
Extended Timing Diagrams as a Speci�cation Language�

Stefan Lenk

Lehrstuhl Rechnerstrukturen

Universitaet Passau

D - 94030 Passau

Abstract

Hardware designs increasingly evolve to distributed
systems composed of multiple interacting components
working in parallel. Extended Timing Diagrams pre-
sented in this paper are an intelligible graphical speci�-
cation language especially suited for the description of
such communicating systems. The formal semantics
of extended timing diagrams is de�ned in terms of a
process calculus. This formalization permits applying
the language as an entrance to formal design systems.

1 Introduction

Hardware systems are more and more designed as

distributed systems with extensive interactions be-

tween the di�erent components. This communication

is mainly characterized by strict temporal constraints.

Speci�cations of those often asynchronous systems us-

ing formalisms like temporal logic or process calculi

cause problems in applications due to their high com-

plexity. Obvious approaches for a graphical speci�ca-

tion of interacting systems are described in [4, 14].

Timing diagrams perfectly meet the requirements

for a clear graphical speci�cation of the I/O-behaviour

of an interacting system. In [3] timing diagrams are

used as speci�cations for controller synthesis using

special event-graphs as a semantical basis. Also tar-

geting on automatic synthesis [6] uses timing diagrams

as illustrative background for signal-transition graph

speci�cations. With a similar graph semantics Khor-

doc et al. [5] de�ne hierarchical timing diagrams used

for the generation of simulation stimuli for modules

described in VHDL. However, the proposed graph-

based semantical models of timing diagrams are not

su�ciently abstract to support di�erent design styles.

Moreover, these approaches cannot handle data paths.

\Formalized timing diagrams" in [2] tackle this prob-

lem by integrating a hardware description language

�This work is supported by the European Community

ESPRIT-project No. 6128 FORMAT.

into timing diagrams.

In [11] abstract timing diagrams restricted to qual-

itative timing are used for the formal veri�cation of

hardware designs. The formal semantics of timing di-

agrams is given by a translation into temporal logic.

The speci�cation language \extended timing dia-

grams" presented in this paper combines the advan-

tages of a clear and comprehensible graphical repre-

sentation of temporal aspects with the algorithmical

description of data manipulations in terms of a hard-

ware description language. This duality considerably

increases the expressiveness and applicability of ex-

tended timing diagrams in contrast to conventional

timing diagrams.

2 Motivation

Asynchronous communication among interacting

systems is mainly characterized by causal temporal

relations, often tight absolute timing requirements on

events and to some extent by the exchanged data val-

ues. Timing diagrams excellently visualize this input-
output behaviour of concurrent communicating sys-

tems. They allow illustratively representing di�erent

temporal constraints and they naturally describe asyn-
chronity . Every timing diagram implicitly speci�es

possible parallelism to its highest degree. It always

represents the �nest possible granularity of parallelism

thus retaining most freedom for a variety of possible

subsequent implementations. The widespread use of

timing diagrams for the description of interface cir-

cuits gives evidence for their practical applicability.

Moreover, interacting systems commonly comprise, of-

ten minor, data paths executing certain data manipu-

lations such as the adaptation of data formats or the

recognition of data errors and so on. Conventional

timing diagrams do not adequately support a speci-

�cation of data paths. Commonly, if at all, they are

given as textual remarks. Extended timing diagrams

presented here permit extenting graphically speci�ed

events by data annotations. These annotations al-

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or speci�c permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

gorithmically describe data operations related to an

event. The language of extended timing diagrams is

based on a strict compositional approach. Every ex-

tended timing diagram can be arbitrarily composed

of a set of basic (graphical) primitives. However, ev-

idently a single extended timing diagram is not suf-

�cient for the speci�cation of a complex system be-

haviour. Therefore a structuring concept for speci�ca-
tions is provided. Again, this concept permits arbi-

trarily composing a speci�cation from single extended

timing diagrams. This compositional approach eases

a clear speci�cation process and eg. allows a stepwise

construction of a speci�cation by iteratively adding

new constraints.

The formalization of a speci�cation in terms of the

formal speci�cation language T{Lotos enables their

rigorous analysis. This can be the validation of spe-

ci�c system properties eg. by testing or simulation,

or the extensive veri�cation of a system in all details.

