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Abstract

Memory cost is responsible for a large amount of
the chip and/or board area of customized video and im-
age processing systems. In this paper, a novel back-
ground memory allocation and assignment technique is
presented. It is intended for a behavioural algorithm
speci�cation, where the procedural ordering of the mem-
ory related operations is not yet fully �xed. Instead
of the more restricted classical scheduling-based explo-
rations, starting from procedurally interpreted speci�ca-
tions in terms of loops, a novel optimization approach
{ driven by data-ow analysis { is proposed. Employ-
ing the estimated silicon area as a steering cost, this
allocation/assignment technique yields one or (option-
ally) several distributed (multi-port) memory architec-
ture(s) with fully-determined characteristics, complying
with a given clock cycle budget for read/write operations.
Moreover, our approach can accurately deal with complex
multi-dimensional signals by means of a polyhedral data-
ow analysis operating with groups of scalars.

1 Introduction
Application studies in the areas of speech, image and

video processing indicate that a large part of the area
and power cost in (application-speci�c) architectures for
real-time multi-dimensional signal processing (RMSP) is
due to memory units, i.e. single or multi-port RAMs,
pointer-addressed memories, and register �les [6, 4].
Therefore, design support to determine the storage orga-
nization for the multi-dimensional (M-D) signals is cru-
cial to reduce the system and architecture design time
while maintaining a su�ciently high design quality in
terms of area and/or power. Such decisions should be
�xed as early as possible in the design trajectory, prefer-
ably before data-path allocation and scheduling [4].

Many techniques tackling the storage allocation prob-
lem employ a scheduling-driven scalar-oriented view [5,
1, 9] where the control steps of production/consumption
are assumed to be known for each individual scalar. This
strategy is mainly due to the fact that applications tar-
geted in conventional high-level synthesis contain a rela-
tively small number of scalar signals (at most � 103). In
that case, (binary) ILP formulations, graph colouring, or
clique partitioning techniques have provided satisfactory
results for register allocation, signal-to-register assign-
ment, and signal-to-port assignment, under the (usually
implicit) mentioned assumptions.
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A behavioural video domain speci�cation like that of
Fig. 1 is untractable by means of a scalar-oriented tech-
nique. First, this class of examples usually contains large
amounts of scalars. At the same time, scalar-oriented ap-
proaches entail a loss of the code regularity. According to
our experience, this leads to an unacceptable growth of
the controller size. In addition, an applicative language
like SILAGE is by de�nition non-procedural: besides the
natural production-consumption order imposed by the
dependence relations existent in the code, there is much
freedom left in the execution ordering. This can be ex-
ploited by a designer in order to better meet his goals,
e.g. to take pro�t of the parallelism \hidden" in the code.

Most tools do not tolerate this however. E.g. the cur-
rent memory tool of the CATHEDRAL system cannot
handle the example of Fig. 1, as it interpretes the order-
ing in the source code procedurally [10]. The MESA al-
location approach [8] can deal with large indexed signals
but it also starts from a procedurally interpreted loop
structure. A nice feature of this system is that it tries
to take into account a realistic allocation cost function
based on a memory layout model and throughput. As no
data-ow analysis is accomplished to steer the allocation
process, it does not take into account the possibility of
storing (parts of) M-D signals in-place, resulting in an
important over allocation of memory. In contrast, the
allocation tool MEDEA from the PHIDEO system [6]
is capable of handling non-procedural applications (in
terms of stream ordering). By means of a hierarchical
stream model, it is possible to handle M-D signals with
complex a�ne indices, but only in nests of loops with
constant boundaries: the PHIDEO streammodel is more
targeted towards �xed-rate front-end video applications,
and not to irregular image or speech processing systems
which typically do not exhibit �xed periods and �xed
length streams.

