/DF algorithm consistently outperforms the K-
FM algorithm by a significant margin, 23% to 30% reduc-
tion for K = 3, and 4. The K-DualPART/SF algorithm
produces considerably better results with about 19% to
24% cutsize reduction as compared to K-FM for K = 3
and 4. In general, the K-DualPART/DF algorithm outper-
forms the K-DualPART/SF algorithm, but the difference
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

*The number of modules include the I/O pads.

1The number of runs of K-DualPART varies from example to exam-
ple in order to match the runtime of 20-run K-FM algorithm on the same
example. The unmapped HP circuits were run only with the greedy net-
partition due to time considerations, while the mapped HP and the
MCNC ranged from 8 - 13 runs.

iii
Ckt K-FM SF DFiii
Test02 114 82 81iii
Test03 271 231 201iii
Test04 588 337 329iii
Test05 1069 559 517iii
Test06 281 297 252iii
PrimGA1 197 155 159iii
PrimGA2 704 628 578iii
cpu 551 352 389iii
GA 2270 2321 2253iii
FPU 1238 1759 1815iii
GA2 5772 4181 2829iii
FPU2 5673 2860 3776ii
overall -19.06% -22.6%iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2 (a) Comparison of K-DualPART against K-FM for K = 3

iii
Ckt K-FM SF DFiii
Test02 724 455 318iii
Test03 368 324 298iii
Test04 843 459 514iii
Test05 1233 691 863iii
Test06 332 304 285iii
PrimGA1 203 205 187iii
PrimGA2 875 726 717iii
cpu 716 644 429iii
GA 3778 3021 3075iii
FPU 3178 2290 2365iii
GA2 10112 4915 2968iii
FPU2 7300 5684 5552ii
overall -24.44% -30.26%iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2 (b) Comparison of K-DualPART against K-FM for K = 4

decreases as the number of partition K increases. In terms
of efficiency, the K-DualPART/SF algorithm is generally
faster than the K-DualPART/DF algorithm, and the differ-
ence increases as the number of partitions increases. The
K-DualPART/SF obtained a solution for FPU2 in 19080
seconds and 32400 seconds for K = 3 and K = 4, respec-
tively. The K-DualPART/DF took 19260 seconds and
49260 seconds for the same example.

5. Conclusion and possible future extensions

The results in this paper show convincingly that net
partitioning based methods produce better solutions to the

multi-way circuit partitioning problem than direct module
partitioning. Our formulation and solution to the K-way
module contention problem provide a general and effec-
tive method to convert a K-way net partitioning solution
to a K-way module partitioning solution. Both the K-
DualPART/SF and K-DualPART/DF algorithms can be
extended easily to handle many practical constraints, such
as I/O bound constraint on each partition, pre-specified
assignment of modules to partitions, etc.

Our partitioning results for the test circuits, ranging
from 1000 to 31000 modules, prove that our K-
DualPART algorithm is scalable in terms of the size of the
circuit. Other partitioning algorithms (such as the graph
spectral based method) may fail to produce solutions for
large circuits due to high memory usage (e.g. to store the
Laplacian matrix) or speed inefficiency. The memory and
speed efficiency of the K-DualPART algorithm enables us
to handle problems of much larger sizes.

When the problem size is not too large, more elaborate
K-way partitioning algorithms other than the simple K-
FM algorithm can also be used to produce a better net par-
titioning solution on the dual netlist representation. The
result of our K-MC resolution algorithm can also be
improved by dynamically updating the capacity of each
partition after an augmenting path is computed. This
enhancement would be particularly useful when the
modules sizes vary significantly.

6. Acknowledgments

This work is partially supported by ARPA/CSTO under
contract J-FBI-93-112, the National Science Foundation
Young Investigator Award award number MIP9357582,
and grants from AT&T Bell Laboratories, Hewlett-
Packard, and Xilinx under the California MICRO pro-
gram. The authors would like to thank Eugene Ding and
Yeanyow Hwang for their help in our work.

References

[AlKa93] Alpert, C. J. and A. B. Kahng, ‘‘Geometric Embed-
dings for Faster (and Better) Multi-Way Netlist Par-
titioning,’’ Proc. ACM/IEEE Design Automation
Conf., pp. 743-748, June 1993.