A formalization also facilitates the application of for-
mal synthesis methods which automatically or inter-

actively produce a guaranteed correct implementation

of a speci�cation.

Module database

Specification

Verification
Validation Specification

refine
Implementation

Implementation

Figure 1: Formal synthesis

In our project, synthesis is mainly organized as an

interactive bottom-up design process (�gure 1)[12, 13].

Hardware modules are iteratively selected by a de-

signer in order to re�ne (or \implement") a given

speci�cation. After every module selection the re�ned

speci�cation is analyzed whether it still \sati�es" the

original speci�cation. All formal methods used there

work on transitional systems , a semantical model of

the formal speci�cation language T{Lotos.

Chapter 3 de�nes the language primitives and

the structuring concept of extended timing diagrams.

Chapter 4 describes the formal semantics of a speci�-

cation. In chapter 5 an example speci�cation is pre-

sented and chapter 6 gives a conclusion.

3 Language De�nition

In the following the graphical appearance of the

di�erent extended timing diagram constituents will be

briey presented together with an additional informal

explanation of their semantics.

De�nition : Extended Timing Diagram

An extended timing diagram consists of

� a local design interface IFTD . It comprises

- the �nite set PTD of names of the observable ports
considered within the timing diagram.

- the direction modes of the ports within the timing

diagram (input/output port).

- the (data-)types of the values communicated on

each port

� a �nite waveform set ATD consisting of a single

waveform A
p
TD for every port p 2 PTD . Each wave-

form is constituted by

- an event sequence ESp for every port p 2 PTD

- data annotations related to the events in ESp
Every action in ATD therefore is related to a port

in PTD , i.e PORTTD : ATD ! PTD .

� a �nite set CTD of temporal constraints.

Four types of constraints are distinguished:

1. Weak constraint WCn : (An
TD �ATD); n > 0

For every WCn((a1; : : : ; an)� t); a1; : : : ; an; t 2 ATD:

- PORT (ai) 6= PORT (aj); i 6= j; i; j 2 1; : : : ; n

- 8 i : PORT (ai) 6= PORT (t); i 2 1; : : : ; n

2. Strong constraint SCn : (An
TD �ATD); n > 0

For every SCn((a1; : : : ; an)� t); a1; : : : ; an; t 2 ATD:

- 8 i : PORT (ai) 6= PORT (t); i 2 1; : : : ; n

3. Quantitative constraint QC : (ATD� ATD) or

(ATD� PTD) or (PTD� ATD)

4.Weak initial constraintWCIn : (Pn
TD�ATD); n > 0

For every WCIn((p1; : : : ; pn) � t); p1; : : : ; pn 2

PTD; t 2 ATD: 8 pi : PORT (t) 6= pi; i 2 1; : : : ; n �

� Local Design Interface A single extended timing

diagram speci�es some aspects of the behaviour of a

system by describing communication actions observ-

able on some of the system's ports. Properties of the

ports valid within this timing diagram, like their di-
rection modes and their datatypes are de�ned in the

local design interface.

� Waveforms Substantial graphical constituents of

timing diagrams are waveforms, i.e. sequences of com-
munication actions that are associated with each port.

With each communication action a particular date of

the declared datatype is either received or transmit-

ted. Every waveform consists of an event sequence,
graphically expressed by a sequence of edges and as-

sociated data annotations, given as a textual annota-
tion at every edge. Data annotations are expressions

in terms of an annotation language (an algorithmical

subset of the VHDL{syntax). Their semantics is de-

�ned in terms of an algebraic speci�cation language.

