
Moving Forward: A Non-Search Based Synthesis Method toward Efficient CNOT-Based
Quantum Circuit Synthesis Algorithms

Mehdi Saeedi, Morteza Saheb Zamani, Mehdi Sedighi
Quantum Design Automation Group

Amirkabir University of Technology, Computer Engineering Department, Tehran, Iran
Email: {msaeedi, szamani, msedighi}@ aut.ac.ir

Abstract- Quantum information processing is in the beginning
stages. Among open research problems, quantum circuit
synthesis has recently received significant attention. In this
paper, we propose a new non-search based moving forward
synthesis algorithm (MOSAIC) for CNOT-based quantum
circuits. Compared with the widely used search-based methods,
MOSAIC is guaranteed to produce a result and can lead to a
solution with much fewer steps. To evaluate the proposed
algorithms, different circuits taken from the literature are used.
The experimental results show the efficiency of the proposed
algorithm.

I. Introduction

The current ever-shrinking transistor approach will reach its
fundamental limits in the near future [1] as the laws of
classical physics will not be valid at atomic dimensions. To
overcome this limitation, various new computational models
have recently been proposed [1]. Among them, quantum
computing has the potential to increase the rate of advances in
computing power drastically, at least for some problems [2].
The promise of the exponential speedups of quantum
algorithms running on quantum computers has intensified the
attempts for using quantum algorithms [3], [4].
While quantum mechanics and quantum computing are
established research areas [2]-[5], automated quantum circuit
synthesis is in the beginning stage and no fully optimized
method for quantum circuit synthesis has been proposed yet.
To address the problem, in the rest of this paper, we introduce
a new moving forward strategy to propose a fast quantum
circuit synthesis algorithm. Compared with the recently
proposed search-based synthesis methods (as [6], [7] and [9])
our synthesis algorithm can produce a gate-level
implementation of the circuit from its matrix representation
within much fewer steps.
The rest of the paper is organized as follows: in Section II, a
brief introduction to quantum computation is presented.
Previous work is reviewed in Section III. Our synthesis
method is presented in Section IV. Experimental results are

reported in Section V and finally, Section VI concludes the
paper.

II. Basic Concepts

Quantum computation uses quantum mechanics to perform a
task. A quantum bit (or qubit) is typically derived from the
state of a two-level quantum system such as the ground and
excited states of an atom. The common notation of a qubit
denotes one of these states as |0〉 and the other as |1〉. A
quantum system with a collection of n qubits is called a
quantum register of size n.
Unlike a classical bit, the state of a qubit can take not only
two pure states |0〉 and |1〉, but also any linear combinations of
these pure states, also called superposition, resulting in
exponentially larger state space. In other words, the state of a
qubit ψ can be written as ψ=α|0〉+β|1〉 where α and β are
complex numbers and α2+β2=1.
It is common to denote the state of a single qubit by a 2×1
vector as [α β]T. So, the state of a quantum register of size n
can also be shown by an 2n×1 vector T

n][
221 ααα K where

each αi (i=1,2,..,2n) is a complex number and
12

2
2

2
2

1 =++ nααα K . If only one αi (i=1,2,..,2n) is set to be one,
a pure quantum state of size n is formed.
An n-qubit quantum gate is a device which performs a
specific unitary operation on its qubits in a fixed period of
time. An n-qubit quantum gate has a unitary 2n×2n matrix,
also called QMatrix [9], describing its functionality. A matrix
M is unitary if MM+=I where M+ is the conjugate transpose of
M and I is the identity matrix. The QMatrix of a quantum
circuit is derived from its gate QMatrices using matrix
multiplication.
Previously, various quantum gates with different
functionalities have been proposed [5]. Among them, CNOT-
based gates comprise an important class of quantum gates and
often appear in the quantum computing literatures (for
example see [5]-[15]) and defined as follows:
.
Definition 1: An n-input, n-output CNOT gate
CNOTn(x1,x2,…,xn) passes the first n-1 lines unchanged. These