In this paper, a novel background memory alloca-
tion and assignment technique is presented. The pro-
posed approach is driven by data-ow, which leads to
a larger exibility in the search space exploration com-
pared to the scheduling-driven solutions. In order to
handle applications with large amounts of scalar sig-
nals (mainly organized in M-D signals), our allocation
system incorporates a polyhedral data-ow analysis [2],
allowing to operate directly with groups of signals, an-
alytically characterized, rather than using the individual
scalar signals. This novel allocation approach can pro-
cess non-procedural functional descriptions, containing
conditions (data-dependent or not), delays, M-D signals
with complex a�ne indices, and nests of loops having as
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func main (A: W[G+1][H+1]) opt: fix<16,4>[][] = 
begin (i: -M .. M )::
(j: -N .. N )::
 (k: -m .. m )::
 (l: -n .. n )::
  (g: M+m .. G-M-m )::
  (h: N+n .. H-N-n ):: begin
    D[g][h][g+i][h+j][0] = if (k==-m)&(l==-n) -> fix<16,4>(0) fi;
    optD[g][h][0] = if (i==-M)&(j==-N)&(k==-m)&(l==-n) -> fix<16,4>(0) fi;
    opt[g][h] = if(i==M)&(j==N)&(k==m)&(l==n)->optD[g][h][int((2*M+1)*(2*N+1))]fi;
    Ad[g][h][g+i][h+j][g+i+k][h+j+l] = A[g+i+k][h+j+l];
    Ad[g][h][g+i][h+j][g+i+k][h+j+l]@@1 = fix<16,4>(0);
    D[g][h][g+i][h+j][int((k+m)*(2*n+1)+l+n+1)] = A[g+i][h+j] -
     Ad[g][h][g+i][h+j][g+i+k][h+j+l]@1+D[g][h][g+i][h+j][int((k+m)*(2*n+1)+l+n)];
    optD[g][h][int((i+M)*(2*N+1)+j+N+1)] = if (k==m)&(l==n) ->
     D[g][h][g+i][h+j][int((2*m+1)*(2*n+1))]+optD[g][h][int((i+M)*(2*N+1)+j+N)]fi;
   end;
end;

Figure 1: A motion-detection kernel for video coding

loop boundaries a�ne functions of the surrounding loop
iterators. The allocation/assignment technique yields
one (or optionally several) distributed (multi-port)mem-
ory architecture(s) with fully-determined characteristics,
complying with a given clock cycle budget allocated for
read/write operations. Our approach currently employs
as a steering cost function an accurate estimation of the
total silicon area occupied by the memory architecture.

Section 2 presents the mathematical model of the si-
multaneous memory and port allocation and the opti-
mization technique to solve it. Section 3 introduces the
signal-to-memory assignment method. Results obtained
so far are substantiated in Section 4, followed by conclu-
sions and our future directions of research in Section 5.

2 Background memory allocation
The subsequent allocation model produces a memory

con�guration of RAMs and ROMs "optimal" in terms
of silicon area requirement, and complying with a given
clock cycle budget allocated for R/W operations. The
proposed solution approach provides answers to the fol-
lowing practical questions: (1) How many memories
are necessary ? (2) What is their type (RAM/ROM) ?
(3) What are their word-lengths ? (4) How many ports
has each memory ? (5) What kind of ports are required
for each of the memories ? (How many read ports, how
many write ports, and read=write ports ?) (6) What
are their estimated sizes (numbers of locations) ?

The cost function employed by our approach is based
on an evaluation of the actual silicon area occupied by
the background memory, based on the model for on-chip
memories proposed by Mulder et al. [7]:

A = TF � b � (1 + �P ) � (N + �) � [1 + (P + Prw � 2)=4]

where: TF is a technology scaling factor, b - the memory
word-length, N - the number of storage locations, P -
the total number of ports (read, write, and read=write),
Prw - the number of read=write ports.

