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Abstract

Simulation-based test vector generators require much less com-
puter time than deterministic ATPG but they generate longer test
sequences and sometimes achieve lower fault coverage. This is due 1o the
divergence in the search process. In this paper, we propose a correction
technique for simulation-based ATPG. This technique is based on identi-
fying the diverging state and on computing a fault cluster (faults close to
each other). A set of candidate faults from the cluster is targeted with a
deterministic ATPG and the resulting test sequence is used to restart the
search process of the simulation-based technique. This above process is
repeated until all fauits are detected or proven to be redundant/untestable.
The program implementing this approach has been used to generate tests
with very high fault coverage, and runs about 10 times faster than tradi-
tional deterministic techniques with very good test quality in terms of test
length and fault coverage.

1. Introduction

Deterministic test vector generation algorithms(1] deal very effec-
tively with large combinational circuits at the expense of large amounts of
CPU time and memory. This requirement is due to the large number of
faults that needs to be considered, especially when dealing with Very
Large Scale Integrated (VLSI) circuits with device counts in the order of
millions today. This test generation problem has also been shown to be
NP-Complete [2). Several hueristics have been developed to speed up
this process inciuding: identifying redundancies [3,4], aborting searches
that do not lead to a test [4,5], and delaying long searches [6]). On the
other hand, for sequential circuits, test generation techniques at the gate-
level are based on constructing an iterative array model for the circuit
[1,7-11]. These techniques cannot generate high quality tests for stuck-at
faults and cannot handle realistic faults, such as transistor-level and delay
faults. In addition, they require tremendous amounts of CPU time and
memory, which prevents their use on large practical circuits. In addition,
for sequential circuits, the gate-level model does not consider any faults
intemnal to the sequential elements (flip-flops). Therefore, the internal
faults of a sequential element may or may not be detected by the derived
test. Thus, the fault coverage reported by a gate-level test generator may
be quite optimistic, and the actual quality of the tested product may not be
as high as expected.

Ideas for exploiting the power of a fault simulator to derive tests
to disgnose faults in asynchronous sequential circuits were proposed
almost 30 years ago by Seshu [12]. Candidate tests were derived from
previous tests by changing one input line at a time, and were evaluated
using a fault simulator to determine their ability to distinguish between
different faulty machines. A test vector generator that uses time frame
expansion for sequential circuit with fault simulation to select test vectors
to form a test set was reported in [13]. A test vector generator that uses
time frame expansion in conjunction with logic simulation to compute a
cost function to compute test sequences is reported in [14, 15); however,
this method requires a large amount of cpu time. Cheng and Agrawal{16}
developed a test generator called CONTEST, which derives a new test
vector by changing a bit in a current vector based on dynamic controlla-
bility and observability cost functions; a concurrent fault simulator is used
to evaluate the derived test. Recently, an approach for test cultivation of
multi-level of VLSI circuits based on ideas from genetic algorithms{17]
and on the use of logic and fault simulation was proposed in [18]. In this
approach, logic simulation is used to rank candidate test vectors and fault
simulation is used to evaluate the fault coverage of a derived test set.
This approach generated test sets with high fault coverage and with lower
CPU time compared with deterministic technique. This is due to the
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extensive use of logic simulation and the limited use of the fault simuia-
tion procedure. A technique that uses genetic algorithms with fault simu-
lation during the ranking of test vectors is reported in {19,20]. This tech-
nique generates very compact test sets but runs slower than determinis-
tic[9] techniques, which greatly limits its application.

None of the above ATPG tools and techniques combines an
efficient simulation-based technique with a deterministic technique. In
this paper, we propose an approach for test vector generation which com-
bines the best features of deterministic and simulation-based techniques.
Here, simulation is used extensively and deterministic techniques are used
only in the cases when they are needed. These cases includes the
identification of untestabie and redundant fauits, and the correction in the
direction of simulation search during divergence. Divergence occurs
when all vectors that are being explored using simulation techniques do
not detect the remaining faults. This case happens quite often during the
search process in a simulation-based ATPG, resulting in a longer search
time and longer test sequences. Thus, detecting and correcting for this
case increases the efficiency of the ATPG process.