1C-3

83978-1-4244-1922-7/08/$25.00 ©2008 IEEE

lines are referred to control lines. This gate flips the nth line if
the control lines are all one. In other words, we have: xi(out)=xi
(i<n), xn(out)=x1x2…xn-1⊕xn. A general CNOTk (k≤n) gate is
called CNOT-based gate in this paper.
Some authors (for example [12]) assume that
complementation can also be internal to a CNOT-based gate.
Therefore, it is possible to have a CNOT3(a’,b’,c) gate to refer
to c(new)=c⊕a’b’, a(new)=a and b(new)=b. This assumption
is also used in this paper.
It has been shown that CNOT-based quantum circuits,
including Boolean reversible circuits, are described by a
unique QMatrix representation, called well-formed QMatrix,
which contains only a single 1 in all columns and rows [9].
Note that an n-input, n-output, fully specified Boolean
function is called reversible if it maps each input pattern to a
unique output pattern [6], [7]. For the class of Boolean
reversible circuits its matrix representation can also be
derived from its truth table by inserting a single 1 at row i and
column j where the row and column numbers are specified by
output and input patterns, respectively.
Quantum circuit synthesis is defined as the ability to
automatically generate a quantum circuit from a given
specification. As each quantum circuit, including but not
limited to Boolean reversible circuits, has a unique QMatrix
representation, we use QMatrix as the given specification to
propose an efficient synthesis method for CNOT-based
quantum and Boolean reversible circuits. In the next section,
previous work on automated quantum (reversible) circuit
synthesis is reviewed.

III. Previous Work

Several algorithms have recently been proposed to synthesize
a quantum circuit. Toffoli in [10] presented an algorithm to
implement a function using CNOT-based gates. As this
algorithm uses many extra qubits, it cannot be used to
synthesize a general quantum circuit efficiently. In [11], a
new incremental approach was presented which uses shared
binary decision diagrams for representing a reversible
function and measuring circuit complexity. The proposed
algorithm selects reversible gates based on the complexity of
the rest of logic.
Some authors used transformation-based algorithms for
quantum circuit synthesis [12]-[15]. However, these
algorithms usually use local transformations to optimize the
results of other algorithms. In [16], an approach to synthesize
a quantum circuit was proposed which uses symbolic
reachability analysis where the primary inputs are assumed to
be purely binary. In [17], Shende et al. presented a top-down
structure based on Cosine-Sine decomposition to introduce
quantum multiplexer and used it to propose a synthesis
algorithm in terms of quantum multiplexers. In [18] a
quantum decision diagram (QDD) structure was introduced
and used to synthesize quantum circuits using Rx(θ) rotation
gates. However, they assumed that the QDD control variables
are pure quantum states.
As the size of a quantum circuit can be large, a practical
algorithm for quantum circuit synthesis may become
extremely difficult. Due to the lack of a mature systematic

method, search-based algorithms are widely used [6]-[9] for
quantum and Boolean reversible circuit synthesis where an
extensive exploration is required to find a possible
implementation of the circuit. This method was used in [6] to
propose a synthesis algorithm for reversible circuits based on
the Reed-Muller expansion. This algorithm was further
improved in [7] to reach a result within fewer searches.
The authors of [19] presented an algorithm to decompose the
matrix of a quantum circuit into the unitary matrices of
elementary gates. However, these methods are not practical to
synthesize a general quantum circuit of arbitrary size. The
authors of [20] studied the maximum number of required
gates to synthesize a reversible circuit. They also proposed a
decomposition method for linear reversible circuits. In [9], the
matrix characterizations of CNOT-based reversible circuits
are studied and used to propose a multi-stage synthesis
methodology for quantum circuits where a search-based
algorithm was used to reach a result. So, their results are also
limited to small and medium size CNOT-based quantum
circuits.
As the size of a quantum circuit increases drastically, a
practical algorithm for quantum circuit synthesis becomes
extremely difficult. In the following section, we propose a
new non-search based synthesis algorithm which uses several
predefined steps to attain a result from its matrix
representation.

