
Automatic Interface Synthesis based on the Classification of Interface Protocols of IPs

Abstract - In a System on a Chip (SoC) design, we use an
IP-based design methodology to reduce design time. An
interface circuit design is one of the most essential factors in
IP-based design. However, it is not easy to generate interface
circuits because IPs have various characteristics. For example,
one IP may send only one outstanding address in a burst but
another IP may need one address for each transfer in a burst.
IPs also use different clock frequencies or different data widths.
It is necessary to analyze the interface protocols of each IP to
consider and resolve these differences during synthesis. In this
paper, we categorize the various interface protocols and use the
synthesis algorithm to select the appropriate structure based on
the categorizations, clock frequencies, and data width
differences of the IPs. Through the experiments, we show that
we could automatically generate interface circuits for IPs with
different clocks, different data widths, and no address concepts.
Experiments also show the pros and cons of two structures
based on the comparisons of the synthesis results of several IP
pairs which could be employed between two alternative
structures, namely, product FSM-based structure and
FSMD-like structure.

I Introduction
In a SoC design, IP-based design methodology is used to

respond to the demands of high performance, complex
functionality, and short time-to-market. Protocol conversion
between IPs with different protocols is one of the most
important topics in an IP-based design. It is necessary to
generate interface circuits automatically because these
design processes are both time-consuming and error-prone.

There are two kinds of automatic interface synthesis
methods based on interface FSMs. One is based on a product
FSM and the other is based on a FSMD (FSM and Data
Path). In the former approach, a product FSM, as shown in
Figure 1, is derived from the interface FSMs of IPs. The
interface circuit consists of a product FSM and buffers. This
structure allows the transfer of data without any clock cycle
delay. Seawright and Brewer [1] were the first to report on
the interface synthesis from interface FSMs. They used a
regular expression to describe interface FSMs. Passerone [2]
proposed a synthesis algorithm which creates a FSM that is
the subset of the product FSM. Vijay D’silva [3, 4] proposed
a synthesis algorithm to build a product FSM from each
FSM of an IP and the compatibility check algorithm between
two IPs. With this approach, we can determine whether or
not an interface circuit is necessary. Yin-Tsung Hwang [5]
proposed a template-based interface logic. An interface
template consists of a protocol translation FSM, a mode
control/command register module, a status/signaling register
module, address/data buffers. An interface template is suited
to the connection between IPs with similar characteristics.

Several studies [6][7] have been conducted on interface
synthesis based on the FSMD structure. FSMD consists of a
FSM and internal data buffers. The structure with FSMD is
shown in Figure 2. FSMDs are used to communicate with
each IP; a queue is used to transfer data between FSMDs[6].
Every data transfer has at least two cycle delay in order to

pass through a buffer and then a queue. For this reason, this
structure is not well suited for IPs expecting a fast
acknowledgement. There have been proposals for the use of
the Interface Protocol Component (IPC)[7], a kind of FSMD,
in interface synthesis. An IPC is a complementary FSM for
the corresponding interface FSM. The difference between a
FSMD and an IPC is that an IPC has no internal buffer to
store data temporarily. An IPC has several signals to control
assumed external buffers to store addresses/data. We decided
to use IPCs in our interface synthesis because we can reduce
data passing delay. IPC-based interface circuit structure has
at least one clock cycle delay, but it tends to have smaller
area than product FSM-based structure because the former
consists of two IPCs and external buffers as shown in Figure
11.

Protocol 1

FSM 1

Interface Protocol 2

FSM 2
Product

FSM

Buffer

Fig. 1. The interface circuit structure based on a product FSM [3]

IP IP

FSMD FSMD

QUEUEQUEUE

Fig. 2. The architecture of interface circuit based on FSMDs [6]

In addition, interface circuits have to deal with the
differences in protocols, data widths, and clock frequencies.
In product FSM-based structure, the number of states and
transitions increases especially when IPs use different clock
frequencies and different data sizes. On the other hand, the
increase of states and transitions is not so severe in
IPC-based structure. Which structure is better depends on the
characteristics of the protocols of IPs as well as on the
differences in clock frequencies and data widths. For
example, let us consider the interface circuit for an OCP[8]
master and an AHB [9] slave with different data widths,
where the AHB slave uses a data bus two times wider than
the master. Their product FSM has about three times more
states and four times more transitions than the product FSM
of the OCP-AHB pair with the same data width [3]. In
addition, depending on the situations of a system, low
latency on data transmission may be more important than
low area or vice versa. However, most research usually has a
fixed architecture for interface circuits. Our synthesis
algorithm has the flexibility to select and generate an
appropriate structure depending on the designer’s interaction
and decision. These are represented in the matching
description as shown in Figure 8.