The edges constituting an input waveform may be an-

notated with variable declarations. A data value re-

ceived with such an action, is assigned to the anno-

tated variable. A variable declaration can be supple-

mented with a predicate. It prescribes that only data

communications satisfying this predicate shall be ad-

mitted. Thus a predicate restricts the data values that

can be received with a particular communication ac-

tion to a speci�c data value or a subset of the (ap-

propriate) data domain. The edges of an output port

may be annotated with value declarations. These are
computation rules for the data values the system has

to send with particular output actions. Value declara-

tions are structured expressions that may refer to vari-

ables declared at the edges of input waveforms within

the considered timing diagram.

const f 1(x1,x3) x2

x1 x2[x2=const1] x3[x3=c2]

O!:type

I? : type

1

2
edge

Figure 2: Graphical notation of a waveform

� Temporal Constraints Qualitative constraints
(WC,SC,WCI) allow expressing a temporal ordering

on communication actions from di�erent waveforms

of a timing diagram. Quantitative constraints (QC)

specify minimum and/or maximum times to pass be-

tween two actions from arbitrary waveforms of a tim-

ing diagram. Let now be ATD the waveform set of

a timing diagram and PTD the names of ports this

timing diagram covers.

- weak constraint WCn : (An
TD �ATD)

A WC = ((s1;: : : ; sn); t); s1;: : : ; sn; t 2 ATD is

graphically speci�ed by a weak constraint arc, relat-
ing a set of edges corresponding to s1; : : : ; sn; t in the

timing diagram. It speci�es that the action t may (ar-

bitrarily often) occur, if (1) presently all `conditional'

source actions (s1; : : : ; sn) occurred (2) these actions

are still `valid', i.e. neither of these actions were

n-1ss ss1 2 n t

superscribed by a

later action on the

same port.

Figure 3: Notation of WC: weak constraint arc

Note that the names s1; : : : ; sn; t in �gure 3 are

merely illustrative representatives for corresponding

edges of a waveform. Actually they are not part of a

weak constraint arc. The similar holds for the subse-

quent illustrations of primitives.

- weak initial constraint WCIn : (Pn
TD �ATD)

A WCIn = ((p1;: : :; pn); t); p1;: : :; pn 2 PTD,

t 2 ATD is graphically speci�ed by a weak initial con-
straint arc, relating a set of ports p1; : : : ; pn and an

edge corresponding to t. It speci�es that the action t
may (arbitrarily often) occur, if every port p1; : : : ; pn

is in its `initial state'. Intuitivelly this means that on

each of these ports previously a communication ac-

tion had to occur which led to this initial state. The

graphical notation resembles the notation for the weak

constraint shown before.

- Strong constraint SC : (An
TD �ATD)

A SC = ((s1; : : : ; sn); t); s1; : : : ; sn; t 2 ATD is

graphically speci�ed by n strong constraint arcs, each
uniquely relating one of the edges corresponding to the

source actions s1; : : : ; sn and the edge corresponding

to the target action t. It speci�es that (1) each of

the `trigger' source actions si has to occur once (in

arbitrary order) before the triggered target action t

can occur once and (2) a repeated occurrence of one

of the `trigger' source actions si is only possible after

s t

the occurrence of the previous

triggered target action t.

Figure 4: Notation of SC: strong constraint arc

- quantit. timing constraint QC : (ATD �ATD)

A QC = (s; t); s; t 2 ATD is graphically speci�ed

by a quantitative constraint arc relating corresponding
edges in a timing diagram including a min/max time
interval [t1; t2]. It speci�es that the communication

action t has to occur within the time interval [t1; t2]

s t
[t ,t]
min max

after the occurrence of commu-

nication action s.

Figure 5: Notation of QC: quantitative constraint arc

� Structuring The speci�cation of the I/O{behaviour

of a complex communicating system by means of a sin-

gle extended timing diagram may turn out to be very

complex. A single extended timing diagram eg. does

not allow specifying di�erent alternative situations

and very large extended timing diagrams soon forfeit

their clearness. Therefore a concept for the structur-
ization of timing diagram speci�cations is introduced.

De�nition : Complex Extended Timing Diagram

A complex extended timing diagram CTD consists of

� a design interface IFSCTD, comprising

- the set PCTD of the portnames , used within the

complex timing diagram.

- the set PDSCTD of direction mode sets and

- the set PTSCTD of datatype sets

for each port in PCTD and each timing diagram

instance in TDICTD .

� a �nite set TDICTD of instances of extended tim-

ing diagrams.

� a set ACTD of waveform sets A
p
CTD for each

port p 2 PCTD , i.e. ACTD :=

S

p2PCTD
A
p
CTD . ACTD

contains a set of mutual exclusive waveforms for every

port.