[Bo87] Boppana, R., ‘‘Eigenvalues and Graph Bisection:
An Average-Case Analysis,’’ IEEE Symp. on Foun-
dations of Computer Science, pp. 280-285, 1987.

[ChSZ93] Chan, P., M. Schlag, and J. Zien, ‘‘Spectral K-Way
Ratio-Cut Partitioning and Clustering,’’ Proc. 30th
ACM/IEEE Design Automation Conf., June 1993.

[CoHK91] Cong, J., L. Hagen, and A. Kahng, ‘‘Random Walks
for Circuit Clustering,’’ IEEE 4th Int’l ASIC Conf.,
pp. P14-2.1, Sept. 1991.

[CoHK92] Cong, J., L. Hagen, and A. Kahng, ‘‘Net Partitions
Yield Better Module Partitions,’’ IEEE 29th Design
Automation Conference, pp. 47-52, June 1992.

[CoLB94] Cong, J., Z. Li, and R. Bagrodia, ‘‘Acyclic Multi-
Way Partitioning of Boolean Networks,’’ Proc.
ACM/IEEE 31st Design Automation Conf., pp.
670-675, June 1994.

[CoLS94] Cong, J., W. Labio, and N. Shivakumar, ‘‘Multi-
Way VLSI Circuit Partitioning Based on Dual Net
Representation,’’ in UCLA Computer Science
Department Tech. Report CSD-940029, (Aug.
1994).

[CoSm93] Cong, J. and M. Smith, ‘‘A Bottom-up Clustering
Algorithm with Applications to Circuit Partitioning
in VLSI Designs,’’ ACM/IEEE Design Automation
Conf., pp. 755-760, June 1993.

[FiMa82] Fiduccia, C. and R. Mattheyses, ‘‘A Linear Time
Heuristic for Improving Network Partitions,’’
ACM/IEEE Design Automation Conf., pp. 175-181,
1982.

[FoFu62] Ford, L. R. and D. R. Fulkerson, Flows in Networks,
Princeton Univ. Press, Princeton, N.J. (1962).

[HaKa91] Hagen, L. and A. B. Kahng, ‘‘Fast spectral methods
for ratio cut partitioning and clustering,’’ Proc.
ICCAD-91, pp. 10--13, 1991.

[HaKa92] Hagen, L. and A. Kahng, ‘‘A New Approach to
Effective Circuit Clustering,’’ Int’l Conf. on
Computer-Aided Design , pp. 422-427, Nov. 1992.

[HaKa92b]
Hagen, L. and A. B. Kahng, ‘‘New Spectral
Methods for Ratio Cut Partitioning and Clustering,’’
IEEE Trans. on CAD, pp. 1074-1085, Sept. 1992.

[KeLi70] Kernighan, B. and S. Lin, ‘‘An Efficient Heuristic
Procedure for Partitioning of Electrical Circuits,’’
Bell System Technical J., Feb. 1970.

[KiGV83] Kirkpatrick, S., C. D. Gelat, and M. P. Vecchi, Jr.,
‘‘Optimization by Simulated Annealing,’’ Science,
Vol. 220, pp. 671-680, May, 1983.

[Kr84] Krishnamurthy, B., ‘‘An Improved Min-Cut Algo-
rithm for Partitioning VLSI Networks,’’ IEEE
Trans. on Computers, Vol. 33, pp. 438-446, 1984.

[Sa89] Sanchis, L., ‘‘Multiple-Way Network Partitioning,’’
IEEE Trans. on Computers, Vol. 38, pp. 62-81,
1989.

[YeCL91] Yeh, C. W., C. K. Cheng, and T. T. Lin, ‘‘A General
Purpose Multiple-Way Partitioning Algorithm,’’
Proc. 28th ACM/IEEE Design Automation Conf.,
June 1991.

[YeCL92] Yeh, C. W., C. K. Cheng, and T. T. Lin, ‘‘A Proba-
bilistic Multicommodity-Flow Solution to Circuit
Clustering Problems,’’ Int’l Conf. on Computer-
Aided Design, pp. 428-431, Nov. 1992.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

