
Abstract
Static tests are key in reducing the current high cost of

testing analog and mixed-signal ICs. A new DC test gener-
ation technique for detecting catastrophic failures in this
class of circuits is presented. To include the effect of toler-
ance of parameters during testing, the test generation
problem is formulated as a minimax optimization problem,
and solved iteratively as successive linear programming
problems. An analytical fault modeling technique, based
on manufacturing defect statistics is used to derive the
fault list for the test generation. Using the technique pre-
sented here an efficient static test set for analog and
mixed-signal ICs can be constructed, reducing both the
test time and the packaging cost.

1: Introduction

Analog and mixed-signal ICs have been traditionally
tested by verifying a subset of the design specifications. In
general, specification (or functional) testing procedures are
time consuming and not economical. Further, each design
may require a unique test equipment. A testing procedure
based on an analog fault model is required to ease this bot-
tle-neck in testing mixed-signal ICs.

1.1:  Previous work in analog testing

In [1,2] attempts have been made to develop analog
fault models by performing a Monte-Carlo defect simula-
tion. In [1] it was suggested that the faulty analog behavior
be modeled as modifications to the nominal macromodel.
The drawback with this approach is that the faulty macro-
model may require a large number of components, defeat-
ing the purpose of macromodeling. Further, the procedure
outlined does not lend itself to automation. The consensus
from these initial studies is that failures in analog systems
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can be classified into two main categories:
1. Parametric faults resulting in functional circuits with

degraded specifications.
2. Catastrophic faults resulting in complete absence of the

desired function.
Various authors have addressed the issue of testing for the
above two classes of faults. In [3] an algorithm was pre-
sented to obtain an optimal functional test set for the
detection of parametric faults. In [5] the test generation
problem for detecting parametric faults in linear analog
circuits is cast as a quadratic programming problem. Here,
the correlation between the faults and the defects is not
clear. Also, the practicality of using a quadratic objective
function has not been proven. In [6] a search technique in
the frequency domain is used to determine test frequencies
for a given set of faults. But, the authors do not address the
issue of tolerance of parameters in their test generation
procedure. In [7] a DC test selection procedure was pre-
sented where the detection criteria included the effect of
tolerance of parameters but, a linear approximation around
the nominal values was used.

1.2:  Our contribution

DC testing is most suitable to be performed at the wafer
probe stage and an efficient test procedure at this stage will
result in the rejection of many obviously faulty chips,
decreasing the cost of packaging. In this paper, we focus
on developing a static fault model and an associated test
strategy for detecting catastrophic failures in analog and
mixed-signal systems.

Static testing is specially useful in a large class of cir-
cuits for which failures in the circuit result in changes in
the DC signal values at the primary outputs. Also, with the
use of DFT techniques in mixed-signal designs[10], it is
possible to control and observe analog macros in isolation.
Thus an efficient static test set at the macro level needs to
be developed to reduce the cost of testing. Analog test gen-
eration in its simplest form can be viewed as finding an
input which maximizes the error between the good and the
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faulty circuit. But, the variability in the process may coun-
teract rendering this maximization inadequate. In this
paper we show that to include the effect of tolerance in
parameters, the test generation problem may be formu-
lated as a minimax optimization problem. Since this prob-
lem in general is nonlinear, an iterative procedure is
employed wherein a linear programming subproblem is
solved at each iteration. Further, to obtain accurate esti-
mates for fault coverage, we present an analytical method
to derive probabilities for the faults using the manufactur-
ing defect statistics and the nominal layout.

2: Analytical Fault Modeling

Common figures of merit such as fault coverage, test
set size etc. are accurate to the extent the fault model rep-
resent the underlying physical disturbances. Since most of
the current mixed-signal designs have evolved by fabricat-
ing the analog blocks in existing digital processes, it is rea-
sonable to expect similar defect causing mechanisms to be
active both in the analog and the digital portion of the die.
Previous studies[9] in digital circuits indicate that litho-
graphic and pinhole defects are the primary cause of yield
loss in digital circuits and their defect statistics can be
described by the following two distributions:
1. Defect size distribution 2. Defect Spatial distribution.
We use the model proposed in [4] for the defect size distri-
bution and the models proposed in [8] for the spatial distri-
bution. Since the analog macrocell under consideration is
usually a small fraction of the total chip area, the defects
are assumed to be uniformly distributed on the macrocell.
A defect landing in those areas of the mask where there is
no useful circuit information does not cause any circuit
failure and hence can be neglected. Once the defect sensi-
tive areas of the cell are identified, the total probability of
a defect causing a failure in the sensitive area is given as,

