
E�cient Linear Circuit Analysis

by Pad�e Approximation via the Lanczos Process

P. Feldmann R. W. Freund

AT&T Bell Laboratories AT&T Bell Laboratories

Murray Hill, NJ 07974{0636 Murray Hill, NJ 07974{0636

Abstract

This paper describes a highly e�cient algorithm for

the iterative computation of dominant poles and zeros

of large linear networks. The algorithm is based on

a new implementation of the Pad�e approximation via

the Lanczos process. This implementation has supe-

rior numerical properties, maintains the same compu-

tational e�ciency as its predecessors, and provides a

bound on the approximation error.

1 Introduction

Circuit simulation tasks, such as the accurate pre-

diction of interconnect e�ects at the board and chip

level, or analog circuit analysis with full accounting of

parasitic elements, require the solution of very large

linear networks. The use of SPICE-like simulators,

would be ine�cient or even prohibitive for such large

problems.

In the last few years, the Asymptotic Waveform

Evaluation algorithm (AWE) [1, 2] based on Pad�e

approximation [3] has emerged as the method of

choice for the e�cient analysis of large linear circuits.

AWE is based on approximating the Laplace-do-

main transfer function of a linear network by a

reduced-order model, containing only a relatively

small number of dominant poles and zeros. Such

reduced-order models can be used to predict the time-

domain or frequency-domain response of the linear

network over a predetermined range of excitation fre-

quencies.

AWE, however, su�ers from a number of fundamen-

tal numerical limitations. In particular, each run of

AWE produces only a fairly small number of accurate

poles. The proposed remedial techniques are some-

times heuristic, hard to apply automatically, and may

be computationally expensive. Another shortcoming

of AWE is its inability to estimate the accuracy of the

approximating reduced-order model [2, 4].

In this paper, we introduce a new, numerically sta-

ble algorithm that computes the Pad�e approximation

of a linear circuit via the Lanczos process [5]. This

algorithm, called PVL (Pad�e Via Lanczos), can be

used to generate an arbitrary number of poles and ze-

ros with little numerical degradation. Moreover, PVL

computes a quality measure for the poles and zeros

it produces. The computational cost per order of ap-

proximation is practically the same as for AWE.

The paper is organized as follows. In Section 2,

we review system-order reduction by Pad�e approxi-

mation. In Section 3, we demonstrate the numerical

limitations of existing algorithms. In Section 4, we

derive the new PVL algorithm and discuss some of its

properties. In Section 5, we present results of numer-

ical experiments with PVL for a variety of examples.

2 System Reduction by Pad�e Approx.

Using any standard circuit-equation formulation

method such as modi�ed nodal analysis, sparse tab-

leau, etc. [6], a lumped, linear, time-invariant circuit

can be described by the following system of �rst-order

di�erential equations:

C _x = �Gx+ bu;

y = lTx:
(1)

Here, the vector x represents the circuit variables, the

matrixG represents memoryless elements, such as re-

sistors, C represents memory elements, such as capac-

itors and inductors, y is the output of interest, and bu

represents excitations from independent sources.

We are interested in determining the impulse-re-

sponse of the linear circuit with zero initial-conditions,

which, in turn, can be used to determine the response

to any excitation. We apply the Laplace transform to

the system (1) and obtain

sCX = �GX+ bU;

Y = lTX;
(2)

where X, U , and Y denote the Laplace transform of

x, u, and y, respectively. It follows from (2) that the
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Laplace-domain impulse response, or transfer func-

tion, de�ned as H(s) = Y (s)=U (s), is given by

H(s) = lT (G+ sC)
�1
b: (3)

Let s0 2 C be an arbitrary, but �xed expansion point

such that the matrix G + s0C is nonsingular. Using

the change of variables s = s0 + � and setting

A = � (G+ s0C)
�1
C; r = (G+ s0C)

�1
b; (4)

we can rewrite (3) as follows:

H(s0 + �) = lT (I� �A)
�1
r: (5)

When matrix A is diagonalizable, we obtain

H(s0 + �) = lTS|{z}
= fT

(I� ��)
�1
S�1r| {z }
= g

; (6)

where A = S�S�1, � = diag(�1; �2; : : : ; �N ) is a di-

agonal matrix whose diagonals elements are the eigen-

values ofA, and the matrixS contains the correspond-

ing eigenvectors as columns. From (6), we get

H(s0 + �) =

NX
j=1

fjgj

1� ��j
; (7)

where fj and gj are components of f and g.