IV. Synthesis Algorithm

As stated before, several authors assumed that
complementation can also be internal to a CNOT-based gate
[12]. On the other hand, several others (for example [6], [7]
and [9]) use only CNOT-based gates with positive control
lines. In this section, we propose a moving forward synthesis
algorithm with internal complementation, MOSAIC, to
synthesize CNOT-based quantum circuits efficiently.
However, we also introduce a transformation method to attain
a positive control CNOT-based circuit.
As only CNOT-based quantum and Boolean reversible
circuits are used in this paper, for the following sections, the
terms gates and circuits are used for CNOT-based gates and
CNOT-based circuits, respectively. Moreover, well-formed
QMatrix is denoted as QMatrix in short. Consider the
following definitions:

Definition 2: The application of a k-qubit gate with matrix G
on a quantum circuit with a QMatrix M is called Lk
QTranslation.

It can be seen that the result of using an Lk QTranslation is the
same as multiplication of M by G, i.e. MG. As each k-qubit
gate has a well-formed QMatrix [9], the result of using an Lk
QTranslation is also well-formed.

Definition 3: Consider the jth and the ith rows of a QMatrix M.
These two rows form a quantum pair (QPairi,j) if the numbers
i and j differ in only one bit position. For example, the 2nd

(010) and the 6th (110) rows belong to QPair2,6.

1C-3

84

Definition 4: The 2k rows of a QMatrix the row numbers of
which have the same value on their n-k bit locations form a
single group called CkQPair. For the case of k=1, each
CkQPair contains only one QPair.

Lemma 1 and Lemma 2 explain the results of using an Lk
QTranslation on a given QMatrix.

Lemma 1: (a) Consider an n-qubit quantum circuit with
QMatrix M. The application of an Lk QTranslation on M leads
to 2n-k-1 row exchanges. (b) Equally, exchanging the locations
of 2k QPairs of the same CkQPair is equivalent to applying an
Ln-k-1 QTranslation. □

Lemma 2: Consider a CkQPair of a 2n×2n QMatrix having 2k

rows krrr 221 ,...,, where the n-bit numbers krrr 221 ,...,, have the
same value on their n-k bits b1,b2,…,bn-k and two QPair rows
differ from each other only in one bit position bm. Exchanging
the locations of each QPairi,j (QPairi,j ∈ CkQPair,

{ }krrrji
221 ,...,,, ∈) has the same result as applying an Ln-k+1

QTranslation),,...,,(
21 mkn bbbbk xxxxCNOT

− . For the case of n=k, a
simple NOT gate is constructed. □

Due to the paper page limit, the proofs of the previous
lemmas are omitted and are available from the authors upon
request. In the following subsection, our synthesis algorithm
is proposed.

A. The MOSAIC algorithm
The goal of MOSAIC is to decompose a given QMatrix into
several elementary QMatrices of CNOT-based gates
efficiently. After the decomposition, the resulted QMatrices
are translated into the final circuit using Lemma 2. Fig. 1
shows the proposed MOSAIC algorithm. As shown in this
figure, the algorithm starts with the first bit of the first column
and finishes when the ith column has a value of 1 in its ith row
for all i∈(1..2n). Consider the following example for more
details. To save space, the QMatrix A is denoted as

),...,,(
211 nxxxA where xi (i∈[1,2n]) is the row number of an

element with the value of 1 in the ith column.

Example 1: Consider a 3-qubit circuit with QMatrix
A(7,0,1,2,3,4,5,6). Fig. 2 shows the results of the proposed
algorithm. In this figure, the numbers p, q and the exchanged
QPair rows enclosed in an ‘{}’ symbol are shown.
Furthermore, the resulted CkQPairs for each step are also
demonstrated. It can be verified that the final QMatrix after
each step are A1=(6,1,0,3,2,5,4,7), A2=(4,1,2,3,0,5,6,7) and
A3=(0,1,2,3,4,5,6,7). The synthesized circuit of this example
is {NOT(c), CNOT(c’,b), C2NOT(b’,c’,a)}. □

Consider the 2k rows krrr 221 ,...,, of a QMatrix which belong to
the same CkQPair set. It can be checked that krrr 221 ,...,, have
the same value in the specific n-k bit locations. However, the
value of each bit could be 0 or 1 independent of the other n-k-
1 bit locations. As a result, the final circuit could have both
positive and negative control lines. In the following, we

introduce a transformation method to attain a positive control
gate.

