
De�nition and Solution of the Memory Packing Problem for

Field-Programmable Systems

David Karchmer and Jonathan Rose

Department of Electrical and Computer Engineering

University of Toronto

Toronto, Ontario. Canada M5S 1A4

Abstract

This paper de�nes a new optimization problem

that arises in the use of a Field-Programmable Sys-

tem (FPS). An FPS consists of a set of Field-

Programmable Gate Arrays and memories, and is used

both for emulation of ASICs and computation. In

both cases the application circuits will include a set of

memories which may not match the number and aspect

ratio of the physical memories available on the FPS.

This can often require that the physical memories be

time-multiplexed to implement the required memories,

in a circuit we call a memory organizer.
We give a precise de�nition of the packing optimiza-

tion problem and present an algorithm for its solution.

The algorithm has been implemented in a CAD tool

that automatically produces a memory organizer cir-

cuit ready for synthesis by a commercial FPGA tool

set.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) are
now widely used for the instant manufacturing of dig-
ital designs. Current FPGAs, however, do not have
su�cient logic capacity for large designs, and so a
system with multiple FPGAs is often needed. Such
a Field-Programmable System (FPS) consists of FP-
GAs, some amount of memory and some type of pro-
grammable inter-chip connection mechanism. The
term Field-Programmable System encompasses both
FPGA-based compute engines [1, 2] and digital emu-
lation systems [3, 4].

Memory is an essential part of almost any digi-
tal system, and so forms a key element of a Field-
Programmable System. Each application, however,
has vastly di�erent memory needs. A telecommuni-
cation circuit, for example, may require many small

queuing bu�ers, while a graphics engine will require a
few larger frame bu�ers.

The subject of this paper is a method to e�ciently
map an application circuit's required set of memo-
ries into the available physical memories on an FPS.
The context is a low-cost FPS in which there are
a small number of pre-fabricated physical memories,
but a large number of desired memories. The physi-
cal memories must be time-multiplexed to create the
desired memories (i.e. each desired memory will have
a di�erent time slot in which it can access a separate
portion of the physical memory).

The mapping becomes an optimization problem
when the number of required memories exceeds the
number of physical memories. There may be many
di�erent ways that the required (logical) memories can
be packed into the physical memories. If the logical
memories have di�erent access time requirements, the
optimization problem is to �nd a packing that meets
the timing requirements. Furthermore, di�erent pack-
ings will require di�erent amounts of multiplexing and
control, and so it is desirable to minimize the area de-
voted to this part of the circuit.

For example, consider an application in which there
are �ve logical memories: There are three 3k�8 mem-
ories, each with a required access time of 80ns, one
4k � 7 memory with a required access time of 20ns
and one 32k � 8 memory with a required access time
of 100ns. Assume that the FPS has three 32k � 8
physical memories, each with an access time of 20ns.
Since the logical memories are time-multiplexed, their
�nal access time is approximately equal to the physical
memory's nominal access time (in this case 20ns) mul-
tiplied by the number of memories sharing the physical
memory.

Figure 1a illustrates a packing in which all the 3k�8
and 4k � 7 memories have a �nal access time of 40ns
or less. This implementation does not meet the access
time requirement of the 4k � 7 memory. Figure 1b

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0020 $3.50

Design

User’s

32k x 8 @ 20ns

32k x 8 @ 20ns

32k x 8 @ 20ns

32k x 8 @ 20ns

4k x 7 @ 40ns

3k x 8 @ 40ns

3k x 8 @ 40ns

3k x 8 @ 40ns

Logical Memories
& Realized Access Times

Organizer
Physical Memories

Design

User’s

32k x 8 @ 20ns

32k x 8 @ 20ns

32k x 8 @ 20ns

3k x 8 @ 60ns

3k x 8 @ 60ns

3k x 8 @ 60ns

4k x 7 @ 20ns

32k x 8 @ 20ns

Logical Memories
& Realized Access Times

Organizer Physical Memories

(b) Correct Packing - Does meet Required Times(a) Failed Packing - Doesn’t meet Required Times

Figure 1: Possible Packing Solutions

shows the only possible packing that does meet all the
access time constraints. The three 3k � 8 memories
have a �nal access time of 60ns and both the 4k � 7
and the 32k � 8 memories have access time of 20ns.
Note that in some cases, a logical memory may be
larger than an individual physical memory, and so will
have to be partitioned into smaller pieces before it can
be packed.