2. Approach

Since conventional test generation algorithms perform poorly on
large circuits, and since simulation-based techniques fail to identify unte-
stable faults and generate very long test sets, we feel that a new approach
needs to be considered for this problem. The proposed approach is based
on the two facts: (1) Deterministic ATPG identifies untestable and redun-
dant faults in a given circuit, and can generate tests for testable faults.
However, it requires a large amount of CPU time and, for this reason,
needs to be used only when needed and no more, (2) Simulation-based
ATPG requires much smaller amounts of CPU time when compared with
a deterministic ATPG, but tends to generate longer test sets and cannot
find sny untestable/redundant faults; in some cases, it places the circuit in
an undesirable sink state which tends to stop the search process from
proceeding. Therefore, any effective test generation technique that com-
bines both techniques should be able to exploit the best capabilities of
each technique and use those capabilities only as needed. Therefore, the
approach to deriving high quality tests for large sequential circuits is
based on exploiting the power of a Genetic-based test vector genera-
tor{18] on identifying the minimum number of times a deterministic
based ATPG should be used, and on using those techniques only when
needed, namely, to identify redundant/untestable faults and to correct
simulation based techniques when they reach undesirable states.

3. Simulation Based Technique

The simulation based approach we used[18] to derive high quality
tests for large sequential circuits is based on exploiting the power of a
switch-level logic and fault simulator{21) and on using genetic algorithms
to guide the test generation procedure [17,22,23]. The algorithms impli-
citly preserve the useful history during the search process by generating
successive populations of possible solutions and by passing the best
characteristics in a given population to the next.

4. Genetic algorithms

Genetic algorithms use a directed random search to locate an
optimal solution for a specific problem. The directed random search
simulates the natural process of evolutionary mating-induced survival
used in genetics. Genetic algorithms were first introduced by Holland
[24], and later used in solving NP-complete[17] and CAD problems, such
as cell placement [23). Figure 1 shows the genetic evolutionary process.
A set of objects is selected from the given population and then mated.
This is followed by a recombination phase which combines characteristics
of the selected object to produce two or more objects through a process of
separation. The newly produced objects would either survive or simply
vanish depending on the survival mechanism.
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Figure 1. Evolutionary process
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The genetic operators that are usually used are:

(1) Splicing/Crossover: in which individuals are mated to combine
the desirable characteristics.

) Mutation: in which individual bits are flipped at random.

3) Reproduction: in which the most promising individuals are for-

warded to the next generation.

4.1. Objective function

In order to apply genetic techniques to the problem of test vector
genenation a novel objective function that ranks population members is
proposed. This objective function is based on balanced circuit activity as
recorded by a logic simulator, and the extent to which errors, due to
faults, have been propagated to primary outputs. The first part of this
objective function creates randomness that is evenly spread throughout
the circuit, thus giving equal chance for every fault to be activated. The
second part models and accounts for the cost of propagating a fault. This
cost function is chosen because it can be computed very easily by a logic
and fault simulator. If speed is the objective, then only the first part
should be used which allows the processing of very large circuits. In our
implementation, the first parnt is used extensively. The second pant is used
when only a few undetected faults are left.

To compute the first part of the proposed objective function, we
need to monitor changes in the logical values of circuit nodes. These con-
sist of both a change from logic low to logic high and from logic high to
logic low. It is also assumed that the circuit is partitioned into a number
of moderate size subcircuits. In partitioning the circuit, the following need
to be considered:

(¢)) Dependency: the worst case is to group all primary inputs into one
part.

) Locality: the local relationship between elements in a subcircuit.
Do not put two elements in a subcircuit that are not related.

3) Size: partitions should be of a moderate size, so changes in a pant
could have some effect on the part.
It was found that depth-first search (DFS)[25] based pan.momng.

is adequate.