The numerical computation of all eigenvectors and

eigenvalues of the matrix A becomes prohibitive as

soon as its size reaches a few hundreds, and therefore,

the only practical way to obtain an expression for the

impulse response is through an approximation.

For each pair of integers p; q � 0, the Pad�e ap-

proximation (of type (p=q)) to the network impulse

response H(s0 + �) is de�ned as the rational function

Hp;q(s0 + �) =
bp�

p
+ � � �+ b1� + b0

aq�q + � � �+ a1� + 1

(8)

whose Taylor series about � = 0 agrees with the Taylor

series of H(s0 + �) in the �rst p+ q + 1 terms, i.e.,

Hp;q(s0 + �) = H(s0 + �) +O(sp+q+1):

The coe�cients a1; : : : ; aq; b0; b1; : : : ; bp of the Pad�e

approximation (8) are uniquely determined by the �rst

p + q + 1 Taylor coe�cients of the impulse response.

The roots of the denominator and numerator polyno-

mials in (8) represent the dominant poles and zeros of

the system, respectively.

In the context of impulse-response approximations,

it is very natural to choose p = q � 1 in (8), so that

the Pad�e approximation is of the same form as the

original impulse response. In the following, we refer

to Hq := Hq�1;q as the qth Pad�e approximant to

the impulse response H. By using a partial-fraction

decomposition, we can write Hq in the form

Hq(s0 + �) =

qX
j=1

kj

� � pj
: (9)

The Taylor coe�cients necessary for the Pad�e ap-

proximant Hq result from the following expansion

of H(s) about s0:

H(s0 + �) = lT
�
I+ �A+ �2A2

+ � � �
�
r =

1X
k=0

mk�
k;

where

mk = lTAkr; k = 0; 1 : : : : (10)

Note that in the case when the expansion point is cho-

sen as the origin, i.e., s0 = 0, the coe�cients mk, are,

up to a constant factor, the time-domain moments of

the circuit response. Because of this analogy, we will

always refer to the Taylor coe�cients (10) as the mo-

ments of the impulse-response function H(s0 + �).

3 Limitations of Current Algorithms

In AWE, the Pad�e approximant Hq is obtained via

explicit computation of the leading 2q moments, mk,

of H. To this end, one �rst generates the vectors

u0 = r;u1 = Ar;u2 = A2r; : : : ;u2q�1 = A2q�1r by

recursive solution of the linear systems

(G+ s0C)uk = Cuk�1; k = 1; 2; : : :; 2q � 1; (11)

with the initial vector u0 = (G+ s0C)
�1
b. Observe

that the recursive computation of the vectors uk can

be performed very e�ciently because the matrixG+

s0C is LU -factored exactly once. The moments are

then computed as mk = lTuk, k = 0; 1; 2; : : : ; 2q� 1.

As the next step, AWE computes the coe�cients of

the denominator polynomial of the representation (8)

of Hq via solution of the linear system

Mq

2
664

aq
aq�1
.
.
.

a1

3
775 = �

2
664

mq

mq+1

.

.

.

m2q�1

3
775 ; (12)

where Mq = [mj+k�2 ]j;k=1;2;:::;q is the so-called mo-

ment matrix . The poles pj of Hq in (9) are then ob-

tained as the roots of the denominator polynomial.

Finally, the residues kj in (9) are computed by solv-

ing another linear system of order q, see, e.g., [4].
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Figure 1: Results for simulation of voltage gain with

AWE

As q is increased, one would expect more and more

accurate approximations Hq of the exact impulse re-

sponse H. Unfortunately, this is not the case when

the Pad�e approximantHq is generated with AWE. In-

deed, typically Hq improves only for values of q up to

about 10, and after that the process stagnates. Fig-

ure 1 illustrates this behavior. Here, we tried to simu-

late the voltage gain of a �lter with our own implemen-

tation of AWE written in MATLABTM [7]. We show

the exact voltage gain and the approximations gener-

ated by AWE for q = 2; 5; 8. The results for q > 8

showed no further improvement.

