
A New Low Energy BIST Using A Statistical Code

Abstract - To tackle with the increased switching activity

during the test operation, this paper proposes a new built-in

self test (BIST) scheme for low energy testing that uses a

statistical code and a new technique to skip unnecessary test

sequences. From a general point of view, the goal of this

technique is to minimize the total power consumption during a

test and to allow the at-speed test in order to achieve high fault

coverage. The effectiveness of the proposed low energy BIST

scheme was validated on a set of ISCAS ’89 benchmark circuits

with respect to test data volume and energy saving.

I. Introduction

As VLSI circuits are growing increasingly more complex,

exact testing of VLSI circuits is gaining its importance.

Since today’s large and complex VLSI circuits in SoC

environments need an enormous amount of test data, their

exact testing becomes even more difficult. When SoCs are

tested, the test data are transferred to the circuit under test

(CUT) from automatic test equipment (ATE). Since the

channel width and the size of memory for the ATE are

limited, the traditional ATE must either be modified or

replaced with a more expensive ATE to test an SoC with

enormous test data. In addition, if the original test data are

reduced for the size of the ATE memory by eliminating

useful test patterns, the accuracy of testing is diminished.

Thus, test data compression is essential in overcoming these

limitations and researchers have been presenting various

built-in-self-test (BIST) schemes to alleviate these problems.

In addition to the problem of test data volumes, the test

power and the energy consumption has become another

major problem for a SoC test. The switching activities

during the test mode could be twice as high as those of the

normal mode [1] and excessive energy consumption during

testing caused by the excessive switching activities can

cause several problems.

Therefore, we focus on a BIST scheme to reduce the

energy required for test in order to overcome these problems.

In fact, the low energy scan testing and the reduced test data

volume are conflicting goals since large test data and more

effective test data guarantee higher fault coverage while they

increase the power consumption during testing. To alleviate

these conflicting goals, many approaches to resolve the test

problems have been researched over the last several years

[2-10]. However, these techniques lead to high area

overhead and the large test data volume and hence are not

practical for large circuits.

This paper proposes a new pattern generator based on a

new compression code with the modified input reduction

scheme and a new test sequence skipping technique. The

proposed pattern generator consists of three main parts: 1) a

modified input reduction scheme to more efficiently reduce

test data and test power consumption; 2) a statistical and

simple compression code to generate more effective and

smaller test sets; 3) a new test sequence skipping technique

for significantly reducing wasted power consumptions with

a lower hardware overhead during the self-testing. From a

general point of view, the goal of this technique is to

minimize the total power consumption during a test and to

allow the at-speed test in order to achieve high fault

coverage.

This paper is organized as follows. The next section

explains the energy consumption model to estimate the total

energy consumption of our method. In Sections 3 and 4, a

new pattern generator for a low energy test in BIST-based

designs is proposed and experimental results for it are

reported. The conclusion is given in Section 5.

II. Energy Consumption Model

It has been shown [11, 12] that during the normal

operation of well-designed CMOS circuits the dynamic

energy dissipation caused by the switching activity accounts

for over 90% of the total energy consumption. Thus, total

energy optimization techniques have been employed at

different levels of abstraction target minimal switching

activity. The model for energy consumption for the gate i in

a logic circuit is simplified as:

Ei =
1

2
�Ci �VDD

2
� Ni (1)

The capacitive load that the gate is driving, Ci, can be

extracted from the circuit. The switch activity Ni depends on

the input to the system which during the test mode involves

test vectors and therefore, for low energy scan based tests,

reducing switching activities during scan shifting is one of

the most significant factors.

To find the BIST schemes to minimize the energy

consumption by switching activities during scan shifting, a

means for comparing the energy consumption by two

vectors is needed. The most accurate results would be

obtained by using a circuit simulator that finds the actual

number of circuit elements that switch when a vector is

scanned in and out. Since this process of using a simulator is

costly because of execution time, a simple heuristic is

required for comparing the power and the energy dissipated

by two vectors. Such a heuristic is presented in [13].

In this paper, the extended version of the weighted
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transition metric (WTM) introduced in [13] is used to

estimate the energy consumption caused by the scan vectors.