� a set CCTD of temporal constraints on the ac-

tions in ACTD, each related to a particular timing

diagram instance. �

A (well-formed) complex timing diagram can be

constructed from a set of extended timing diagrams

by arbitrarily combining instances of these timing di-

agrams using the alternative and the sequential timing
diagram operator. Note that the notion of instantia-

tion enables a multiple use of an extended timing dia-

gram within a speci�cation. The alternative operator

� permits specifying alternative situations using dif-

ferent extended timing diagrams. The sequential op-
erator � allows splitting up a large extended timing

diagram into several smaller ones.

An extended timing diagram speci�cation then con-

sists of 1. the de�nition of the system design interface.
It determines the ports of the system, their direction

modes and the types of data that can be communi-

cated on the ports. 2. a �nite set of extended timing
diagrams whose local design interfaces have to be con-

venient with the system design interface. 3. a complex
timing diagram in terms of a timing diagram expres-

sion combining instances of extended timing diagrams

from 2. using the timing diagram operators � and �.

4 Formal Semantics of a Speci�cation

The formal semantics of an extended timing dia-

gram speci�cation is given in terms of the formal spec-

i�cation language T{Lotos. T{Lotos is based on

the speci�cation language Lotos which is founded on

process calculi, mainly CCS [9], extended by a data

communication concept. T(imed){Lotos is an ex-

tension of Lotos, enriching the pure temporal order-

ing of actions in Lotos by a notion of quantitative

time [10].

� T{LOTOS T{Lotos describes a system behaviour

by a hierarchy of processes. A process is de�ned by a

behaviour expression which is either a combination of

subprocesses or, at bottom-level, a sequence of atomic

actions. For a detailed description of Lotos or T-

Lotos resp. see [1][10].

Let B;B1; B2 be variables denoting \behaviour ex-

pressions", t; t1; t2 time variables of a time domain, T

a time interval [t1; t2], a1; : : : ; an action names taken

from a universe of action names, A a set of such ac-

tion names, typ; typ1; typ2 datatypes from a set of

dataypes, v; v1; : : : ; vm variables of some prede�ned

datatypes, E;E1; : : : ; Em data expressions denoting

data values of those datatypes. A subset of the avail-

able operators and their T{Lotos syntax are given

Table 1.

Operator syntax

Stop stop

Action Pre�x aftg?v : typ;B

aftg!E;B
Timed Choice aft in Tg?v : typ;B

aft in Tg!E;B
Choice B1[]B2

Parallelism B1j[A]jB2

Process De�nition P [a1; ::; an](v1 : typ1; :; vm : typ2) := B

Proc Instantiation P [a1; ::; an](E1; : : : ; Em)

Table 1: Subset of T{Lotos syntax

Informally the depicted language elements are in-

terpreted in the following way: stop is the completely

inactive behaviour. `aftg?v : typ;B' or `aftg!E;B'
resp., is a behaviour that is willing to engage in an

action named a at a certain instance of time t , receiv-
ing ? a data value of type typ or sending ! a data

value determined by E. The subsequent behaviour

is B. `aft in Tg?v : typ;B' or `aft in Tg!E;B'
describes a similar behaviour but the participation

in action a may happen at any instance of time

within the time interval T. `B1[]B2' is the mutual ex-

clusive choice between behaviour B1 and behaviour

B2. `B1j[A]jB2' is the parallel composition of the

behaviours B1 and B2. They \synchronize" via the

actions in the set A (i.e. they have to engage in

these actions in common). Wrt. all other actions

B1 and B2 may act independantly. A process def-

inition `P [a1; ::; an](v1 : typ1; : : : ; vm : typ2) := B'
de�nes a formal process P that behaves like B en-

gaging in the (formal) actions named a1; ::; an using

formal data parameters v1; :::; vm. A process instan-

tiation `P [a1; ::; an](E1; : : : ; Em)' is a process that be-

haves like the (formally de�ned) process P replacing

the formal action names by the actual names a1; ::; an
and formal data parameters by the actual data values

determined by E1; : : : ; Em.