The multiplexer and controller that implements the
packing will be referred to as a Memory Organizer.
In a Field-Programmable System this circuit would be
implemented using the FPGAs. This paper presents
an algorithm to solve the optimization problem and
describes a CAD tool which uses this algorithm to
generate the memory organizer netlist. This tool has
been used on an operational Field-Programmable Sys-
tem [5, 6].

This paper is organized as follows: Section 2 pro-
vides a precise de�nition of the optimization problem
to be solved. Section 3 describes the memory orga-
nizer architecture, and the models needed to estimate
the organizer speed and area. Section 4 gives an al-
gorithm for the solution of the optimization problem.
Section 5 presents several examples of the use of the
CAD tool based on this algorithm.

2 Problem De�nition

In this section we �rst describe our notation
and then give a precise de�nition of the Field-
Recon�gurable Memory packing problem.

There are three key parameters that characterize
any memory: The width is the number of bits per
memory word, the depth is the number of words in the
memory, and the access time is the minimum amount

of time that must pass between two consecutive mem-
ory access requests.

We will refer to each memory required by the user
as a Logical Memory, abbreviated as LM. Each �xed
available memory on the FPS is referred to as Physical
Memory (PM). There are n logical memories in the set
L = fLM0; . . . ; LMn�1g and m physical memories in
the set P = fPM0; . . . ; PMm�1g. The width, depth
and access time of the jth PM are denoted by Pwj,
Pdj and Ptj, and the width, depth and required access
time of the ith LM are denoted by Lwi, Ldi and Lti.
If a logical memory is larger in depth or width than
the physical memory, then it must be partitioned into
pieces. Section 2.1 shows how this partitioning is done.

A packing is a partition of the LMs together with a
mapping from each of the partitioned LMs to one of
the physical memories.

The occupancy of a physical memory in a packing
is the number of logical memories that are mapped
into the physical memory. We denote the occupancy
of PMj by OCj. For example, the occupancy of the
topmost physical memory in Figure 1b is three.

A legal packing is a packing which meets the access
times required by each of the logical memories. The
access time of a realized logical memory is a function
of the occupancy of the physical memory in which it
resides, and of the delay introduced by the organizer
multiplexer and control. If we denote the organizer

delay of logical memory LMi by ODi, then a packing
is legal if the following holds for all logical memories
LMi packed into physical memory PMj:

Lti � OCj � Ptj +ODi (1)

If a logical memory is partitioned into smaller pieces
in order to �t into a physical memory, then this ac-

cess time requirement is also placed on the individual
pieces.

The area of the organizer is the amount of logic used
in the FPGAs to implement the multiplexing hard-
ware and control. It depends on the number and size
of the multiplexers in the organizer, which in turn de-
pends on the occupancy of each physical memory, and
the width and depth of the logical memories.

With this notation, we can state a general version
of the Field-Recon�gurable Memory packing

problem:

Given: The sets L = fLM0; . . . ; LMn�1g and P =
fPM0; . . . ; PMm�1g and associated width, depth
and access time parameters.

Find: A legal packing of L into P , which minimizes
the area of the organizer.

2.1 Practical Issues and Assumptions

To both create a practical organizer and to simplify
the description in this paper, we make the following
assumptions about the logical and physical memories:

1. Homogenous Physical Memories

In the above de�nition each physical memory is
allowed to be di�erent. For simplicity we will as-
sume all physical memories are identical. The
notation for the width, depth and access time of
all physical memories thus simpli�es to Pw, Pd
and Pt.

2. Prevention of Word Sharing

Word sharing occurs when two or more logical
memories share the same word in a physical mem-
ory. We will not allow this because it would cause
a memory write to become signi�cantly slower
and more complex | since part of a word has to
be preserved, each write must be preceded by a
read to record the un-altered portion of the phys-
ical memory's word. Note that this assumption
implies that more of the physical memory will be
wasted.

3. Depth Restricted to be a Power of Two

If the depth of each logical memory is anything
other than a power of two, the addressing cir-
cuitry connecting the logical address to the phys-
ical memory address bus will require physical
adders to create the correct o�sets into the phys-
ical memory space. Since adders are expensive in
space and time, we restrict all logical memory's
depths to a power of two.