In the original WTM, the scan-in energy consumption for a

given vector is estimated using the number of transitions in

it with their relative positions. However, since the scan-out

energy consumption for a given vector should be considered

during a scan based test, we propose the extended transition

metric (ETM).

To have the energy consumption of the scan out vectors,

the CUT must be simulated. However, since we focus on

reducing the energy dissipation for the pattern generator and

scan paths during the BIST mode, we do not consider the

power dissipation in the CUT.

Consider a scan chain of length k, a test vector P = {p1, p2,

……, pi} and a scan response R = {r1, r2, …… , ri}. The ETM

to estimate the energy consumption during the scan based

test is as follows:

ETM= (p j � p j+1) � (k � j)
j=1

i�1

� + (rj � rj+1) � (k � j)
j=1

i�1

� (2)

If the total test vector set Ptotal contains n vectors p1, p2,

…… , pn and n response r1, r2, ……, rn, then the total energy

consumption ETMtotal would be

ETMtotal = ETMi

i=1

n

� (3)

III. The Proposed Low Energy BIST

The proposed low energy BIST scheme has three main

phases; First phase is to prepare an initial test set, second is

to generate a pattern generator using a statistical code and a

skipping logic for low energy test is generated as the final

phase. Fig.1 shows the overall algorithm of the low energy

BIST generation.

Figure 1. Overall algorithm of the proposed low energy BIST generation

A. Preparing An Initial Test Set

Initially, a pseudo-random pattern of the LFSR is

generated as the original test set T. Since the traditional

input reduction [14] uses a method of analyzing the relation

of inputs in a given netlist, the approach in [14] is not

suitable for modern large circuits.

We proposed the modified input reduction in [15] to

overcome this limitation. Unlike the input reduction in [14],

we considered a case where test sets are given by the

deterministic ATPG or the LFSR. Since the input reduction

approach uses deterministic test patterns, it is not perfectly

adapted to the actual BIST logics. To increase the accuracy

of the input reduction by using the test patterns, the

pseudo-random test patterns which are actually generated

from the LFSR in BIST logics can be used. In this case,

many specified bits in pseudo-random patterns have no

influence in activating and propagating faults. In addition,

they make it difficult to identify the compatible inputs and

inverse compatible inputs. The process of don’t care bit

identification [16] is required for a given test set obtained

from the LFSR in order to reduce test inputs efficiently.

After the don’t care identification procedure, compatible

inputs for the reassigned test set are computed by using the

input reduction algorithm in [15]. Note that the test set after

the modified input reduction denotes T’IR.

B. Generating a new pattern generator

This section describes a new pattern generator that uses a

statistical code. The new pattern generator is proposed in

order to efficiently compress test data for low energy test.

In recent work published in [17], it was shown that the

Huffman code is close to entropy limits and it can achieve

the highest compression ratio among other statistical codes.

However, for the Huffman code, as the number of the

compression blocks is increased, the hardware overhead for

the decompressor is increased. In general, since high

hardware overhead leads to large power and energy

consumptions, we select the MICRO code in [15] to

appropriately satisfy both high compression ratio and low

hardware overhead among many statistical compression

code. The idea of the MICRO code [15] is that the

compression ratio is enhanced by increasing the occurrence

frequency of one block. The detail procedures of

determining the compression block and generating the

MICRO code word are explained in [15].

Figure 2. The architecture of the proposed pattern generator

The overall architecture of the proposed pattern generator

is shown in Fig. 2. The proposed pattern generator consists

of a general LFSR, a weighted logic and the MICRO

decompression logic. The weighted logic is designed to

make the compression block occur as much as the

probability of the occurrence frequency of one block in the

TIR’ or T’. Note that if it is possible to change the circuit
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design or scan chain organization, the TIR’ is used to reduce

more test data volume and more test application time.

When the proposed pattern generator just used the

MICRO code, it was able to determine the combination of

the compression code and a general LFSR. Of course, the

combination of both is advantageous by itself. However, in

this paper, we added a weighted logic to the combination of

the compression code and a general LFSR in order to reduce

the total test energy and power consumption and to achieve

high fault coverage with a smaller number of patterns than

the conventional BIST architecture for low energy testing.

One of the possible solutions to increase the fault coverage

of a general LFSR is to use weighted random patterns [18].