(EQ 1)

whereh(y) is the defect size distribution,A(y) isthe sensi-
tive area for the pattern under consideration andAcell the
area of the macro. The limits of integrationDmaxandDmin-
the maximum and minimum defect diameters respec-
tively- are obtained from the design rule specifications. If
Nc is the total number of defects on chip it can be shown
that the probability of no failures in the sensitive area is
given as,

(EQ 2)
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HerePi is the probability ofi defects landing in the mac-
rocell and is obtained by using a procedure outlined in [8].
Thus the probability of a failure in the sensitive area is
given by,

(EQ 3)

The above relations are repeatedly used for each sensi-
tive area in every mask layer and the associated probabili-
ties computed. To each failure in the layout pattern there
corresponds a circuit-level structural failure which is
assigned the probability just derived for the sensitive area.

3: Test generation and minimax criterion

Faulty analog circuits with catastrophic defects may be
highly sensitive to process variations and for certain inputs
may display good behavior locally. Any effective test
strategy should resolve such local equivalences between
the good and the faulty circuits. Consider a non-linear cir-
cuit described by,

(EQ 4)

(EQ 5)

where,
x- anI dimensional vector of inputs.
p- anp dimensional vector of process parameters.

- the output for the good circuit.

- the output for the faulty circuit.

Any test input generated should detect a fault for the worst
case of the process variation. Since the output is nonlin-
early related to both the inputs and the parameters, deter-
mining the worst case of the process deviation is a non-
trivial task and cannot be simply obtained by setting the
process parameters to their upper and lower bounds.
Rather we need to pick through an optimization procedure,
those values of the process parameters which will cause
the faulty and good circuits to behave as close to each
other as possible and then find the corresponding input
vector which will detect the fault for this worst case. For
ease of notation we denote,

For each fault, the objective is to maximize the magnitude
of the error  for the worst case value ofp. This
problem can be formulated as a minimax optimization
problem as follows,

The setX represents the physical limits to the test
inputs which can be applied whereas the setP contains the
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bounds on the process parameters, typically specified by
process engineers. The above problem can be solved itera-
tively by using a procedure shown below.

3.1:  Numerical Implementation

The setP typically has a higher dimension thanX and
to reduce the numerical complexity we discretize setX.
Using an iterative procedure to solve the optimization
problem, the resulting discretized problem becomes,

Here  is the gradient vector at  and

denotes the inner product operation. The discretization of
setX physically corresponds to a finite element division of
the input space. The gradient and objective function values
at  are obtained by using a piecewise linear model,

constructed by DC simulations.
In the form stated above, the minimax problem is a

non-smooth optimization problem. By introducing an
additional variable  the nonlinearities can be removed
and the new problem can be rewritten as,

min
satisfying,

, i=1..N

, j=1..np

Here  is the physical limit to the maximum error.

The above problem is a linear programming(LP) prob-
lem and rapid algorithms exist to solve such problems. If

 solves the LP problem at iterationk, then the guess for
next iterationk+1 is given by,  where,

 gives the descent direction and , the
step taken along the descent direction. The nominal pro-
cess vectorpo is used as the initial guess for the solution.
The iterations are continued until ,
where  is the required precision for the solution vector.
The solution to this problem gives the worst case parame-
ter vector and also the input vector (denoted byxt) which
maximizes the difference between the outputs for the good
and faulty circuits. The optimal value of , say , gives
the maximum possible difference between the good and
the faulty circuits which can be excited byxt in the worst
case. If the value of  is less than a threshold- determined
by the resolution of the measurement system- then the
fault cannot be detected. Once the test input(xt) for the
fault under consideration has been determined, for a go/
no-go testing decision, bounds on the output for the good
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circuit under the test input excitation need to be deter-
mined. For a test excitationxt, and output measurementxo,
the circuit is non-faulty if and only if,

where, and .
 For the simplifying assumption of an affine approxima-
tion around the nominal process values the detection crite-
ria of [7] is equivalent to a single linear programming step
in our method. The additional advantage of this method is
that the faulty signatures in the measurement space are not
explicitly constructed and stored. Further, by using this
method and employing the interior-point methods for lin-
ear programming, polynomial time behavior may be
achieved.