Algorithm MOSAIC
Input: A 2n×2n QMatrix M
Output: A CNOT-based decomposition of M

1. b=1;
2. repeat
3. reset all rows of M to be unvisited;
4. flag=true;
5. for each column index c of M, c∈(1..2n)
6. set r to be the c row number which has a value of 1;
7. if the rth row is not marked as visited then
8. if the bth bits of r and c are not equal then
9. flag=false;
10. find the number p ∈ QPairr,p which differs with r in its bth bit;
11. set q to be the column number of row p which has a value of 1;
12. if q = p and p < r then
13. do nothing;
14. else
15. exchange the locations of the pth and rth rows;
16. mark the pth and rth rows as visited;
17. end if
18. end if
19. end if
20. end for
21. b = (b + 1) mod n;
22. Identify each CkQPair group whose QPairs are exchanged;
23. Extract an Lk translation for each CkQPair based on Lemmas 1 and 2;
24. until flag=true;

Fig. 1- The proposed MOSAIC synthesis algorithm

Consider a general CNOT-based gate with both positive and
negative controls. As the control and target qubits have no
shared variable, it is possible to decompose this gate into
several NOT gates followed by one positive control gate.
Consider the following example for more detail:

Example 2: Consider the QMatrix A(7,0,1,2,3,4,5,6) of
Example 1 and the resulted circuit {NOT(c), CNOT(c’,b),
C2NOT(b’,c’,a)}. The results of using the above method to
reach positive control gates are:

),,(2),(),(),','(2
),(),(),'(

)(

acbNOTCcNOTbNOTacbNOTC
bcCNOTcNOTbcCNOT

cNOT

→
→

Therefore, the final circuit is {NOT(c), NOT(c), CNOT(c,b),
NOT(b), NOT(c), C2NOT(b,c,a)}. □

It can be verified that the application of the transformation
method may lead to several redundant gates. For example, the
result of Example 2 could be reduced to {CNOT(c,b),
NOT(b), NOT(c), C2NOT(b,c,a)}. Therefore, after each
transformation, a simple redundancy elimination technique
may also be needed.

B. The Algorithm Convergence

The MOSAIC algorithm uses an iterative approach to reach a
result. Theorem 1 guaranties the algorithm convergence:

1C-3

85

[]

[]
4444444 84444444 76

4444444 84444444 76

4444444 84444444 76

2

1

2

1

3

0

]4,0[
77
66
55

(visited)04
33
22

11
}0,4{4040

6,4,2,0
77

(visited)46
55

(visited)24
33

}2,0{4202
11

}4,6{6460

76543210
(visited)67
(visited)56

}5,4{6545
(visited)34

}3,2{4323
(visited)12

}1,0{2101
}6,7{7670

=

=

=

=

=→=
=→=
=→=
=→=
=→=
=→=
=→=

⇒=→=→=→=

=

=→=
=→=
=→=
=→=
=→=

⇒=→=→=→=
=→=

⇒=→=→=→=

=

=→=
=→=

⇒=→=→=→=
=→=

⇒=→=→=→=
=→=

⇒=→=→=→=
⇒=→=→=→=

b

b

b

QPairC
rc
rc
rc
rc
rc
rc
rc

qprc

QPairC
rc
rc
rc
rc
rc

qprc
rc

qprc

,,,,,,,QPairC
rc
rc

qprc
rc

qprc
rc

qprc
qprc

Fig. 2- The results of applying the MOSAIC algorithm on the
specification of Example 1.

Theorem 1: The MOSAIC algorithm will converge to a
possible implementation after a finite number of steps.