Traditional weighted random patterns increase the fault

coverage by using the signal probability of the CUT.

Similarly, we can increase the fault coverage by using the

weighted logic for the MICRO code. For the MICRO code, a

pseudo-random pattern test will be more efficient if it will

generate more compression blocks than the uncompression

blocks. For this reason, we used a weighted logic for the

proposed pattern generator to reduce the total test energy

and to achieve high fault coverage with a smaller number of

patterns.

During the determining process of the compression

block(CB), the occurrence frequency of the CB can be stored.

The stored occurrence frequency of the CB is used as the

weight between the decompressor of the MICRO code and

an LFSR. The proposed weight logic implements with the

probability of generating the CB one-bit code at the input of

the MICRO decompressor. This pattern generator effectively

deals with hard-to-detect faults by generating the CB code

word as the probability of the CB occurrence frequency. In

the conventional LFSR, each scan input has a probability of

0.5 of being either a 0 or a 1. In the proposed weighted

LFSR, the probability is adjusted so that the code word for

the compression block is more likely generated as the stored

CB occurrence frequency. If each LFSR stage has a

probability of 0.5 of being either 0 or 1 and is statistically

independent of the values on the other LFSR bits, then

ANDing k LFSR signals would result in a 1 value at the

AND gate output with a probability of 0.5
k
. On the contrary,

ORing k LFSR signals result in a 0 value at the OR gate

output with a probability of 0.5
k
. INVERTERs can be used

to obtain other probabilities. Therefore, the probability of the

CB uses a value of 0.5
k
in order to implement the weight

logic simply. In addition, the masking logic is required to

mask the weighted logic during the uncompression block

decoding stage in the MICRO decompressor because each

LFSR stage has a probability of 0.5 for the UBs

(uncompression blocks).

The FSM decoder of the MICRO code loads the

compression block CB in parallel with the Parallel output

signal into the controller. If the prefix bit is a ‘1’, then the

FSM decoder simply transfers the next two bits with the

Serial output signal into the controller during the next two

cycles since the prefix bit ‘1’ indicates that the next bits are

not encoded. Therefore, if the value of the Serial output

signal is 1, the masking logic is activated to generate an

encoded test pattern as the original probability. This

masking logic is easily implemented with the Serial signal

and one MUX. Fig. 3 shows an example of the proposed

LFSR with a weighted logic and a masking logic when the

probability of the CB occurrence is 0.625 and the 4-bit

LFSR is used.

Figure 3. An example of the proposed pattern generator

The proposed pattern generator can easily resolve the

linear dependency problem of a general LFSR. The

recurrence relation of a general LFSR causes linear

dependencies within the sequence that are of importance to

their use as test stimuli. In general, the test for a particular

fault in the CUT requires that the k inputs to that circuit take

on certain specified values. In a conventional LFSR, some

test patterns for particular faults cannot be generated because

of the effect of the linear dependency problem when the

span of the sampling polynomial exceeds the length of the

LFSR that generates the sequence. However, the proposed

pattern generator has more chances to generate tests for

hard-to-detect faults than a general LFSR even though the

span of the sampling polynomial occurs because the

sequences of the proposed pattern generator do not have the

recurrence relation caused by the influences of the weighted

logic and the MICRO code. Therefore, the fault coverage of

the proposed pattern generator with a smaller number of

patterns can be much higher.

Furthermore, the proposed pattern generator requires an

LFSR with fewer states than a general LFSR on account of

the MICRO code and the weighted logics. The number of

states that a general LFSR can cycle through is less than or

equal to 2
n
-1, where n is the number of stages in the general

LFSR. Therefore, to test large circuits which include many

test inputs, the number of stages in the general LFSR should

be numerous. However, the proposed pattern generator

generates upwards of 2
n
-1 stages since a period of the CB

code occurrence is changed according to the weighted logic.

Hence, it reduces the number of stages in the LFSR with the

consequence that the hardware overhead and the energy and

power consumption for the LFSR in the proposed pattern

generator are diminished.