Addr_LMn - 1

Addr_LM0

Data_LM n-1

Data_LM 0

Addr Data

Addr_ctr Data_ctr
WE

Control Module

PM

Memory Organizer

Data ModuleAddress Module

Figure 2: Block diagram of the Memory Organizer.

If we restrict the o�set to be a power of two value,
we can replace the adders by simply including ex-
tra bits (i.e. logical ones or zeros) in the logical
memories' address bus. Note that this assump-
tion has the potential to waste part of the physi-
cal memory.

4. Logical Memory Partition Limit

When a logical memory is larger than a physical
memory, it is necessary to partition the logical
memory into smaller pieces. For simplicity, we
will partition logical memory LMi only if:

(Lwi > Pw) or (Ldi > Pd) (2)

From this point on we will assume that all logical
memories have been partitioned in this way, and
we will refer to the pieces simply as logical mem-
ories. Note that the CAD tool that generates the
organizer does in fact generate the control and
multiplexing to handle the larger memories.

3 Organizer Architecture

In this section, we describe the general structure
of the organizer and derive models for the area and
delay of the organizer hardware as a function of the
occupancy of the physical memories and the width and
depth of the logical memories. These models are used
in the packing algorithm described in Section 4.

In the following discussion we describe area and de-
lay models for an organizer for a single physical mem-
ory and some number of logical memories.

As illustrated in Figure 2, the organizer is divided
into three modules: The Address module, which orga-
nizes the address busses, the Data module, which or-
ganizes the data busses and the Control module, which
generates the timing and multiplexer control signals.

Some aspects of the model are independent
of the FPGAs and memories in the actual
Field-Programmable System. These technology-

independent aspects will be described �rst. After de-
scribing the speci�c FPS that we have built, we will
use it to give a technology-speci�c delay model.

3.1 Technology-Independent Area Model

Address Module

When more than one logical memory is mapped into
a single physical memory, the logical memories' ad-
dress buses are multiplexed to form a single physical
memory address. The address module organizes these
busses so that the access to the logical memories are
mapped to non-overlapping portions of the physical
memory.

The area required for the multiplexer depends on
the occupancy of the physical memory and the width
of the maximum o�set of the logical memories' ad-
dress buses. If we denote by Loi the o�set of the ith

LM mapped into the PM, the area of the address mul-
tiplexer for physical memory PMj is given by:

AAddr = [1 + log
2
(max(Lo0; . . . ; LoOCj�1))] �MX(OCj)

(3)

Here the function MX(x) returns the number of
logic blocks in the FPGAs needed to implement a one
bit x to one multiplexer. The function depends on the
type of FPGA being used.

Equation 3 illustrates that di�erent packings will
result in a di�erent sized organizer: If there are wide
address buses and narrow address buses in the set of
logical memories, it is better to pack the wide ad-
dresses together and the thin addresses together be-
cause the address module area is determined by the
maximum width bus in the physical memory.

Data Module

The data bus multiplexing is more complex than the
address bus. For write accesses, the logical memories'
data buses are multiplexed and passed through a tri-
state driver into the physical memory's data bus. For
read accesses, it is necessary to capture each logical
memory's read data in a separate register.

Each bit in the data bus of all logical memories is
multiplexed independently. For example, consider the
following three logical memories: one 1k�3, one 1k�6
and one 1k � 8. In order to multiplex the data buses,
we need a 3 to 1 multiplexer for data bits 0, 1 and 2

of all the logical memories and a 2 to 1 multiplexer
for data bits 3, 4 and 5 of the 1k � 6 and 1k � 8
logical memories. Data bits 6 and 7 of the 1k � 8
logical memory are connected directly to the physical
memory.

To calculate the area of the data multiplexer in the
data module, we �rst sort the width of the logical
memories and re-named them so that Lw0 � Lw1 �

. . . � Lwn�1. To minimize the area, we �rst multi-
plex the �rst Lw0 data bits of all the logical memo-
ries. Then we multiplex the Lw1 � Lw0 data bits of
LM1; . . . ; LMn�1 and so on. The area of the organizer
depends on the occupancy of the physical memory and
the width of the logical memories. This is given by:

AD Mux =

OCj�1X
k=1

(Lwk �Lwk�1) �MX(OCj � k+ 1) (4)

The technology-dependent function MX is equiva-
lent to the one used in equation 3. Equation 4 also
illustrates that di�erent packings will result in a dif-
ferent sized organizer: If the logical memories con-
sists of both wide and narrow data busses, it is more
area-e�cient to pack narrow busses with wide busses,
because most of the wide bus part will not require
multiplexing. On the other hand, if the wide busses
are packed together, then all bits will have to be mul-
tiplexed.