Proof: Consider a QMatrix M of size 2n. Assume that after a
number of steps, several rows represented as a set Σ, are
placed at their right positions. Furthermore, suppose that the
algorithm is working on the kth bit (i.e. b=k and k≤n) of the cth

column and sets r to the column c row number with the value
of 1. Moreover, consider the case where r differs from c in its
kth bit (i.e. r∉Σ). Accordingly, the algorithm finds a row
number p that differs from r only in its kth bit.
If p∈Σ and p<r (line 9 in Fig. 1), the algorithm does nothing
to avoid instability in row locations. However, as the rth row
is placed at a wrong position (for example, the position of the
tth row, t∉Σ), there must be another row, i.e. the tth row, which
should be exchanged with the rth row during the next steps.
Therefore, the algorithm does not finish at the current step
and it will reach the other cases, i.e. p∉Σ or (p∈Σ and p>r).

Consider the other cases (p∉Σ or (p∈Σ and p>r)) where the
algorithm exchanges the location of the pth row with that of
the rth row. Then, the kth bit of the row r will be correct and
the algorithm moves forward to check other rows as well as
other bits. As each QTranslation does not change the results
of the previous ones, i.e. each QTranslation changes only one
qubit, the algorithm will gradually place all rows at their right
positions. Therefore, the algorithm will lead to a valid result
after several steps. □

Based on Theorem 1, it can be said that the MOSAIC
algorithm always converges to a possible synthesized result.
In the following section, we propose a worst-case analysis to
compare the time complexity of the MOSAIC algorithm with
that of search-based methods proposed in literature.

C. The Time Complexity of the Algorithm
In order to compare the MOSAIC algorithm with search
based methods with respect to their time complexity, assume
that a possible implementation of a 2n×2n QMatirx M needs at
most h CNOT-based gates.

Theorem 2: A search-based synthesis method needs at most
O(n×2n)h steps to reach a result.

Proof: For a quantum circuit of size n, there are
1
nC possible

NOT gates and 2
nC possible C2NOT gates in which one of its

two inputs can be the target output. On the other hand, as each
of the C2NOT inputs could be used as the target qubit, the
total number of 22 nC× gates can be attained.
In contrast, for a k-qubit gate, k ∈ (3, 4,..., n-1), there are k

nC 1−

possible gates when target can be any ith (i∈ [1,n]) qubit.
Considering all possible qubits as the target variable leads to
the total number of k

nCn 1−× k-qubit gates. Therefore, the total
number of gates are n×2n-1 as

11
1

3
1

21 2)...(2 −−
−− ×=++×+×+ nn

nnnn nCCnCC . Since at most h
steps are required to reach a result, it can be said that search-
based methods need at most (n×2n-1)h or O(n×2n)h node
searches to synthesize a given specification. □

Theorem 3: The proposed MOSAIC algorithm needs at most
O(h×2n) steps to reach a result.

Proof: It can be verified that except the lines 2 and 5 in Fig.
1, the other lines take only O(1) time complexity. On the
other hand, the time complexity of line 5 (internal loop on
column index) is O(2n). Furthermore, the outer loop (line 2)
has O(h) time complexity. As a result, the MOSAIC
algorithm needs at most O(h×2n) step to reach a result.
Moreover, the proposed transformation technique and the
final elimination method need at most O(h) steps. Therefore,
the time complexity of our algorithm is O(h×2n). □

Compared with the search-based methods [6]-[7], [9], the
MOSAIC algorithm needs much fewer steps to synthesize a
given specification. In the following section, the experimental
results are shown.