C. Generating A Skipping Logic

In a general BIST architecture, a modulo-m bit counter

keeps track of the number of scan shifts, where m is the

length of the longest scan paths. As shown in Fig. 4, since

the number of useful patterns is known to be a very small

fraction of all the patterns generated, a significant amount of

energy is still wasted in the LFSR while cycling through

these useless patterns even though they are blocked at the
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inputs to the CUT. Through fault simulation, it can be easily

verified that not all patterns in a pseudo-random test set can

detect faults in the circuit. A test set which is generated from

the proposed pattern generator also includes non-detecting

subsequences of test patterns. Therefore, a new BIST design

that prevents the pattern generator from generating useless

patterns is required to minimize the total test power

consumption with low hardware overhead.

Figure 4. Useless patterns of a general LFSR

The proposed BIST architecture is shown in Fig. 5. This

sub-section describes a new test vector skipping technique in

the proposed BIST architecture. This skipping technique is a

little similar to the inhibiting technique [2]. The inhibiting

technique used the decoding logics and transmission gates

networks to skip the inhibiting test sequences. However, its

test energy reduction ratio is still low and its hardware

overhead can be much higher for multiple LFSR inhibitions.

Therefore, to achieve higher energy reduction ratio, we

propose a new skipping logic technique using the MICRO

code. In addition, a new success stage reordering algorithm

is proposed to find an optimal test sequence with a low

hardware overhead. Since the proposed skipping logic

includes the logic for generating seeds, this technique can be

easily extended to the reseeding technique [19] to deal with

hard-to-detect circuits.

Figure 5. Low energy BIST based on the skipping technique

The procedure of developing the skipping structure

consists of three phases. The first phase is to generate a

pseudo-random test sequence by the proposed pattern

generator and to determine its single stuck-at fault coverage

in the CUT through fault simulation. Then, the first and last

vectors of each useless subsequence in the whole sequence

generated by the proposed pattern generator are identified,

such as V1 and V2 in Fig. 4. We call each useful subsequence

the success stage S, such as S1 and S2 in Fig. 4.

For low power and low energy testing, modification

logic/ROM may be used to inhibit or skip the LFSR states

that generate useless test patterns. The extra logic overhead

increases rapidly with the number of such jumps. Therefore,

we propose a new success stage reordering algorithm to find

an optimal test sequence with a low hardware overhead. In

the second phase for finding an optimal test sequence, the

number of transitions between each success stages is

calculated and the number of faults detected in each success

stage is calculated through fault simulation. Then, a state

transition graph G(V,E), where V is a success stage Si and E

is a skipping constraint value, is generated to determine the

optimal sequence of success stages. Note that the

formulation of the skipping constraint value consists of a

number of transitions between success stages (NTr) and a

number of detected faults of V after a predecessor (NDF). The

skipping constraint value (SCV) is calculated as follows.

SCV = � � NDF + � � NTr (4)

where � and � are weighted constants of NDF and NTr,

respectively and they are all user defined values. To

minimize the skipping logic, the minimum success stages

with minimal transitions are required. Therefore, it is

important to determine the appropriately weighed constants.

We assume that � and � are 1 in this paper.

The goal of this step is solving the problem of minimizing

the SCV in order to reduce the area and the energy

consumption of the skipping logics. We propose the

following approach to find an optimal solution.

a) For a given stage transition graph, choose the

success stage Si which has the maximum fault

coverage.

b) Si sets the start stage.

c) Select the next success stage Sj which has the

minimum SCVij between Si and Sj.

d) Drop the success stage Si in a given stage

transition graph and re-calculate the NDFs and NTRs

for new skipping constraint values.

e) Create a new stage transition graph and then Sj set

the start stage.

f) Repeat from the step c) to f) until that the fault

coverage is 100% or only one vertex in a stage

transition graph exists.

The proposed success stage reordering algorithm is

capable of minimizing the area and the energy consumption

of the skipping logic. In addition, the proposed algorithm

was further extended to use a reseeding technique to deal

with hard-to-test circuits or reduce test application time and

test data volume more. The reseeding method is a technique

in which the LFSR used to generate pseudo-random patterns

is loaded with different seeds from which it produces vectors

that cover the test cubes of random pattern resistant faults.

Therefore, some seeds can be calculated from the test cubes

of the CUT to use the reseeding technique and then each

calculated seed is regarded as one of the success stages.