� Translation The semantics of an extended tim-

ing diagram speci�cation is de�ned as a recursice T{

Lotos process. This process results from a parallel
composition of the process translations for each graph-
ical constituent of the extended timing diagram in-

stances used in the speci�cation and the process equiv-

alents of the timing diagram operators combining these

timing diagrams. This compositional approach is de-

scribed for a single basic timing diagram in [12] and

extended to single data{annotated timing diagrams in

[7]. Given an extended timing diagram speci�cation

its semantics is a process

ETDS[Act] :=EventSeq[Act1] j[S1]j Data[Act3] (init

values) j[S2]j Constraints[Act2] [S3]j TDops[Act4])

where EventSeq is the parallel composition of

the process translations of all event sequences.

Constraints is the parallel composition of the pro-

cess translations of all constraints. Data is the pro-

cess translation of the data annotations. It controls

the reception and the transmission of data values.

initvalues are the the initial values of the variables

declared there. TDops is the parallel composition of

the process translations of the timing diagram oper-

ators. Act; Acti; i = 1; : : : ; 4 are the sets of action

names the corresponding processes participate in and

Si; i = 1; : : : ; 4 are appropriate sets of actions the par-

allelly composed processes must engage in together.

In the following the T{Lotos process translations

of two basic graphical primitives (as de�ned in 3) of

extended timing diagrams are presented. Let now be

CTD = fIFS;A;C; TDIg a complex timing diagram,

IFS = fP; PDS; PTSg its local design interface and

TDI = ftd1; : : : ; tdng the instances of extended tim-

ing diagrams constructing CTD.

- Translation of event sequences.

Let Ap :=

S

td2TDI
Aptd be the waveform set of mu-

tual exclusive waveforms Aptd related to port p de-

�ned in di�erent timing diagram instances td. Then

A
ptd
CTD := fatd

1
; : : : ; atdltdg is the totally ordered set of

actions (waveform) de�ned in the timing diagram in-

stance td at port p, assuming atd
1
� : : : � atdltd . The

semantics of the mutual exclusive event sequences of

a waveform set Ap on a particular port p de�ned in

timing diagram instances td1; : : : ; tdn is given as a T-

Lotos process PAp :
PAp [a

td1
1 ; : : : ; a

tdn
ltdn

] :=

a
td1
1

?x : typm; : : : ;a
td1
ltd1

?x : typn;PAp [a
td1
1

; : : : ; a
tdn
ltdn

]

[]: : : [] /*waveform td1 OR..OR waveform tdn*/

a
tdn
1 ?x : typo; : : : ; a

tdn
ltdn

?x : typp;PAp [a
td1
1 ; : : : ; a

tdn
ltdn

]

where typm,typn,typo,typp are appropriate types.

Note that this process does not restrict the data val-
ues communicated with the actions it participates in.

It solely prescribes the temporal ordering of these ac-

tions. The process EventSeq representing all event se-
quences in a speci�cation then results from the paral-

lel composition of the process translations of the event

sequences for every system port:
EventSeq[Act] := j[]j

p2P
PAp [a

td1
1 ; : : : ; a

tdn
ltdn

]

- Translation of quantitative constraints CQC

Every quantitative constraint qc = (std; ttd) with

associated time interval [t1; t2] de�ned in a timing di-

agram instance td is translated to a process Pqc:
Pqc[s

td; ttd] :=

std?x : typs;P1qc[s
td; ttd] [] ttd?x : typt;Pqc[s

td; ttd]

P1qc[s
td; ttd] :=

ttdft in[t1; t2]g?x : typt;Pqc[std; ttd]

[] /*t in [t1,t2] OR again s in (0,t2)*/

stdft in(0; t2)g?x : typs;P1qc[std; ttd]

Pqc speci�es that after an action std an action ttd

has to occur within the time interval [t1; t2]. Further

actions std may occur up to t2, i.e. within the time

interval (0; t2), leaving some time for the action ttd to

occur ('(,),[,]' denote open or closed interval bounds).