The original role of interface circuits is to transfer
addresses and data correctly. Studies mentioned above

ChangRyul Yun1, DongSoo Kang2, YoungHwan Bae3, HanJin Cho3, KyoungSon Jhang2

1Agency for Defense Development, Daejeon, Korea, ipinterface@gmail.com
2Dept. Computer Engineering, ChungNam National University, Daejeon, Korea, {atom, sun}@cnu.ac.kr

3Multimedia SoC Design, ETRI, Daejeon, Korea, {yhbae,jhcho}@etri.re.kr

7B-2

589978-1-4244-1922-7/08/$25.00 ©2008 IEEE

assume that a master and a slave sends/receives the same
amount of data/address. However, one IP (e.g., PCI) may
send only one outstanding address in a burst but another IP
(e.g., AHB) may need one address for each transfer in a burst.
The state-of-the-art protocols use different features on
address transmission for efficiency, but other studies have
not looked into this kind of IP pair as far as we know. We
could not directly generate interface circuits between these
IPs because the amount of addresses exchanged is different.
In this case, the interface circuit should take the role of
generating addresses for a slave IP. To deal with these kinds
of differences, we need to classify IPs according to their
communication characteristics. Our synthesis algorithm
takes the different interface circuit structures according to the
pairing of IP categories.

Protocol
Description

(Master)

Protocol
Description

(Master)

Protocol
Description

(Slave)

Protocol
Description

(Slave)

Parsing &
Build

interface
FSMs

Interface
FSM

(Master)

Interface
FSM

(Master)

Interface
FSM

(Slave)

Interface
FSM

(Slave)

Protocol

Analysis

Protocol

Analysis

Type I
Interface
Circuits

Type I
Interface
Circuits

Matching
Information
Matching

Information
Build

a Product
FSM

Build
a Product

FSM

Build
IPCs

Build
IPCs

Type II
Interface
Circuits

Type II
Interface
Circuits

Fig. 3. Proposed interface synthesis flow

Our proposed interface synthesis flow is shown in Figure
3. Interface FSMs are built from input descriptions proposed
in [10]. The Interface protocol description method is
described in Section II. We describe the interface circuit
structures based on matching information that corresponds to
the different characteristics of IPs in Section III. Our
algorithm for a product FSM and IPC generation shown in
Section IV chooses an appropriate structure according to the
protocol analysis. Experimental results with various
protocols are described to show the efficacy of our method in
Section V. Finally, we conclude this paper in Section VI.

II. Interface FSM
The waveform or timing diagram has been used to

describe an interface protocol of IP, but it is informal and
sometimes ambiguous for an automatic tool. An interface
protocol must be described in a formal language. We use
SIMPLE [10] to describe interface protocols of IPs that
consist of transfers and parameters to indicate address, data,
transaction information, etc. Parameters are used to match
the different features of IPs. With this method, we can
noticeably reduce the states and transitions of the interface
FSMs of IPs with many transactions. An example for the
AHB master protocol is shown in Figure 4. A pseudo
variable such as ‘#new_transaction’ in Figure 4(a) indicates
an internal condition of an IP but is ignored in the synthesis.
The parameter value of ‘$transaction’, ‘$burst_length’ is
determined by matching information. We can reduce the
states and transitions of an interface FSM because various
transactions are described with only one parameter
(‘$transaction’).

Figure 5 presents the definition of an interface FSM. We
assume that any transition in a state must have a
distinguishable set of action on the output port with other
transitions in a state. A transition is written as q t q’,
where q and q’ are the source and destination states,
respectively, and ‘t’ is a set of action.