Thus, the proposed algorithm can be easily extended to find

the optimal useful pattern subsequences by including the

success stages generated by seeds into the state transition

graph.

In the third phase, the skipping logic with the minimum

cost is synthesized to prevent unnecessary pattern

subsequences and to jump the first vectors of success stages

as the order obtained in the second phase. The skipping logic
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consists of a decoding logic, which is connected to the

output of the LFSR, and the state of the next useful patterns.

To generate the start state of the next success stage, the first

pattern of the success stage is reversely encoded by using the

MICRO code, and then the LFSR state is calculated by

solving the linear equation for the reversely encoded pattern.

The seed for the LFSR start state of the first pattern of useful

subsequence is easily calculated by the Gauss-Jordan

elimination. However, the number of skipping states should

be limited in order to reduce the area overhead for the

skipping logic.

IV. Experimental Results

To demonstrate the efficiency of the proposed method,

the proposed low energy BIST is used for ISCAS ’89

benchmark circuits. The proposed method and previous

approaches [2, 7, 10] were implemented in C and the

experiments were performed on a Pentium 4 1.4GHz system

with Linux. The in-house ATPG and the fault simulator

were used to calculate the number of vectors to achieve

definite fault coverage for a general BIST scheme. In Table

1, the number of patterns of every general BIST session and

the total fault coverage are presented. In Table 1, column 2

is the number of LFSR bits for a general LFSR and previous

studies, and column 3 is the number of vectors generated by

a general LFSR to achieve appropriate fault coverage. Note

that the polynomial equation of the applied LFSR with 10

scan chains for each circuit is generated by using the

commercial tool, the LBISTArchitect [20] in Mentor

Graphics with the TSMC 0.25μm library.

TABLE 1. INITIAL DATA USED FOR EXPERIMENTS

Circuits
Required
LFSR bits

Number of
Patterns

Fault Coverage
(F.C) (%)

s5378 22 50000 84.39

s9234 22 50000 96.42

s13207 24 50000 97.78

s15850 23 50000 93.61

s38417 25 70000 98.25

s38584 25 70000 98.90

To present the efficiency of the proposed pattern

generator, its test patterns were generated in each circuit

until the similar or higher fault coverage was achieved. In

this case, the number of generated patterns depends on the

number of skipping non-detecting sequences. Since the

number of subsequences to be skipped is related to the

hardware overhead, a large number of them is not always the

optimal solution. For the proposed pattern generator,

experiments were carried out on the same ISCAS ’89

benchmark circuits as in Table 1, and the results of the

previous works and the proposed method for test data with

the input reduction scheme and without the input reduction

scheme are recorded in Table 2 and Table 3, respectively.

For each circuit, using the in-house tool, we calculated the

required polynomial equation of the applied LFSR for the

same or higher fault coverage than that of Table 1. Note that

the reduction ratio is computed as follows.

reduction ratio =
NLFSR � NProposed

NLFSR

�100 (5)

where the NLFSR is the number of patterns for a general

LFSR and the NProposed is the number of patterns for the

proposed pattern generator.

In Table 2, the results of [2] were obtained by using a

multiple LFSR inhibition scheme and the results of [10]

were obtained when the gap value was 10. As shown in

column 2 in Table 3, the fault coverage is higher than that of

previous studies.

TABLE 2. THE TEST DATA OF PREVIOUS WORKS

General
LFSR

[2] [7] [10]

Circuits

Test data

(bits)

Test data

(bits)

Test data

(bits)

Test data

(bits)

s5378 10,700,000 5,485,248 1,376,448 537,140

s9234 12,350,000 7,390,240 2,726,880 679,250

s13207 35,000,000 19,801,600 10,035,200 2,940,000

s15850 30,550,000 18,124,704 6,041,568 1,857,440

s38417 116,480,000 34,305,408 21,305,856 9,967,360

s38584 102,480,000 50,654,400 26,351,360 9,311,040

The longer test sequence and the greater volume of test

data for a CUT mean that the energy consumption to test the

CUT can be increased and thus the probability of damaging

the circuit during a test session can be much higher. In

addition, since the proposed pattern generator requires

smaller bits for LFSR on account of the MICRO code, the

energy dissipation to test a CUT was further reduced.