The area of the data registers in the data module
only depends on the width of the logical memories.
Hence, it is independent of the packing. This area is
given by:

AD Reg =

OCj�1X
k=0

RG(Lwk) (5)

Here RG(x) is a technology-dependent function
that returns the number of FPGA logic blocks needed
to implement a register of x bits.

Control Module

The Control module consists of a �nite state machine
and decoders that generate the timing, clocking and
multiplexer control signals.

Although we will not describe the speci�cs of the
control circuit, we include an expression for the area
of the controller for completeness:

ACtr = CT (OCj) + 2 � RG(log
2
OCj) +DC(OCj) (6)

Here CT (x) is a function that returns the number
of logic blocks needed to implement a 0 to x�1 counter
and DC(x) is a function that returns the number of

logic blocks needed to implement a log
2
x to x de-

coder. All of these functions return larger numbers as
the occupancy of the physical memory increases and
therefore depends on the packing.

3.2 Technology-Dependent Delay Model

In this section we describe the Transmogri�er-1

Field-Programmable System built at the University
of Toronto [5, 6], and use it to create a technology
speci�c delay model. The TM-1 consists of four Xil-
inx 4010 FPGAs [7], two Aptix Field-Programmable
Interconnect Components (FPICs) [8] and four Mo-
torola's MC62110 32k � 9 synchronous SRAM chips.
Figure 3 gives a block diagram of the TM-1. Two
40-pin connectors, carrying 72 bi-directional signals,
are connected to a SUN SPARCstation through an
additional Xilinx 4010 programmed to act as a com-
munication controller.

FPGA

XC4010

FPGA

XC4010

FPIC

FPGA

XC4010

FPGA

XC4010

FPIC

Mem.

32k x 9 SRAM

Mem.

32k x 9 SRAM

Mem.

32k x 9 SRAM

Mem.

32k x 9 SRAM

40-Pin Connector

40-Pin Connector

TM-1 Board

Figure 3: Block Diagram of the Transmogri�er-1.

Finding an exact delay model for the Organizer is
di�cult because the circuits implemented in most FP-
GAs have delays that are hard to predict. We now
present a worst-case delay model for our implementa-
tion in the TM-1.

The control module uses two states for every physi-
cal memory access and so the best possible access time
for LMi packed in PMj is:

Lti = 2 � (OCj � Pt+ODi) (7)

For the TM-1 FPS, the access time of the physical
memories, Pt, is equal to 20ns. The delay due to
the programmable interconnect component incurs an
additional 15ns. Thus, the physical memory access
time is 35ns.

The Organizer Delay for LMi, ODi, is a function of
the packing. It depends on the number of logic blocks

y

xLM0

LM1

LM2

PM0 PM1 PM2 PM3

PM0 PM0PM3 PM3 PM3 PM3PM0 PM0

PM3 PM3PM0 PM0

z

LM0 mapped into PM2

LM0 mapped into PM3

Figure 4: Decision Tree of Packing Solutions.

in the critical path and the routing needed to con-
nect this blocks. For simplicity, we assume that the
routing delay is constant and that all the logical mem-
ories mapped into one physical memory have the same
delay. We assume that the critical path includes the
counter in the local control module, the multiplexer in
the address module and the output bu�er.

If we assume 8ns delay per Xilinx XC4000 fam-
ily logic block, (i.e. the 6ns nominal delay plus 2ns
for routing), then the counter and multiplexer have
a worst-case delay of 8ns each for x = 2; 3; 4 and of
16ns for x = 5; 6; 7; 8. The output bu�er's delay is
approximately equal to 10ns.

With the above data and Equations (7), the �nal
delay model is given by,

Lti =

�
138 �OCj ; if OCj = 2; 3; 4

170 �OCj ; if OCj = 5; 6; 7; 8
(8)

This model assumes that the entire Organizer is
placed in a single FPGA, and not split across multi-
ple FPGAs. This is a reasonable assumption, as the
organizer is small.