1C-3

86

V. Experimental Results

The proposed algorithm was implemented in MATLAB and
all of the experiments were done on an Intel Pentium IV
3GHz computer with 1GB memory. To evaluate the
MOSAIC algorithm, we use the same sixteen circuits of [7]
and several new randomly generated circuits. Furthermore,
we compare the results of our algorithm with two recent
papers [6] and [7] in terms of the number of searched nodes
and the produced gate counts. The results of these
comparisons are shown in Table 1. As shown in this table, the
proposed MOSAIC algorithm not only has the ability to
produce a result for all of the attempted specifications but also
can reach a result with much fewer steps (more than 100
times faster on average). Since the specification of search
space affects the number of searched nodes, for a few
benchmarks, i.e. 3, 6 and 7, MOSAIC requires more steps to
reach a result. It is important to note that both primitive
operations (i.e. node search for search-based methods and
step for MOSAIC) have the same O(1) time complexity.
While MOSAIC needs one second to synthesize each
benchmark on average, the search-based methods consume
much more times to lead a result. Furthermore, it can be
verified that the MOSAIC algorithm can also reach a circuit
with comparable cost (9.81 vs. 7.62) within a small number of
steps.
To test the scalability of the proposed algorithm for different
input sizes, several other experiments were made. We
generated 10 random circuits of different input sizes (from 1
to 12) and use the MOSAIC algorithm to synthesize each
circuit, separately. For each input size, the number of required
steps and the number of gates are shown in Table 2. The CPU
time for each input size is also reported in this table. It can be
seen that the MOSAIC algorithm can synthesize the
attempted circuits quickly.
Compared with the best possible implementation of each
selected QMatrix, the gate counts of several circuits are more
than the results of an exhaustive search-based method for
about 2.2% on average. The natural next step for future work
seems to be working on the improvement of the resulting
synthesized circuits possibly by combining the proposed
approach and the search-based methods. Efforts to reach this
goal are under way.

VI. Conclusions

In this paper, a new non-search based synthesis algorithm was
proposed which requires a few steps to synthesize a given
specification. To evaluate the algorithm, we used sixteen
examples taken from the literature and compared the results
with those from two recent search-based methods. It was
shown that the presented algorithm can lead to a result for all
of the circuits 113 times faster, on average. In addition, to
evaluate the scalability of the algorithm, several random
circuits with up to 12 inputs were generated. The results of
our experiments illustrated that for large QMatrices, our
algorithm needs about 1 minute to reach a result.

References

[1] International Technology Roadmap for Semiconductors, 2005
Edition.

[2] P. E. Black, D. R. Kuhn, and C. J. Williams, “Quantum
Computing and Communication,” Advances in Computers,
Academic Press, vol. 56, pp. 189-244, 2002.

[3] L. K. Grover, “A Fast Quantum Mechanical Algorithm for
Database Search,” in 28th Annual ACM Symposium on Theory
of Computing, pp. 212-219, 1996.

[4] P. W. Shor, “Polynomial Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer,” SIAM Journal on Computing, 26(5), pp. 1484-
1509, 1997.

[5] M. A. Nielsen, I. L. Chuang, “Quantum Computation and
Quantum Information,” Cambridge University Press, 2000.

[6] P. Gupta, A. Agrawal, and N. K Jha, “An Algorithm for
Synthesis of Reversible Logic Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
November 2006.

[7] M. Saeedi, M. Saheb Zamani, M. Sedighi, “On the Behavior of
Substitution-Based Reversible Circuit Synthesis Algorithms:
Investigation and Improvement,” International Symposium on
VLSI, 2007.

[8] D. M. Miller, “Spectral and Two-Place Decomposition
Techniques in Reversible Logic,” 45th Midwest Symposium on
Circuits and Systems, pp. II-493-II-496, 2002.

[9] M. Saeedi, M. Sedighi, M. Saheb Zamani, “A New
Methodology for Quantum Circuit Synthesis: CNOT-Based
Circuits as an Example,” International Workshop on Logic
Synthesis, 2007.

[10] T. Toffoli, “Reversible Computing,” MIT, Tech. Rep., 1980.
[11] P. Kerntopf, “A New Heuristic Algorithm for Reversible Logic

Synthesis,” Design Automation Conference, pp. 834-837, 2004.
[12] D. Maslov, C. Young, D. M. Miller, and G. W. Dueck,

“Quantum Circuit Simplification Using Templates,” Design
Automation and Test in Europe, pp. 1208-1213, 2005.