Experimental results were obtained in this manner, and the

results of energy consumption and the area overhead are

presented in Table 4 and Table 5. The energy consumptions

and the area overheads for the proposed BIST in Table 5

were calculated in the cases for high data compression in

Table 3. For each test pattern, ETM in the scan path was

computed. As can be seen, these results reveal a significant

reduction in ETM compared with the conventional

TABLE 3. THE TEST DATA OF THE PROPOSED METHOD
Proposed

For low hardware overhead For high data compression
Circuits

F.C of
[2], [7] and

[10]
F.C

Test data
(w/o IR)

(bits)

Test data
(w/ IR)

(bits)

# of
skips

Reduction
ratio

Test data
(w/o IR)

(bits)

Test data
(w/ IR)

(bits)

# of
skips

Reduction
ratio

s5378 84.4 99.0 471,014 407,296 33 96.2 209,934 181,632 47 98.3

s9234 96.4 97.3 941,811 671,232 95 94.6 327,522 233,472 127 98.1

s13207 97.8 95.8 4,767,000 3,677,440 67 89.5 2,086,700 1,610,240 118 95.4

s15850 93.6 98.0 2,611,414 2,090,048 53 93.2 1,201,226 961,792 77 96.9

s38417 98.3 99.3 21,482,240 17,557,920 78 84.9 11,198,720 9,153,792 135 92.1

s38584 98.9 99.1 17,099,520 12,988,160 66 87.3 9,088,512 6,903,296 108 93.3
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approaches. Since the skipping logic affects the energy

consumption of scan-in mode as well as that of scan-out

mode, the energy reduction rate was much larger than

previous methods.

V. Summary and Conclusions

To minimize the energy consumption during test

application for BISTed circuits, we developed a new pattern

generator based on a statistical compression code with the

modified input reduction scheme and a new test sequence

skipping technique.

The proposed approach proved to be an attractive and an

effective solution of BIST for low energy tests. Our

experimental results demonstrated that the proposed

technique significantly reduced the energy consumption and

test data volume while at the same time increasing the

stuck-at fault coverage. Experimental results gathered on the

benchmark circuits have shown the weighted switching

activity reduction ranging from 81.3% to 97.2% with

increasing stuck-at fault coverage. In addition, the results

show that the proposed method achieve higher test data

compression with smaller area overhead than previous

works.

References
[1] Y. Zorian, "A Distributed BIST Control Scheme for Complex VLSI

Devices," Proceedings of IEEE VLSI Test Symposium, pp. 4-9, 1993.

[2] P. Girard, L. Guiller, C. Landrault and S. Pravossoudovitch, “A Test

Vector Inhibiting Technique for Low Energy BIST Design,”

Proceedings of IEEE VLSI Test Symposium, pp.407-412, 1999.

[3] F. Corno, M. Rebaudengo and M. S. Reorda, "Low Power BIST via

Nonlinear Hybrid Cellular Automata," Proceedings IEEE VLSI Test

Symposium, pp. 29-34, 2000

[4] Y. Zorian, “A Distributed BIST Control Scheme for Complex VLSI

Devices,” Proceedings of IEEE VLSI Test Symposium, pp.4-9, 1993.

[5] H. Cheung and S. Gupta, “A BIST Methodology for Comprehensive

Testing of RAM with Reduced Heat Dissipation,” Proceedings of

IEEE International Test Conference, pp.386-395, 1996.

[6] R.M Chou, K.K. Saluja, and V.D. Agrawal, “Power Constraint

Scheduling of Tests,” Proceedings of IEEE International Test

Conference, pp.271-274, 1994.

[7] S. Manich, A. Gabarro, M. Lopez and J. Figueras, “Low Power BIST

by Filtering Non-Detecting Vectors,” Proceedings of IEEE European

Test Workshop, pp.165-170, 1999.

[8] B. B. Bhattacharya, S. C. Seth and S. Zhang, “Low Energy BIST

Design for Scan Based Logic Circuits,” Proceedings of IEEE

Conference on VLSI Design, pp. 546-551, 2003.

[9] N. C. Lai, S. J. Wang and Y. H. Fu, “Low Power BIST with

Smoother and Scan-Chain Reorder,” Proceedings of Asian Test

Symposium, pp. , 2004.