To formulate the objective function the following are needed: (1)
We refer to a node N of subcircuit i as ny; (2) We denote the logical state
of a node M by s(n;); (3) The number of changes in s(ny) after the appli-
cation of an input sequence of length K is denoted { NX !,

Definition: Given a circuit partitioned into N pans (subcircuits) and a
~ sequence of vectors R, we say that R improves the objective function if
for all 1,j pairs of subcircuits the following holds:

abs(IN®|-INj® | )<at

where @ is a small integer, and abs is the absolute value.

M

Note that the above definition ensures that activities can be bal-
anced over all subcircuits by controlling R, @, and the size of subcircuit i.
For example, if Ot is very large, then any sequence will improve the objec-
tive function. On the other hand, if Ot is small then very few sequences
improve the objective. In the implementation, sequences are measured on
how much they improve the overall quality of .. The size and the shape
of the partitions play a very crucial role in the ranking of potential solu-
tions. In the case where the size of the partition is one, finding a sequence
that activates a certain partition is difficult. On the other hand, if the size
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of the partition is large, then activating that partition is easy. Redundancy
and certain uninitializable circuits can also make the realization of bal-
anced profile hard and, in some cases, impossible.

The second pant of the objective function is defined as the sum of
distances from a fault site to the maximum level where the corresponding
error has propagated for every fault. This part of the function is computed
by the fault simulator and is used only when the number of faults is very
small.

5. Fault Detection in a Simulation Based ATPG

Fault detection in the proposed simulation based ATPG spproach
depends on the initial population, on the genetic operators, and on the
fitness function. Each plays a very crucial role in the process. Given an
initial population, the above simulation-based ATPG detects closely
related faults that belongs to a cluster with respect to the initial popula-
tion. When all faults in a cluster are detected, a mechanism needs to be
devised to detect this case because fault that do not belong to the cluster,
most likely, would not be detected. In order to detect these faults, a new
population of test vectors needs 1o be generated so that tests for these
faults can be derived by applying a fixed number of genetic operators to
the newly generated population. This is illustrated in Figure 2. shown
below. In this figure, faults are represented by small circles and are
grouped into clusters (large sets). A solid arrow indicates the application
of an input vector or sequence of vectors and the head of the arrow shows
how close that input is from being a test for some faults. Note that, after
detecting all faults in cluster 1, a series of inputs are applied and the result
is for the search to move away from faults in the second cluster. In order
to correct the search, a set of tests which are generated deterministically
needs to be loaded into the population. These tests should detect or be
very close to detecting faults that are in the center of another cluster. This
is shown by a dashed arrow. This process is repeated until all faults are
cither detected or determined to be untestable. Note that during the
activation of the deterministic technique, redundant/untestable faults are
identified and removed from further consideration.

The test generator that implements this correction scheme can be
in either one of two states as shown in Figure 3. The first state is a con-
verging state in which the program should keep applying the genetic
operators as long as the resulting vectors are very close to being a test for
some faults. In this state, the simulation based part should keep track of
faults that might be in the center of a cluster by monitoring their activity
as recorded by the fault simulator. The second state is a diverging state in
which the program recognizes that results from genetic process are not
leading to any test or to a set of vegtors close to a test. In this state, a
deterministic phase is applied to generate tests for a given set of faults
that are computed to be in the center of a cluster by the simulation-based

phase.
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6. Deterministic Technique

The techniques used to implement the deterministic search pro-
cedure are based on the the two phases; (1) the forward time processing
phase and (2) the state justification phase. In the first phase, an
undetected fault is activated and propagated to a primary output based on
a PODEM:-like search and on single time frame expansion. During this
phase, a state may need to be justified in order 10 activate the fault. In this
case, the second phase is activated to justify the state. The procedure
uses a 9-valued logic algebra for completeness and the split model {26].
This process consumes a large amount of CPU time and should be used
only when needed. Therefore, in our implementation, this process is
called from the simulation-based part with an objective of calling it as few
times as possible, and only when needed and no more.