Assuming that the word-lengths of the signals in a
RMSP algorithm are b1 > � � � > bm, and denoting
with RW (i) the maximum number of simultaneous
R/W operations of signals having as word-length bi bits,
there must be at most RW (i) memories of bi bits.
Consequently, the cost function to be minimized is the

total area estimation:
Pm

i=1

PRW (i)

j=1 Aij, where

Aij =

(
kbi(1 + �Pij)(Nij + �)[1 + (Pij + prwij � 2)=4]
0 , if Nij = 0
0 , if Pij = 0

Aij denotes the area of memory j from the collection
of at most RW (i) memories which can have storage
cells of bi bits wide. (Some of these memories will
result to be 0 after the optimization process.) Nij and
Pij = prij + pwij + prwij denote the number of locations

respectively the number of ports. The subscripts have
the same signi�cance as above and the superscripts of
ports denote the read, write, or read=write function.

There are two categories of constraints. The �rst class
refers to port con�gurations:

RW (k)X
j=1

(prkj + prwkj ) � R(k;m) (1)

kX
i=1

RW (i)X
j=1

(prij + prwij ) � R(1; k) (2)

for k = 1;m. Constraint set (1) limits the reading ca-
pacity for memories kj with bk bits to be the maximum
number of simultaneous read accesses referring to sig-

nals of word-lengths (bk; : : : ; bm), denoted as R(k;m).
Constraint set (2) ensures that the number of ports for
all memories of b1; : : : ; bk bits is su�cient to support
is the maximum number of simultaneous read accesses
referring to signals of word-lengths (b1; : : : ; bk), denoted

as R(1; k). All these R/W values are determined during
our data-ow analysis stage [2]. Similar constraint sets
refer respectively to write, and read=write accesses. An-
other set of port constraints ensures that each memory
ij has both read and write accesses (if RAM assumption
is e�ective): e.g. prij = prwij = 0 =) pwij = 0 . Linear

constraints modelling these conditions are:

W (i;m) (prij + prwij ) � pwij (3)

Our implementation also allows user interaction. For
instance, optionally a prede�ned set of port con�gura-
tions can be imposed (e.g. maximumtwo ports per mem-
ory). In this case, only the valid port con�gurations are
retained and analyzed by our program.

The second category of constraints refers to memory
locations. The signi�cance of these constraints is the
same as for constraints (1) and (2), but now related to
the number of locations and signals simultaneously alive,
rather than the number of ports and simultaneous signal
accesses. The constraints are taking also into account
that a signal of b2 bits can be eventually stored in a
memory of b1 bits (b1 � b2).



RW (k)X
j=1

Nkj � Nmax(k;m) (4)

kX
i=1

RW (i)X
j=1

Nij � Nmax(1; k) (5)

Nmax(m;n) represents the maximum number of scalars
contained in groups of signals of word-lengths bm; : : : ; bn
which are simultaneously alive. These data are provided
also by the polyhedral data-ow analysis [2]. No inte-
grality condition is imposed on the variables Nij when
solving the allocation phase, as the memory sizes will be
adjusted further, during the assignment stage.

The allocation model presented so far represents the
minimization of a non-linear cost function with linear
constraints and mixed (integer and real) variables. The
method employed to solve it is mainly based on the prop-
erty that the constraints are naturally decoupled: some
constraints are referring to ports and the others are re-
ferring to storage locations. By considering the port
variables as parameters, and by assigning speci�c val-
ues to these, the cost function becomes linear in the Nij

variables (if the discontinuity for Nij = 0 is neglected).
This observation is the key idea of the proposed opti-
mization strategy:
1. The port constraints (1), (2) and (3) determine a
polytope. All the integer lattice points of this polytope
represent a possible con�guration of ports. The lattice
points are enumerated with a Fourier-Motzkin [3] based
technique.
2. In each of the lattice points generated in step 1 (for
each possible port con�guration), an LP optimization
- having Nij as variables - subject to constraints (4) is
performed (slightly modi�ed in order to comply with the
discontinuities of the cost function for Nij = 0 ).