An interface FSM shown in Figure 6(a) is extracted from
the protocol description of the AHB master in Figure 4(a).
Figure 4(a) shows only a transition from “S0” to “S1” in
Figure 6(a). We could not describe all the ports of IPs as the

space is limited in Figure 6. The input action that checks or
saves the value of a signal is represented as
“signal_name?value”. Output action is denoted as
“signal_name!value” and ‘ ’ is empty action. ‘$address’,
‘$wdata’, and ‘$rdata’ mean address, write data, and read
data, respectively. Such variables appear frequently in the
matching description in Section III.C.

hclk

htrans

haddr

hburst

hwdata

hready

NONSEQ BUSY

0x20 0x24

INCR4

Define #new_transaction; // a
Interface AHB_Master {

out bit htrans; // Ports List
:

AMBA_MASTER: BEHAVIOR {
int count; // User Defined Variable

S0: if (#new_transaction == 1) /* a */ {
htrans = "10"; // NONSEQ
haddr = $address; // b
hburst = $transaction; // c
count = $transaction_length; // d
hwrite = '1';
if (HREADY == '1') goto S1;
else goto S0;

}

Define #new_transaction; // a
Interface AHB_Master {

out bit htrans; // Ports List
:

AMBA_MASTER: BEHAVIOR {
int count; // User Defined Variable

S0: if (#new_transaction == 1) /* a */ {
htrans = "10"; // NONSEQ
haddr = $address; // b
hburst = $transaction; // c
count = $transaction_length; // d
hwrite = '1';
if (HREADY == '1') goto S1;
else goto S0;

}

(a) Protocol Description (b) Equivalent Timing Diagram

a: pseudo variable
b: address
c: transaction information
d: the length of burst

Fig. 4. A part of the protocol description of AMBA AHB Master

Interface FSM P = (Q, I, O, D, T, V, q0)
t (T) = (Ai, Ao, Ad, Av, q’) (q, q’ Q)

Q: the set of states (q Q)
I, O: the sets input, output control signals (i I, o O)
D: the sets of address and data signals (d D)
V: the set of internal variables (v V)
T: the set of transitions on states (t T)
q0: initial state of FSM
q': next state
Ai, Ao, Ad, Av, Ap : the sets of actions on input, output,

address/data, internal variables and parameters

Interface FSM P = (Q, I, O, D, T, V, q0)
t (T) = (Ai, Ao, Ad, Av, q’) (q, q’ Q)

Q: the set of states (q Q)
I, O: the sets input, output control signals (i I, o O)
D: the sets of address and data signals (d D)
V: the set of internal variables (v V)
T: the set of transitions on states (t T)
q0: initial state of FSM
q': next state
Ai, Ao, Ad, Av, Ap : the sets of actions on input, output,

address/data, internal variables and parameters

Fig. 5. The definition of an interface FSM

S0

S1

S2

htrans!”10”,
hwrite!‘1’, hready?‘1’,

hburst!$transaction,
haddr!$address

count!$transaction_length

htrans!”11”,
hready?‘1’

haddr!$address,
hwdata!$wdata

count!count-1
hready?‘0’

hready?’0’

htrans!”10”,
hwrite!‘0’, hready?‘1’,

hburst!$transaction,
haddr!$address

count!$transaciton_length

htrans!”11”, hready?‘1’
haddr!$address,
hrdata?$rdata
count!count-1

htrans!”10”,
hwrite!‘0’, hready?‘1’,

hwdata!$wdata,
haddr!$address,

hburst!$transaction
count!$transaction_length

htrans!”10”, hwrite!‘1’,
hready?‘1’, hrdata?$rdata

haddr!$address,
hburst!$transaction

count!$transaction_length

hready?‘1’
hrdata?$rdata

count?0

hready?‘1’
hwdata!$wdata

count?0

(b) PCI Initiator FSM

P0

P1

P2

P3

AD!$address
AD!$address

AD!$wdata

AD!$wdata

AD?$rdata

AD?$rdata

(a) AHB Master Initiator FSM

Fig. 6. An interface FSM of the AHB Master and the PCI Initiator

III. The Categorization of interface protocols
and the structure of interface circuits

A. IP Categorization

Interface protocols are classified into three categories
according to the transmission styles of address and data. This
is because the fundamental role of an interface circuit is the
correct transmission of addresses and data and such styles
affect the synthesis process.

7B-2

590

We illustrate the examples of two interface FSMs, AHB
master and PCI Initiator, in Figure 6. An interface FSM in
Figure 6(a) belongs to category ‘A’ because the address,
write data, and read data are sent by different ports. The FSM
in Figure 6(b) belongs to category ‘B’ because the address,
write data, and read data are sent through a port ‘AD’. We
have classified interface protocols into three categories as
shown in Table 1. Most bus protocols belong to category A.
PCI belongs to category ‘B’. The category of an IP is
automatically determined by analyzing the interface FSM.