5 Example : Tra�c Light Controller

As an example speci�cation the tra�c light con-
troller [8] is presented. An intersection of a major

highway and a minor farmroad is controlled by tra�c

lights. A detector loop signals the presence of cars on

the farmroad. Three major situations characterize the

tra�c at this intersection:

[CarDetected] If the highway lights are green they

will stay green for at least a �xed period of time (tlong).

If a car is detected on the farmroad the highway lights

will turn to yellow after their minimal green period

(provided the detected car does not turn round be-

fore). If the farmroad lights are green [TimeOut]

then if permanently cars are detected on the farmroad

the farmroad lights will turn to yellow after a �xed pe-

riod of time (tlong). But if there was no more car we

would also be satis�ed if (sluggish) lights would man-

age to turn yellow after their maximal green period,

or alternatively [NoCar] if no more cars are detected

on the farmroad the lights will be able turn to yellow

at once.

It is reasonable that the detection of a car [CarDe-

tected] always precedes the alternatives of (1) an ex-

piration of the maximal green period on the farmroad

[TimeOut] or (2) the premature absence of cars on the

farmroad [NoCar]. Together with the knowledge of the

commonly strict ordering green, yellow, red, aso. of

tra�c light colours and the consideration of some se-

curity aspects one can easily �nd the extended timing

diagram speci�cation of this tra�c light controller as

depicted in �gure 6. An idea of the T{Lotos spec-

yellow red

green

≥ tlong

v1 [v1=´1]́ v2 [v2=´0]́

HL ! : colour

FL ! : colour

D ? : bit

= tlong

HL ! : colour

FL ! : colour

D ? : bit

HL ! : colour

FL ! : colour

D ? : bit

< tlong

green

yellow red

green

yellow red

∇
⊕

CarDetected

TimeOut

NoCar

t

Figure 6: Timing Diagram Speci�cation of the TLC

i�cation obtained from the extended timing diagram

speci�cation in �gure 6 is given in �gure 7.

The transitional system semantics of this T{Lotos

SPECIFICATION TLC[DET1_CarDetected,DET2_CarDetected,HL1_Car...

...,FL3_TimeOut,FL3_NoCar]:NOEXIT

BEHAVIOUR

(((EventSeq[DET1_CarDetected,..] |[DET1_CarDetected,..]|

Data[DET1_CarDetected,..](0,0)) |[DET1_CarDetected,..]|

Constraints[DET1_CarDetected,...]) |[HL1_CarDetected,..]|

TDops[HL1_CarDetected,...,FL2_NoCar])

WHERE

PROCESS EventSeq[DET1_CarDetected,DET2_C...,FL3_NoCar]:NOEXIT:=

AltSeq[DET1_CarDetected,DET2_CarDetected] |[]|

AltSeq[HL1_CarDetected,HL2_CarDetected] |[]|

AltSeq[FL2_TimeOut,FL2_NoCar,FL3_TimeOut,FL3_NoCar] |[.]|

ENDPROC

PROCESS Data[DET1_CarDetected,...](v1:BIT,v2:BIT):NOEXIT:=

HL1_CarDetected!yellow;Data[DET1_CarDetected,...](v1,v2)

[]...[]

DET1_CarDetected?x:BIT[x=1];Data[DET1_CarDetected,...](x,v2)

ENDPROC

PROCESS Constraints[DET1_CarDetected,...,FL3_NoCar]:NOEXIT:=

SC[HL2_CarDetected,FL1_CarDetected]|[]|WC[Det1_C..,HL1_C..]...

Figure 7: Excerpt of T-Lotos speci�cation for TLC

description abstracting each communication action to

an action on its related port is depicted in �gure 8. It

is computed from the T{Lotos speci�cation dissolv-

ing the parallel composition operators and could be

used for a subsequent synthesis.