The result of the allocation scheme is a set with the
best k (parameter given by the designer) memory con�g-
urations, fully determined in terms of number and type
of memories, number and type of ports, word-lengths,
and estimated number of locations.

The computational e�ort mainly depends on the
"size" of the "port" polytope (constraints (1), (2), (3)),
as a modi�ed LP optimization must be done in all its
lattice points. In practice, the number of realistic port
con�gurations is relatively small though not feasible to
enumerate manually. We have experimented with exam-
ples leading to "port" polytopes of up to hundreds of
points and the computational e�ort remained even then
of the order of seconds (see Section 4).

3 Signal-to-memory assignment
Several binary ILP formulations have been proposed

in the past to solve the signal-to-memory assignment ([1]
and references). These assignment models employ as bi-
nary variables xij { which de�nes the assignment of the
scalar i to memory j. If several memories are present,
the maximum number of signals that can be assigned is
limited to a few hundreds, due to limits of commercial
ILP packages. This is unacceptable for realistic appli-
cations. In contrast, our assignment model considers
groups of signals (according to our terminology [2], the
basic sets of signals { constructed during the data-ow
analysis) rather than individual signals. It is also not

based on expensive ILP formulations. In this way, the
assignment problem for applications with large amounts
of signals becomes less expensive and more tractable.
The proposed algorithm operates in two phases:
1. a constructive phase (greedy), which generates an
initial assignment solution;
2. an iterative improvement phase, which is basically a
branch-and-bound algorithm.

The inputs of the assignment procedure are: (1) a
con�guration of memories with all parameters deter-
mined during the allocation phase; (2) the groups of
signals to be assigned, and the constraints due to port
conicts, both resulting from the data-ow analysis [2].

The assignment decision is steered by computing a
cumulative penalty composed of three weighted terms:

P = �1P1 + �2P2 + �3P3 (6)

The �rst term �1P1 penalizes the memory area "lost" by
assigning a group of signals to a memory having superior
word-length. If Ai denotes the area of memory i, Ni {
its size, and bi { its word-length, the area per bit ratio is
Ai=Nibi . If a group of nk signals of bk bits (bk < bi)
is assigned to that memory, then nk(bi � bk) bits are
"lost", resulting in a cost of:

P1 = nk
bi � bk

bi

Ai

Ni

The second term of (6) encourages the assignment of ba-
sic sets common to the same de�nition/operand domain
[2] to the same memory. Intuitively, this term tends to
reduce the address logic for each memory as it is likely
that these signals can then share the same address equa-
tions and thus address logic. The third term penalizes
exceeding the estimated memory sizes determined dur-
ing the allocation phase:

P3 =

�
overflowi �

Ai

Ni

�2
Di�erent assignment e�ects can be obtained by vary-

ing the weights in (6). E.g. if �2 � �1; �3 all scalars
belonging to the same M-D signals are grouped in the
same memories. If �3 � �1; �2 the �nal allocation so-
lution is closer to the "optimal" (in terms of estimated
area) solution resulting from the allocation phase.

The initial assignment solution is constructed in a
greedy way, obeying the assignment constraints and min-
imizing the global penalty value in (6). Afterwards, a
branch-and-bound process is initiated, intended to fur-
ther improve (6), while complying with the constraints.
In order to improve the practical computational e�ort,
a mechanism is used to avoid the generation of sym-
metric assignment solutions. Therefore, the algorithm
guarantees that every valid solution is produced only
once. The �nal solution consists of the memory con-
�guration(s) found at the allocation phase, but having
the memory sizes adjusted by the assignment. A map of
the assignment solution allows to determine where each
scalar is actually stored.