Table 1. The categories of interface protocols of IPs or bus protocols
Category Features examples

A
Separated ports for
addresses, write data,
and read data

AHB, OCN, VCI, OCP,
PLB, etc.

B
Shared one port for
addresses, write data,
and read data

PCI, PCI-X, etc.

C No address DES, AES, Color
converter[11], etc.

B. Matching Information

The matching information includes port pairing,
transaction mapping, address assignment on ports, etc. We
will describe matching information together with the
interface structures in the next section in detail because our
algorithm decides the structure of interface circuit depending
on the matching information. Designers use a simple
Grapical User Interface (GUI) or a script file to construct the
matching description.

Use different
Clock?

TYPE II-1TYPE II-2

YES

NO

TYPE I-1

YES
NO

A:A

NO

Use different
data width?

Use different
data width?

A:B
B:A A:C B:B B:C

TYPE I-2 TYPE II-4 TYPE I-1 TYPE II-4

TYPE II-3

Interface
FSM 1

Matching
Information

Protocol
AnalysisInterface

FSM 2

YES

Fig. 7. The flow to decide the interface circuit structure

C. Selection of Interface Circuit Structures based on IP
Categorization

First, IP categorization is performed and then the interface
circuit structure is automatically determined as “Type I” or
“Type II”, as shown in Figure 7. “Type I” is the structure
based on a product FSM and “Type II” is the structure based
on IPCs. However, a designer can select an appropriate
structure and buffer sizes through several GUI steps to
trade-off between area and throughput. So far, we have not
considered the case where category ‘C’ IP is a master.

1. The structure of “Type I”
“Type I” is the structure based on a product FSM. A buffer

can be employed for each port pair with ‘$address’, ‘$wdata’,
and ‘$rdata’ in the interface FSMs as shown in Figure 8
“[Port Pairing]”. A product FSM communicates with two IPs
and controls the buffers so that data can be stored or

bypassed to reduce transmission delay. Figure 8 shows a part
of the matching information between the OCN [12] and the
AHB slave. The “[TM]” part in Figure 8 is for the
transaction matching, that is, the matching of ‘$transaction’
in the interface FSM as shown in Figure 6(a). The underlined
sentence in Figure 8 indicates that in order to connect two
transactions with the length 4 of each IP, the value "011" of
the "HBURST(2:0)" of the AHB slave should be mapped to
the value of “01” of the "FS(3:2)" of the OCN. The
transactions not specified in the matching information match
the single transaction of each IP.

[Clock Ratio] 1 : 1 //// Master IP, Slave IP
//// Buffer Size, Signal (master), MSB, LSB,
//// Signal (slave), MSB, LSB, $address or $wdata or $rdata
[Port Pair] 1 , FA , 31 , 0 , haddr , 31 , 0 , $address;
[Port Pair] 1 , FD , 31 , 0 , hwdata , 31 , 0 , $wdata;
// Burst Transaction Length, Signal(master), MSB, LSB,
// Values, Signal(slave), MSB, LSB, Values
[TM] 1 , FS , 3 , 2 , "00" , HBURST , 2 , 0 , "000";
[TM] 4 , FS , 3 , 2 , "01" , HBURST , 2 , 0 , "011";
[TM] 16 , FS , 3 , 2 , "11" , HBURST , 2 , 0 , "111";

Fig. 8. A part of the matching information for OCN[12](Master) and
AHB(Slave)

P0

P1

P2

P3

AD!$address
AD!$address

AD!$wdata, $address

AD!$wdata

AD?$rdata, $address

AD?$rdata

(b) PCI Initiator FSM

S0

S1

S2

haddr!$address

hwdata!$wdata

hwdata!$wdata

(a) AHB Master FSM

haddr!$address

hrdata?$rdata

haddr!$address
hwdata!$wdata

haddr!$address
hrdata?$rdata

hrdata?$rdata

(1) (2)

Fig. 9. Modified Interface FSM

//// Buffer Size, Signal (master), MSB, LSB, Signal (slave), MSB, LSB,
//// $address or $wdata or $rdata
[Port Pairing] 1 , haddr , 31 , 0 , ad , 31 , 0 , $address;
[Port Pairing] 1 , hwdata , 31 , 0 , ad , 31 , 0 , $wdata;
[Port Pairing] 0 , hrdata , 31 , 0 , ad , 31 , 0 , $rdata;

Fig. 10. A part of matching information for the AHB(Master) and
PCI(Slave)