4: Results

We have applied the procedure outlined in this paper to
a CMOS two-stage comparator shown in Fig.1 designed
for the 2µ-MOSIS process. The defect statistics from [9]
were used to generate the fault probabilities. If the proce-
dure of introducing shorts and opens at the devices [7]
were used with 5 faults per transistor, then the number of
faults in the fault list would be 45. By following the ana-
lytical procedure presented here of probing the sensitive
areas, the number of faults has been reduced to 29, a
reduction of 36%, which can be attributed to the fact that a
maximum defect diameter constraint was used, resulting
in zero probability for a number of faults. A sample from
this reduced fault list with probabilities of failure, is
shown in Table 1. For this example, we have considered
variations in zero-bias threshold voltages.To illustrate the
effect of tolerance on the detectability of the test set we
show in Fig.2 the transfer curve of the comparator for the
case of the good circuit and also for the case of the faulty
circuit (6-4 short). Without any process variation, this
faulty circuit could be detected by applying any input volt-
age within the range 0-1V. However, considering a thresh-
old voltage variation (0.6-1.1V) for the NMOS transistor
(nominal value is 0.934V), it can be seen that the faulty
circuit behaves like a good circuit for voltages between
0.5-1.0V. Thus the range over which the fault can be
detected has been reduced to 0-0.5V. The transfer curve
for the good comparator is robust and showed little change
for this variation of threshold voltage.

The transfer curve of a comparator is typically verified
by grounding the negative input of the comparator and
sweeping the positive input through the allowable range.
As a first experiment, we set the negative input to ground
and seek the test input voltages at the positive input.
Applying the test generation procedure presented here to
the list of faults we find that the final test set had just 4 test
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inputs namely 0.4V, +2.5V, -2.5V and -0.3V. The faults
such as short between 7&6 and the short between 4 &10
remain undetected. We performed a second experiment by
letting the negative input(V-) also to be a variable in the
test generation procedure. Using the minimax procedure
we find that test generation was successful for the short
between node 6&7. The test inputs were -0.6V and -1.2V
for the V+ and V- inputs respectively. This fault would have
passed the traditional specification test of verifying the
transfer curve of the comparator although, it would have
been detected by a CMRR(common-mode rejection ratio)
test which is an expensive test. The short between nodes
4&10 remains undetected. Thus, by using the test proce-
dure presented here a small static test set with high fault
coverage can be constructed eliminating the need for
costly specification tests.

Table 1: Sample list of faults
Fault Type Probability

 Nodes 4 and 6 short 8.2918e-4
 Nodes 4 and 10 short 0.0012
 Nodes 9 and 3 short 8.8293e-4
 Nodes 6 and 7 short 6.5629e-4
 Nodes 7 and 9 short 7.4858e-4
M5 drain open 9.5251e-4
M7 source open 0.0012
M4 drain open 0.0012
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5: Conclusions

We have presented a new approach for the DC test gen-
eration for analog ICs. To include the effect of tolerance of
parameters, the test generation problem was formulated as
a minimax optimization problem. We have demonstrated
the utility of our approach by applying the procedure for a
CMOS comparator and have found that, by the judicious
choice of a small number of static tests, most of the faults
may be detected. This procedure is currently being studied
for larger circuits such as A/D converters.
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Table 2: Test inputs for the faults in Table 1

Fault Type
Inputs

 Error
value

Output
bounds of
the good
circuitV+ V-

Nodes 4&6 short 0.4V 0 4.8959V [2.39, 2.45]
M7 source open -2.5V 0 5.0V [-2.5,-2.5]
Nodes 9&3 short -2.5V 0 3.6683V [-2.5,-2.5]
Nodes 7&9 short 2.5V 0 1.3713V [2.39, 2.45]
M4 drain open -0.3V 0 4.9071V [-2.5,-2.5]
Nodes 4&10 short none none 0 no test
M5 drain open 2.5V 0 0.0038V [2.39, 2.45]
Nodes 6 &7 short -0.6V -1.2V 4.89V [2.43,2.47]
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