4 Overview of main results
The implementation of the presented approach was

done in C++, under the CATHEDRAL framework. The
allocation program has been tested so far on several
applications listed in Table 1. The number of signals,
and the word-lengths encountered in the application are



No. Application Signals Sets Cycles Mem. structure after alloc./after assig. Area CPU

1 Updating singular 146590 1298 720000 1M.16b/1RW N=3995 51.58 0.18s
value decomposition 16b 1M.16b/1RW N=3995 51.58 0.01s

2 n=36 360000 2M.16b/1RW N=2 � 1997 51.66 0.51s
2M.16b/1RW N=2089/2467 58.89 8m05s

3 240000 3M.16b/1RW N=3 � 1331 51.74 1.56s
3M.16b/1RW N=1369/1365/1333 52.67 8m21s

4 n=32 103550 1150 170000 3M.16b/1RW N=3 � 1055 41.06 1.54s
3M.16b/1RW N=1089/1089/1057 41.94 5m38s

5 Motion detection 100080 102 120000 1M.16b/1RW N=32800 422.9 0.10s
G=H=15 16b 1M.16b/1RW N=32800 422.9 0.08s

6 M=N=4 200000 2M.16b/1RW N=2 � 16400 423.0 0.61s
m=n=2 2M.16b/1RW N=18016/15376 430.7 1m38s

7 Medical image 6784 6401 12000 2M.16b/1R+1W N=2; 1RW N=384 5.13 1.93s
reconstruction 16,12b 2M.16b/1R+1W N=2; 1RW N=384 5.14 1m02s

Table 1: Storage allocation results

listed in column 2. The third column of Table 1 con-
tains the number of basic sets [2] (groups of scalars)
extracted by the polyhedral data-ow analysis from the
source code: this data suggest the amount of complexity
reduction for the subsequent assignment phase. Column
4 indicates the clock cycle budget allocated for R/W
operations. The allocation and assignment results ob-
tained are listed in the last three columns. The mem-
ory structure indicates the word-length, the port struc-
ture, and the number of locations (before/after assign-

ment). The total area (mm2) is estimated according
to Mulder's model [7], assuming a CMOS technology
with 1.2�m minimum geometry. Because the estimated
memory sizes N are adjusted at the assignment phase,
the resulting memory areas are slightly higher than the
values computed at the allocation step. The CPU times
for allocation and assignment are measured on an HP-
station 715/50. The optimization technique used for the
allocation phase is very fast. The heuristic assignment,
although more time expensive, is still very acceptable.

The �rst example represents an updating singular
value decomposition algorithm { algebraic kernel used
e.g. in antenna beamforming and Kalman �ltering. It
contains nine loop nests, up to three levels deep. The
experiments have been carried out for two values of the
parameter n (the matrix order) and for di�erent cycle
budgets. The second application is a full motion detec-
tion kernel for video coding. The SILAGE code, shown
in Fig. 1, is non-procedural. The amount of signal in-
stances (over 105) for the chosen parameter set is pro-
hibitive for any scalar-oriented method. While for the
�rst cycle budget (entry 5) 1RW port is su�cient, several
ports are necessary in order to achieve the throughput
for the second experiment (entry 6). The memory orga-
nization corresponding to the minimum estimated area
(according to the layout model embedded in the pro-
gram), and complying with the given throughput con-
straint, is indicated in column 5. The last test-vehicle
is extracted from a medical back-projection vehicle for
computer tomography images (entry 7). The code con-
tains data-dependent indices which are correctly mod-
elled. Also here, good results have been obtained, com-
parable to the manual design. The second memory with
2 locations is actually a small multi-port register-�le.

5 Conclusions
In this paper, we have addressed the problem of back-

ground memory allocation and M-D signal assignment
for RMSP systems. In order to address non-procedural
functional speci�cations with large M-D indexed sig-
nals, the proposed methodology is driven by a polyhe-
dral data-ow analysis. The allocation technique yields
one or several distributed memory architecture(s) with
fully-determined characteristics. Our future work will
concentrate on extending this technique to a more gen-
eral hierarchical model.
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