D?v1:bit
[v1=´1´]

D?v2:bit
[v2=´0´]

D?v1:bit
[v1=´1´]

D?v2:bit
[v2=´0´]

D?v1:bit
[v1=´1´]

D?v2:bit
[v2=´0´]

D?v1:bit
[v1=´1´]

D?v2:bit
[v2=´0´]

D?v1:bit
[v1=´1´]

D?v2:bit
[v2=´0´]

D?v1:bit
[v1=´1´]

D?v2:bit
[v2=´0´]

HL!
yellow

HL!
red

FL!
green

FL!
yellow

FL!
red

HL!green

HL!green

FL!
green

FL!
yellow

FL!
red

HL!
red

D?v1:bit
[v1=´1´]

D?v2:bit
[v2=´0´]

D?v1:bit
[v1=´1´]

D?v2:bit
[v2=´0´]

FL!
red

FL!
red

HL!green HL!green

FL!
yellow

[=t]long
[=t]long

[<t]long

[≥t]long

Figure 8: Transitional system semantics of TLC

6 Conclusion

A graphical speci�cation language with comprehen-

sible language elements and well-founded structuring

concept has been presented. A su�cient modelling

power is ensured by the capability to describe data

paths. The formal semantics of the speci�cation lan-

guage has been given in terms of the speci�cation lan-

guage T{Lotos. A prototype for the translation of

extended timing diagram speci�cations has been im-

plemented. Some resulting speci�cations has been

tested with a method to translate T{Lotos speci-

�cations to VHDL. This transformation is developed

within the ESPRIT{project FORMAT[13]. The ob-

tained VHDL-descriptions eg. could then be processed

by usual high-level synthesis systems or used for sim-

ulation purposes. The main future research will con-

centrate on a notion of hierarchy of timing diagram

speci�cations. Formally based transformations of the

data paths in a timing diagram speci�cation can be

done on a combined control-data ow graph repre-

senting data annotations. For this purpose a formal

semantics for such graphs in terms of process algebra

will be given.

References

[1] T. Bolognesi; E. Brinksma: Introduction to the ISO spec-

i�cation language LOTOS in: R.H.J. van Eijk, C.A. Vis-
sers, M. Diaz (ed): The Formal description Technique LO-

TOS Elsevier Science Publishers, North Holland, 1989.

[2] G. Boriello: Formalized timing diagrams, in: Proceedings,

The European Conference on Design Automation, pages

372{377, Brussels, Belgium, March 1992

[3] G. Boriello; R. H. Katz: Synthesizing Transducers from

Interface Speci�cations, Proc. Int. Conf. on VLSI, North

Holland, 1988.
[4] D. Harel: StateCharts { A Visual Formalism for Complex

Systems, Science of Computer Programming 8 (1987),

231{274.

[5] P. K. Khordoc, M. Dufresne, E. Czerny: A Stimu-

lus/Response System based on Hierarchical Timing Dia-

grams, Publication #770, Technical report, Universit�e de

Montreal, 1991
[6] L. Lavagno; A. Sangiovanni-Vincentelli: Algorithms for

Synthesis and Testing of Asynchronous Circuits , Kluwer

Academic Publishers (1993).

[7] S. Lenk: Requirements for the Graphical Speci�cation

Language `Timing Diagrams', ESPRIT-Project FOR-

MAT. Technical report, University of Passau, 1992

[8] C. Mead, L. Conway: Introduction to VLSI Systems,

Addison-Wesley 1980
[9] R. Milner: Communication and Concurrency Prentice-

Hall (1989).

[10] J. Quemada, A. Azcorra, D. de Frutos: A Timed Calcu-

lus for LOTOS . In S. Vuong, editor, Formal Description

Techniques, Vancouver, Canada, December 1989, FORTE

89.

[11] R. Schloer: Speci�cation and Veri�cation of System-

level Hardware designs using Timing Diagrams EDAC'93
(1993).

[12] W. D. Tiedemann: An Approach to Multi-paradigm

Controller Synthesis from Timing Diagram Speci�cations;

Proc. 1st EURO-DAC '92 (1992), 522{527

[13] W. D. Tiedemann; S. Lenk; C. Grobe; W. Grass: Intro-

ducing Structure into Behavioural Speci�cations obtained

from Timing Diagram Speci�cations; Microprocessing

and Microprogramming 38 North Holland(1993), 581-588
[14] F. Vahid; S. Narayan; D. Gajski: SpecCharts { A Lan-

guage for System Level Synthesis Proc. 10th Int. Symp. on

Comp. Hardware Description Languages and their Appli-

cations, CHDL'91 (1991), 145{154

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