The severe numerical problems with the AWE ap-

proach of obtaining Pad�e approximants via direct

computation of the moments can be explained as fol-

lows. The generation of the vectors uk = Akr in (11)

corresponds to vector iteration with the matrixA, and

this process converges rapidly to an eigenvector corre-

sponding to an eigenvalue of A with largest absolute

value. As a result, the moments mk = lTuk contain

only information corresponding to one eigenvalue of

A, even for fairly small values of k. As a result, the

moment matrix Mq becomes rapidly ill-conditioned.

The condition number, �(Mq), of the matrixMq is a

measure for how round-o� error a�ects the accuracy

of the numerically computed solution of (12). Each in-

crease of �(Mq) by a factor of 10 signals the loss of one

decimal digit of accuracy in the computed solution.

In the �rst column of Table 1, we list �(Mq) for the

moment matrices corresponding to the simulation of

the voltage gain of a �lter. Clearly, the momentmatri-

ces are extremely ill-conditioned. Scaling of moments,

proposed as remedy to this problem, in [2] and [4],

q �(Mq) �(M
(1)
q ) �(M

(2)
q ) �(M

(3)
q )

2 9.59e+05 2.62e+00 2.62e+00 1.07e+00

3 2.91e+15 5.14e+03 5.12e+03 2.71e+01

4 3.18e+26 1.13e+09 1.13e+09 1.30e+07

5 2.16e+35 2.34e+12 2.33e+12 3.01e+10

6 3.68e+46 2.72e+17 2.38e+17 5.99e+15

8 3.34e+58 1.25e+18 1.78e+18 2.67e+16

10 1.30e+72 1.57e+18 7.50e+17 5.38e+16

Table 1: Condition numbers of moment matrices for

simulation of voltage gain with AWE

provides only a modest improvement in the matrix

condition number. In Table 1, we also list the con-

dition numbers of the scaled moment matrices using

three proposed scaling strategies.

4 The PVL Algorithm

We now describe the PVL algorithm that exploits

the intimate connection [8] between Pad�e approxima-

tion and the Lanczos process to elude the direct com-

putation of the moments. First, we recall the classical

Lanczos process [5] and some of its key properties.

Algorithm 1 (Lanczos algorithm [5])

0) Set v = r, w = l, v0 = w0 = 0, and �0 = 1.

For n = 0; 1; : : :; q do :

1) Compute �n+1 = kvk2 and �n+1 = kwk2.

If �n+1 = 0 or �n+1 = 0, then stop.

2) Set

vn+1 =
v

�n+1
; wn+1 =

w

�n+1
; (13)

�n = wT
nvn; �n =

wT
nAvn

�n
; (14)

�n = �n
�n

�n�1
; 
n = �n

�n

�n�1
; (15)

v = Avn � vn�n � vn�1�n; (16)

w = ATwn �wn�n �wn�1
n: (17)

We remark that in Algorithm 1 a breakdown will oc-

cur if one encounters �n = 0 or even �n � 0 in (14).

Therefore, our implementation of the PVL algorithm

employs the look-ahead Lanczos algorithm described

in [9] that remedies the breakdown problem.

The quantities generated by Algorithm 1 have the

following properties:



1. The vectors fvng
q+1
n=1 and fwng

q+1
n=1 are biorthogo-

nal:

wT
j vk =

�
�j ; if j = k,

0; if j 6= k,
(18)

for all j; k = 1; 2; : : : ; q + 1. Thus, setting

Vq = [v1 v2 � � � vq ] ; Wq = [w1 w2 � � � wq ] ;

we have Dq =WT
q Vq = diag(�1; �2; : : : ; �q).

2. The tridiagonal matrices ~Tq and Tq de�ned by

Tq =

2
664
�1 �2 � � � 0

�2 �2

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. �q

0 � � � �q �q

3
775 ; ~Tq =

2
664
�1 
2 � � � 0

�2 �2

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. 
q

0 � � � �q �q

3
775

satisfy ~TT
q = DqTqD

�1
q .