7. Algorithm Description

In order to impiement the above algorithm, the circuit is parti-
tioned by a DFS traversal into a set of subcircuits. New vectors have to
be generated from old ones to produce new activity in subcircuits with
Jow levels of activity. The main algorithm would select either one or two
objects from the current population. In one case, one object is selected, a
mutation is performed on the object and the resulting mutated object is
either saved in the case where O of equation (1) is below a certain thres-
hold or discarded. During mutation, bits that cause good activity and
some other randomly selected bits are flipped. In the other case, two
objects from the current population and either splicing or muduation are
performed, depending on whether the objects consist of a single vector or
a sequence of vectors. The resulting object is either saved in the case
where O of equation (1) is below a certain threshold, or discarded. The
objects are saved at the end of the current population. Thus, when objects
from the current population are exhausted, objects from the next popula-
tion are selected and a marker is placed at the end of the current popula-
tion to be used as a starting point for saving objects in the next generation.
This process of selection, modification, and saving is repeated until a
desired fault coverage is achieved, a cpu time limit is reached, or a
prespecified number of modifications is reached. During the process, if a
fixed number of test vectors were added to the test set witheut improving
the fault coverage, then a deterministic test vector generation procedure is
applied to get a set of vectors to be added to both the test set and the
current population. In our implementation, a very small initial test set is
generated randomly. In addition, the fault simulation procedure retumns a
set of faults that are the center of a cluster for the case where targeting is
needed.

8. Results

In order to demonstrate the power of the system on combinational
circuits, we give a summary which contains the results of test generation
procedure on the ISCAS 85 benchmarks{27]

shown in Table I. For example, the procedure ran in 15.13 CPU
seconds requiring a total of 101 blocks of memory on a SPARC SLC
detecting 520 faults and generating 81 tests for the circuit C432. Notice
that in all cases, the procedure required a small amount of CPU time and
memory, resulted in a high fault efficiency, and generated test sets that are
not too large.

To evaluate the effectiveness of the algorithm, results for the
ISCAS89 (28] benchmark circuits are also presented. In this experiment,
the initial test sequences are generated randomly. The key steps in pro-

-ducing the high quality tests are the mutation and splicing of the vectors,
the analysis of the effectiveness of the resulting candidate sequences, and
the minimum number of times a deterministic procedure is called. Table
I contains the result of applying the adaptive iest generator on the
ISCAS89 sequential circuits [28]. For example, the test generator gen-
erated a test sequence of 297 vectors for circuit s208. The deterministic
test vector generation procedure was called a total of 67 times resulting in
the identification of 53 untestable faults. The fault coverage resuiting
from the application of this test set is 63.25, the fault efficiency 87.90, and
the test generator required a total of 130.12 CPU seconds.

Thé fault efficiengy of 87.90 (compared to the 79.7 fault efficiency pro-
duced by the test generator HITEC [9]. ). It should be noted that both
fault coverage and the number of tests generated were very close to those
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Table I. Results on the ISCAS 85 combinational circuits

Circuit # # # of Fault Fault | CPU
of of faults Covrg eff. in
tries | tests | detected | Covrg sec.