4 Memory Packing Algorithm

In this section we present an algorithm which solves
the constrained problem de�ned in Section 2. The
memory mapping problem can be solved using a
Branch and Bound algorithm [9]. Figure 4 illustrates
the branch and bound decision tree that represents all
the possible solutions to the memory mapping prob-
lem. The nodes represent the logical memories. The
edges represent the physical memories into which the
logical memories are packed. For example, the deci-
sion tree in Figure 4 has two nodes, x and y, joined
by edge z. The partial solution represented by node y
means that LM0 was mapped into PM0.

The decision tree is traversed depth-�rst from the
root. Pruning occurs in the followingmanner: assume

that node x is the current node and has child node y
connected by edge z. The tree is pruned at node y if
LMx cannot be mapped into PMz, which occurs when
any one of the following is not true:

1. LMx physically �ts in the size remaining in PMz.

2. After placing LMx into PMz, the required access
time of LMx (Ltx) is achieved.

3. By placing LMx into PMz, the LMs already
placed into PMz also meet their required access
times.

If the bottom of the tree is reached then a legal packing
is found. The algorithm continues to traverse the tree
to �nd the solution with the minimal area as determine
by the area model described in Section 3.

The tree is also pruned using a bounding function
on the area of the partial solutions: this lower bound
is calculated as the area needed to implement an Or-
ganizer for all the logical memories already mapped
in the sub-tree above the current node. If there are n
logical memories and m physical memories, the worst-
case complexity of the algorithm is mn. However, in
most of the cases, a large portion of the tree is pruned
and only a small fraction of the tree is visited

5 Results

The above algorithm has been implemented in a
CAD tool called MemPacker. It is currently tar-
geted towards the TM-1 FPS described in Section 3.2.
The inputs to MemPacker are the logical memory pa-
rameters (width, depth and access time) and the out-
put is the FPGA design of the organizer. MemPacker
produces a Xilinx 4000 series netlist format (XNF) �le
that can be directly synthesized by the native Xilinx
tools to produce a programming bit stream. We note
that this tool saves the designer a signi�cant amount
of time by automatically generating the memory mul-
tiplexing logic and control. Manual generation of such
circuits may take many hours.

Architecture Exploration

MemPacker can be used to explore the architectural
space of a design from the perspective of the memory
access times. It is often true that memory access times
are the limiting factor in the overall speed of an ap-
plication [2]. MemPacker can be used to determine
the minimum access time for a set of logical memories

implemented on a set of physical memories by iterat-
ing the algorithm with successively smaller required
access times. The iteration prior to the one in which
the algorithm fails to �nd a legal packing gives the
minimum access time for all of the memories. The
algorithm will also determine the smallest sized orga-
nizer that will achieve maximum performance.

Table 1 gives a set of example applications for which
the maximum operating frequency of the memories
has been determined. In this example, we assume
that all of the memories will have the same access
time. MemPacker is iteratively invoked to determine
the smallest possible access time. The �rst column of
Table 1 gives the source and/or name of the circuit
from which the set of logical memories was derived.
The second column describes the set of logical mem-
ories. These are packed into the TM-1, which con-
sists of four 32k� 8 physical memories. Column three
indicates the number of pieces the logical memories
are partitioned into, as described in Section 2.1. Col-
umn four gives the minimum area that the organizer
achieved, in terms of the number of Xilinx 4000-series
logic blocks. Column �ve gives the maximum operat-
ing frequency achievable if the memory access time is
the limiting factor in the system performance. This
illustrates how MemPacker can be used to explore the
performance and area costs of di�erent memory archi-
tectures.

Area Dependency on the Packing

In Section 3 we discussed the e�ect of the packing
on both the address and data module area. Here we
illustrate these e�ects by an example. Consider the
following set of logical memories: four 4k � 8, two
32 � 3, two 64 � 2 and two 8k � 2. These will be
packed into the same physical memories as above.