3. The matrices ~Tq and Tq have the following relation

to the matrix A:

AVq = VqTq + [ 0 � � � 0 vq+1 ] �q+1;

ATWq =Wq
~Tq + [ 0 � � � 0 wq+1 ]�q+1:

(19)

Next, we demonstrate the connection of the Lanc-

zos process to Pad�e approximation. Using the rela-

tions in (19) and the fact that Tq is tridiagonal, one

can show that, for all j = 0; 1; : : : ; q � 1,

Ajr = �1A
jv1 = �1A

jVqe1 = �1VqT
j
q e1;

lTAj
= �1�1e

T
1T

j
qD

�1
q WT

q ;
(20)

where e1 = [1 0 � � � 0 ]
T
is the �rst unit vector.

On the other hand, by (10), each moment mk can

be written as follows:

mk = lTAkr =
�
lTAk0

��
Ak00

r
�
; (21)

where k = k0 + k00. If k � 2q � 2, we can �nd 0 �
k0; k00 � q � 1, and from (20){(21) it follows that

mk = �1�1�1e
T
1T

k0

q D
�1
q WT

q Vq| {z }
=Dq

Tk00

q e1:
(22)

Note that �1�1�1 = lTr, and thus, from (22), we get

mk = (lTr) �
�
eT1T

k
qe1

�
; k = 0; 1; : : :; 2q � 2: (23)

Furthermore, it can be shown that the relation (23)

also holds for k = 2q � 1. Thus, by (23), we have

lTr

1X
k=0

eT1T
k
qe1 �

k
=

2q�1X
k=0

mk �
k
+O(�2q); (24)

and consequently,

Hq(s0 + �) = lTr � eT1 (I � �Tq)
�1
e1 (25)

is just the qth Pad�e approximant of H.

In analogy to the representation (7) of the ex-

act impulse response H, we can rewrite the expres-

sion (25) of Hq in terms of the eigendecomposition

Tq = Sq�qS
�1
q of the Lanczos matrix Tq:

Hq(s0 + �) = lTr � eT1 Sq| {z }
= �T

(I� ��q)
�1
S�1q e1| {z }
= �

=

qX
j=1

lTr � �j�j

1� ��j
:

(26)

Here, �q = diag(�1; �1; : : : ; �q) contains the eigenval-

ues of Tq , and �j and �j are the components of the

vectors � and �. Finally, from (26), we obtain the

pole/residue representation of the Pad�e approximant:

Hq(s0 + �) =

qX
j=1

�j 6=0

�lTr � �j�j=�j

� � 1=�j
: (27)

The previous derivation shows that the Pad�e ap-

proximantHq can be obtained by running the Lanczos

algorithm and by computing an eigendecomposition of

the Lanczos matrix Tq. The resulting computational

procedure is the PVL algorithm.

Algorithm 2 (Sketch of the PVL algorithm)

1) Run q steps of the Lanczos process (Algorithm 1)

to obtain the tridiagonal matrix Tq .

2) Compute an eigendecomposition

Tq = Sq diag(�1; �1; : : : ; �q)S
�1
q (28)

of Tq , and set � = STq e1 and � = S�1q e1.

3) Compute the poles and residues of Hq by setting

pj = 1=�j and kj =
lTr � �j�j

�j
for all

j = 1; 2; : : : :q

(29)

We remark that the PVL algorithm and AWE require

roughly the same amount of computational work.

Similar to AWE, the dominating cost is the compu-

tation of the LU factorization of the matrix G+ s0C

which needs to be computed only once. The vectors

Avn and ATwn required in step 2) of Algorithm 1
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Figure 2: Results for simulation of voltage gain with

PVL

are then obtained using forward-backward substitu-

tions. PVL requires 2q substitutions to generate the

qth Pad�e approximant, exactly as AWE.

As a �rst example, we reran the simulation of the

voltage gain of the �lter, now with the PVL algo-

rithm instead of AWE. The results of three runs with

q = 2; 8; 28 are shown in Figure 2. In contrast to

the simulation with AWE (cf. Figure 1), the PVL-

generated Pad�e approximant for q = 28 gives a perfect

match of the exact voltage gain.