[10] S. Zhang, S. C. Seth and B. B. Bhattacharya, “On Finding

Consecutive Test Vectors in a Random Sequence for Energy Aware

BIST Design,” Proceedings of IEEE International Conference on

VLSI Design, pp. 491-496, 2005.

[11] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design,

Addison Wesley Publishing Company, second edition, 1994.

[12] A. Chandrakasan, T. Sheng, and R. Brodersen, “Low Power CMOS

Digital Design,” Journal of solid State Circuits, Vol. 27, No. 4,

pp.473-484, 1992.

[13] S. Sankaralingarm, R. R. Oruganti and N. A. Touba, “Static

Compaction Techniques to Control Scan Vector Power Dissipation,”

Proceedings of IEEE VLSI Test Symposium, pp. 35-40, 2000.

[14] C. A. Chen and S. K. Gupta, "Efficient BIST TPG Design and Test

Set Compaction via Input Reduction," IEEE Transactions on

Computer Aided Design of Integrated Circuit and Systems, Vol. 17,

pp.692-705, 1998.

[15] S. Chun, Y. Kim, J. Im and S. Kang, “MICRO: A New Hybrid Test

Data Compression/Decompression Scheme,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, Vol. 14, No. 6, pp.

649-654, 2006.

[16] S. Kajihara, K. Miyase, "On Identifying Don't Care inputs of Test

Patterns for Combinational Circuits," Proceedings of IEEE

International Conference on Computer Aided Design, pp.364-369,

2001.

[17] K. J. Balakrishnan and N. A. Touba, “Relationship Between Entropy

and Test Data Compression,” IEEE Transactions on Computer Aided

Design of Integrated Circuit and Systems, Vol. 26, pp. 386-395, 2007.

[18] H. J. Wunderlich, “Self Test Using Unequiprobable Random

Patterns,” Proceedings of IEEE International Symposium on Fault

Tolerant Computing, pp.258-263, 1987.

[19] E. Kalligeros, X. Kavousianos, D. Bakalis, and D. Nikolos, “New

reseeding technique for LFSR-based test pattern generation,”

Proceedings of IEEE On-line Testing Workshop, pp.80-86, 2001.

[20] Mentor Graphics, “LBISTArchitect Reference Manual,” Version

8.9_1

TABLE 4. RESULTS OF ENERGY AND AREA OVERHEAD REDUCTION FOR PREVIOUS WORKS
General LFSR [2] [7] [10]

Circuits
ETM ETM

Energy
Reduction

(%)

Area
Overhead

(%)

ETM
Energy
Reduction

(%)

Area
Overhead

(%)

ETM
Energy
Reduction

(%)

Area
Overhead

(%)

s5378 6,205,783 2,842,162 54.2 9.5 817,907 86.8 14. 1 327,162 94.7 28.3

s9234 6,151,931 3,612,034 41.3 7.7 1,618,041 73.7 11.4 647,216 89.5 37.6

s13207 10,489,489 9,918,453 5.4 4.0 5,735,179 45.3 6.1 2,294,072 78.1 21.8

s15850 9,153,358 8,899,588 2.8 3.7 3,640,491 60.2 5.7 1,456,196 84.1 16.1

s38417 58,217,693 24,609,502 57.7 1.4 17,080,393 70.7 3.2 6,832,157 88.3 8.8

s38584 51,214,830 21,487,640 58.0 1.4 12,592,241 75.4 2.6 5,036,896 90.2 8.4

TABLE 5. RESULTS OF ENERGY AND AREA OVERHEAD REDUCTION FOR THE PROPOSED METHOD
General LFSR Proposed

Circuits
ETM ETM

Energy
Reduction

(%)

LFSR
bits

Area
Overhead

(%)

s5378 6,205,783 175,286 97.2 11 16.6

s9234 6,151,931 254,084 95.9 11 21.5

s13207 10,489,489 1,553,330 85.2 12 11.3

s15850 9,153,358 928,016 89.9 11 8.3

s38417 58,217,693 10,910,489 81.3 12 3.8

s38584 51,214,830 4,843,265 90.5 13 4.2

8A-2
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