Using a naive bin-packing algorithm such as Best-
Fit Decreasing [10], these memories would be packed
as illustrated in Figure 5a. The area cost of this pack-
ing is 84 Xilinx 4000-series logic blocks. Using the
algorithm described in Section 4, the packing illus-
trated in Figure 5b results. The area cost of the latter
packing is only 78 logic blocks. The reason for the
major di�erence is a better matching of address and
data busses within each physical memory to minimize
the amount of multiplexing. Note that both packings
achieve the same minimum access time over all the
memories. If this constraint is relaxed and the min-
imum area solution is generated, the packing of Fig-
ure 5c results, which has an area cost of only 66 logic
blocks. This solution is 21% smaller than the naive
bin-packing solution.

System Logical Memories Number of Area Max
subdivided LMs (XC4000 CLBs) Op. Freq

Viterbi decoder three 28x16, one 28x3 7 53 3:6MHz

Neural Network Chip 16x80, 160x8, 16x16, 32x8 14 121 1:8MHz

Fast Divider 2048x56, 4096x12 9 96 2:4MHz

DMA Chip for LAN 15x24, 16x4, 256x32 8 67 3:6MHz

Industrial Example 1 six 88x8, one 64x24 9 87 2:4MHz

Industrial Example 2 three 736x16 6 52 3:6MHz

Table 1: Maximum Operating Frequency and Area for Example Circuits.

PM0

32 x 3

8k x 2

4k x 8

PM1

32 x 3

4k x 8

8k x 2

PM2

4k x 8

64 x 2

PM3

4k x 8

64 x 2

PM0

64 x 2

64 x 2

32 x 3

32 x 3

PM1

4k x 8

4k x 8

8k x 2

8k x 2

PM2

4k x 8

PM3

4k x 8

Max. OP. Freq. = 2MHz

Area = 66 CLBs

(c) Branch & Bound Solution. Minimizing Area

PM0

4k x 8

64 x 2

8k x 2

PM1

32 x 3

32 x 3

64 x 2

PM2

4k x 8

8k x 2

PM3

4k x 8

4k x 8

Max. OP. Freq. = 2.7MHz
Area = 78 CLBs

(b) Branch & Bound Solution. Minimizing Delay

Max. OP. Freq. = 2.7MHz
Area = 84 CLBs

(a) Bin-Packing Solution.

Figure 5: Area and Delay for di�erent packings.

6 Conclusions

This paper motivates and de�nes the memory pack-
ing problem for Field-Programmable Systems. Mem-
ory packing is necessary when the number of applica-
tion logical memories exceeds the number of physical
memories. Because di�erent packings result in both
di�erent access times and area requirements, it is an
optimization problem to select the fastest and most
area-e�cient packing. This paper has presented a pre-
cise de�nition of this problem and an algorithm for its
solution. The resulting CAD tool, MemPacker was
used to synthesize area-e�cient and delay-minimal
packings for a set of application circuit examples.

References

[1] J. Arnold, D. Buell, and E. Davis, \Splash 2," in
4th. Annual ACM Symposium on Parallel Algo-

rithms and Architectures, pp. 316{322, 1992.

[2] P. Bertin, D. Roncin, and J. Vuillemin, \Pro-
grammable Active Memories: A Performance As-
sessment," in Research on Integrated Systems:

Proceedings of the 1993 Symposium, MIT Press,
1993.

[3] S. Walters, \Computer-aided prototyping for
ASIC-Based systems," IEEE Design and Test of

Computers, pp. 4{10, June 1991.

[4] R. Tessier, J. Babb, M. Dahl, S. Hanono, and
A. Agarwal, \The virtual wires emulation system:
A gate-e�cient asic prototyping environment," in
FPGA 94, February 1994.

[5] D. Galloway, D. Karchmer, P. Chow, D. Lewis,
and J. Rose, \The Transmogri�er: The Uni-
versity of Toronto Field-Programmable System,"
Tech. Rep. 306, CSRI, University of Toronto,
1994.

[6] D. Karchmer, \A Field-Programmable System
with Recon�gurable Memory," Master's thesis,
University of Toronto, June 1994.

[7] Xilinx Inc., San Jose, CA, XACT Development

System, October 1992.

[8] Aptix Corporation, San Jose, CA, Aptix System

Data Book, November 1993.

[9] T. Lengauer, Combinatorial Algorithms for Inte-

grated Circuit Layout. John Wiley & Sons, 1990.

[10] M. Garey and R. Graham, \Worst-case analysis
of memory allocation algorithms," in 4th. Annual

ACM Symposium on Theory of Computing, 1972.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