The zeros of the reduced-order model Hq can also

be computed easily from the Lanczos matrix Tq. In

fact, it can be shown that zeros of Hq are just the

inverses of the eigenvalues of T0q, the matrix obtained

from Tq by deleting the �rst row and column.

Finally, we brie
y sketch how the PVL algorithm

can be used to obtain bounds for the pole approxi-

mation error. Recall that, by (29), the poles of the

qth Pad�e approximant Hq are just the inverses of the

eigenvalues of the Lanczos matrix Tq , On the other

hand, in view of (7), the poles of the exact impulse

response H are the inverses of the eigenvalues of A.

Therefore, a quality measure for the poles of Hq can

be obtained by checking how well the eigenvalues of

Tq approximate the eigenvalues of A.

It can be shown that Azj � �jzj = vq+1�q+1sqj ,

where sqj is the last component of the vector sj. By

taking norms, and since kvq+1k2 = 1, it follows that

kAzj � �jzjk2
kAk2 � ksjk2

�
�q+1jsqj j

n(A) � ksjk2
= Qj : (30)

where n(A) is an estimate of kAk2, easily obtained

from the algorithm. Thus the number Qj represents a

measure of how well the pair (�j ; zj) approximates an

eigenpair of the matrixA, and consequently a quality

measure of the approximate pole 1=�j produced by the

PVL algorithm. Note that Qj can easily be computed

from the quantities generated by PVL.

5 Discussion and Examples

The Pad�e approximation generates poles that cor-

respond to the dominant poles of the original system

and a few poles that do not correspond to poles in

the original system, but account for the e�ects of the

remaining original poles. The true poles can be iden-

ti�ed using the bound presented in Section 4 and by

comparing the poles obtained at consecutive iterations

of the algorithm. The true poles that have converged

should not change signi�cantly between iterations.

The �rst example is a lumped-element equivalent

circuit for three-dimensional electromagnetic problem

modeled via PEEC [10] (partial element equivalent cir-

cuit). The circuit consists of 2100 capacitors, 172 in-

ductors, and 6990 inductive couplings, resulting in a

306�306 fairly dense MNA matrix. The Pad�e approx-

imation generated by AWE, reproduces the transfer-

function of the equivalent circuit accurately up to

1GHz [11]. In [12], Chiprout et al., through the use

of multi-point moment matching, obtain a su�cient

number of accurate poles and zeros to extend the va-

lidity of the approximation up to 5GHz. However,

their method involves several complex circuit matrix

factorizations and, therefore, is signi�cantly more ex-

pensive computationally.

We applied our PVL algorithm to the same circuit

and, after 60 iterations, obtained a reduced-order sys-

tem with a better match up to 5GHz than the one ob-

tained from multi-point moment matching (Figure 3).

Moreover, since PVL requires only one real circuit ma-

trix factorization, the cost of the computation is sim-

ilar to AWE.

The second example models a complete power grid

for a standard cell mixed signal ASIC, including

some of the substrate contacts and substrate cou-

pling/decoupling, as described in [13]. The model con-

tains 1074 power bus segments, 36 models for cells,

and a coarse, 10�10�1 substrate grid. The resulting

MNA matrix has a size of 1766� 1766. We are inter-

ested to determine the e�ects of the switching current

in cells on the VDD and GND rails. Figure 4 shows

the magnitude of the corresponding transfer function

produced by the PVL algorithm in 50 iterations com-

pared to the same transfer function produced by an

AC sweep. The agreement is perfect.



0 1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Frequency (GHz)

C
ur

re
nt

 (
A

m
ps

) 

 Exact

 PVL, 60 iter.

Figure 3: Results for the PEEC circuit, 60 PVL iter-

ations.

6 Conclusions

This paper introduces PVL, a novel algorithm for

linear circuit analysis based on the connection between

the Lanczos process and the Pad�e approximation. Its

superior numerical stability allows the computation of

more accurate and higher order Pad�e approximations

with no sacri�ce in e�ciency. As a consequence the

usefulness of Pad�e approximation based linear circuit

analysis techniques is considerably extended.
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