[13] K. Iwama, and Y. Kambayashi, and S. Yamashita,
“Transformation Rules for Designing CNOT-Based Quantum
Circuits,” Design Automation Conference, pp.419-424, 2002.

[14] D. Maslov, C. Young, D. M. Miller, and G. W. Dueck,
“Quantum Circuit Simplification Using Templates,” Design
Automation and Test in Europe, pp. 1208-1213, 2005.

[15] D. M. Miller, D. Maslov, and G. W. Dueck, “A Transformation
Based Algorithm for Reversible Logic Synthesis,” Design
Automation Conference, pp. 318-323, 2003.

[16] W. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski,
“Quantum Logic Synthesis by Symbolic Reachability
Analysis,” Design Automation Conference, pp. 838-841, 2004.

[17] V. V. Shende, S. S. Bullock, I. L. Markov, “Synthesis of
Quantum Logic Circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 25(6), pp.
1000-1010, June 2006.

[18] A. Abdollahi, and M. Pedram, “Analysis and Synthesis of
Quantum Circuits by Using Quantum Decision Diagrams,”
Design Automation and Test in Europe, pp. 317-322, 2006.

[19] J. J. Vartiainen, M. Mottonen, and M. M. Salomaa. “Efficient
Decomposition of Quantum Gates,” Phys. Rev. Let., 92:177902,
2004.

[20] K. N. Patel, I. L. Markov, J. P. Heyes, “Efficient Synthesis of
Linear Reversible Circuits,” arXiv:quant-ph/0302002v.

1C-3

87

Table 1- The results of using the proposed synthesis methods compared with two recent methods [6],[7], [9]

Number of
Searched Nodes [6],[7], [9] & Steps (MOSAIC)

Number of Gates
Circuit # QMatrix

MOSAIC [6], [9] [7] MOSAIC [6],[7], [9]

1 (1,0,3,2,5,7,4,6) 40 11 15 4 4

2 (7,0,1,2,3,4,5,6) 24 761 300 3 3

3 (0,1,2,3,4,6,5,7) 32 7 10 3 3

4 (0,1,2,4,3,5,6,7) 64 156 786 7 5

5 (0,1,2,3,4,5,6,8,7,9,10,11,12,13,14,15) 160 9515 8256 9 7

6 (1,2,3,4,5,6,7,0) 24 4 4 3 3

7 (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0) 64 5 5 4 4

8 (0,7,6,9,4,11,10,13,8,15,14,1,12,3,2,5) 64 230 139 4 4

9 (3,6,2,5,7,1,0,4) 56 - 66 8 7

10 (1,2,7,5,6,3,0,4) 48 - 77 8 6

11 (4,3,0,2,7,5,6,1) 56 - 4387 6 7

12 (7,5,2,4,6,1,0,3) 32 - 352 6 7

13 (6,2,14,13,3,11,10,7,0,5,8,1,15,12,4,9) 192 - 678 19 15

14 (9,7,13,10,4,2,14,3,0,12,6,8,15,11,1,5) 240 - 9712 23 14

15 (6,4,11,0,9,8,12,2,15,5,3,7,10,13,14,1) 192 - 74521 21 17

[7]

16 (13,1,14,0,9,2,15,6,12,8,11,3,4,5,7,10) 352 - 85191 29 16

Average 102 - 11531 9.81 7.62

Table 2- The results of using the proposed synthesis method to synthesize different size QMatrices

Inputs Number of
Steps

Number of
Gates

CPU Time
(seconds) Inputs Number of

Steps
Number of

Gates
CPU Time
(seconds)

1 1 1 0 2 7 2 0

3 34 4 0 4 155 9 0.01

5 624 17 0.05 6 2265 30 0.17

7 7731 55 0.51 8 24422 84 1.65

9 72960 133 5.46 10 225280 206 17.27

11 581632 259 45.39 12 1277952 312 61.50

1C-3

88

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