c432 6864 81 520 99.2 100 15

c499 4293 89 750 98.9 100 25

c880 6842 | 105 942 100 100 2

cl355 | 6528 | 100 1566 99.4 100 53

cl908 | 8000 § 232 1869 99.2 99.78 | 110

c2670 | 8000 | 212 2618 95.3 99.56 | 247

c3540 | 8000 | 221 3285 95.8 99.82 | 153

c5315 | 8000 | 245 5281 98.7 99.64 | 239

6288 | 8000 | 80 7710 99.5 100 256

¢7552 | 8000 | 431 7410 98.14 | 99.88 | 522

Table II. Results on the ISCAS 89 sequential circuits

Ckt # # Fault Fault Fault CPU

of of Covrg | Eff. Eff. time
ATPG | tests HITEC sec
Calls

s208 67 297 63.25 | 87.90 79.7 130

5298 58 331 86.36 | 96.75 9%4.1 121

s34 15 308 96.19 | 99.70 98.5 70

5349 21 367 9542 | 99.71 98.5 128

s382 48 443 88.47 | 93.23 70.4 265

s386 85 636 | 8072 | 83.33 90.8 151

5400 63 1461 | 87.41 | 92.16 62.2 651

5420 300 327 41.39 | 49.30 69.3 855

s444 78 646 87.76 | 94.93 76.1 127

8526 120 1191 | 78.01 | 86.48 532 143

$526n 160 756 | 73.77 | 82.27 N/A 160

5641 75 990 86.50 | 90.57 87.1 317

s713 110 918 81.75 | 85.54 87.6 743

s1196 25 2467 | 99.75 100 100 118

s1238 70 2317 | 94.64 | 99.70 9.9 177

s1423 220 1773 | 8554 | 89.43 N/A 2471

31488 44 3677 | 97.10 | 98.65 100 920

s1494 130 2856 | 9223 | 94.35 100 1117

85378 1205 | 3227 | 76.10 | 76.31 N/A 2369
$35932 | 4020 | 1204 | 89.27 | 99.25 99.5 11553

of HITEC, and were obtained in a very small run time. The total run time
to generate all results in Table II is less than 6.4 hours of CPU time on an
SUN SLC workstation with 16 Meg. of memory compared to 108 hours
required for HITEC [9], to get the results on the same machine.

Table III contains characteristics of other circuits on which the
procedure was applied. Results of this experiment are shown in table IV.
Note that the adaptive procedure resulted in considerably higher fault
efficiencies in all cases in which HITEC figures were available. This pro-
cedure clearly outperforms HITEC on speed, with comparable fault cover-
age and efficiencies. In fact, a higher efficiency was obtained on twelve
circuits, for eight circuits a lower but comparable efficiency to HITEC
was obtained, and two circuits resulted in efficiencies that are similar to
the ones obtained by HITEC.

Table III. Characteristics of Other Sequential Circuits

Circuit # of # of #of #of { #of

Gates | Inputs | Outputs | FF Flis

amd2910 | 913 87 20 16 2573
divl6 819 50 33 34 2147
mpl16 626 55 18 33 1708
div32 1787 98 65 66 4544
mpl32 1306 104 34 64 3228
piir8 9863 56 9 8 29689
peont 3783 24 9 8 11272




Table IV. Resuits on the Other Sequential Circuits

Ckt # Fh Flt CPU CPU
of Eff. Eff. time time
ATPG | CRIS ( ‘HITEC sec sec

Calls CRIS HITEC

amd2910 300 99.33 | 92.42 3894.50 4796

divl6 230 81.92 N/A 36460.30 N/A

mpl16 98 99.64 N/A 681.57 N/A
div32 200 7328 | 73.52 3800.64 142011
mpl32 350 91.44 | 8230 6559.57 135076
piir8 12300 | 98.79 [ 72.00 | 133831.15 [ 254531

9. Conclusion

In this paper, we presented a new approach for generating test
vectors by combining the best features of deterministic and simulation
based techniques. The simulation-based procedure is used extensively
and deterministic techniques are used only in the cases when they are
needed. These cases includes the identification of untestable and redun-
dant faults and the correction in direction of simulation search during
divergence, which happens when all vectors that are being explored by
the simulation techniques do not detect the reamining faults. This diver-
gence happens quite often during the search process in a simulation-based
ATPG, which results in a longer search time and longer test sequences.
We implemented this technique and demonstrated its usefulness on the
ISCAS8S and the ISCAS89 benchmark circuits. Furthermore, we showed
that the proposed techniques run, on the average, 10 times faster than
traditional deterministic techniques with very competitive test length and
fault coverage. We believe that this novel approach can be used to gen-
erate high quality tests for the extremely large circuits being designed
today with very little scan.
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