In “Type I – 2”, the category ‘B’ IP only sends the first
address in a burst transaction but category ‘A’ IP needs
addresses in every transfer. Therefore, an interface circuit has
to generate/ignore addresses when category ‘B’ IP is a
master/slave. In order to generate a product FSM for “Type I
– 2,” the interface FSMs in Figure 6 are modified as shown
in Figure 9, where the dotted lines indicate modified
transitions. If category ‘A’ IP is a master, the actions on the
address are eliminated except for the first address of a burst
as shown in Figure 9(a) because a slave of category ‘B’ does
not need other addresses except for the first one. In cases
where category ‘B’ IP is a master IP, the actions on the
address are added to the FSM as shown in Figure 9(b)
because a slave of category ‘A’ needs addresses in each
transfer in a burst. An address control part is added during
synthesis. The port “ad” of PCI is paired with “haddr”,
“hwdata”, and “hrdata”, since the PCI protocol shares a
port(“ad”) for address and data by matching information
shown in Figure 10.
2. The structure of “Type II”

“Type II” is the structure based on IPCs as shown in
Figure 11. An IPC is generated from the corresponding

7B-2

591

interface FSM. An IPC communicates with the
corresponding IP and external buffers. An IPC sends/receives
data to/from buffers from/to an IP depending on the status of
an IP and the buffers. Buffers, as shown in Figure 12,
manage data transmission orders when there is an endianism
difference. They also merge or slice data when two IPs have
different data widths.

a. Type II -1
“Type II-1” is the structure for two IPs with different

clock frequencies but the same data width. We assume that
the faster clock frequency is n times that of the other (n:
natural number). The interface circuit should be
synchronized by the faster clock. Therefore, the IPC that
communicates with the IP using a slower clock must be
modified with dummy states according to the ratio of the
faster clock speed over its clock speed. We could determine
the clock ratio between two IPs from its matching
information ([clock ratio]) as shown in Figure 8.

Slave
IPC

Master
IPC

Write buffer

Read buffer

Load

Em
pty

R
equest

Em
pty

FullRequest Load

Full

Address Buffer

Load

Em
pty

R
equest

Full

address

Write data

Read data

Control
signals

Control
signals

address

Write data

Read data

M
aster IP

Slave IP

Fig 11. Interface circuit structure based on IPCs

counter

Data
In

32
Data
Out

8

Load

Request Full

Empty

select

Data Registers

Fig 12. Data Buffer Structure for a different data width

//// port (Master), MSB, LSB, port (Slave), MSB, LSB,
//// address assignment, $data or $control
[Assignment] hwdata, 31, 0, key, 63, 32, haddr, 7, 0, 0x00, $data;
[Assignment] hwdata, 31, 0, key, 31, 0, haddr, 7, 0, 0x04, $data;
[Assignment] hwdata, 0, 0, start, 0, 0, haddr, 7, 0, 0x14, $control;

Fig. 13. A part of matching information for AHB(Master) and
DES(Slave) – Address Assignment

b. Type II -2
“Type II-2” is the structure for two IPs with different data

widths and the same clock frequency. Data should be merged
or sliced depending on the ratio of data widths. In this paper,
we divided the roles of an interface circuit as communication
and data managing. An IPC only communicates with an IP
and considers the status of buffers. An address buffer
generates additional addresses for sliced data. and data
buffers merge or slice data if it is necessary. Moreover, the
order of transmission of sliced data can be changed when the
endianism of two IPs is different. We could know the
difference of data width between two IPs from its matching
information ([Port Paring]) as shown in Figure 8.

c. Type II -3
“Type II-3” is the structure for two IPs with different data

widths and different clock frequencies. Both methods
described in Section a and b are applied.

0x08
0x0C

0x2C

IPC
(DES)

Decoder

AHB DES
IPC

(AHB M)
Control
signals

HADDR

HWDDR

HRDDR

Key

Plain

Cipher

0x00
0x04

0x28

32

32
32

64

64

64

32

32
32

32
32

busy

done

start
enc_dec

0x14
0x10

Fig. 14. An example to connect a IP(DES) with no address
d. Type II -4
“Type II – 4” is the structure for IPs with no address

(category ‘C’). When category ‘C’ IP is connected to a
system bus or other IPs, we have to consider address
assignment to control an IP. Figure 14 is an example for
category ‘C’ IP, which is an interface circuit between an
AHB master and DES. DES needs a 64-bit plain text and key
but no address. The addresses of the master IP are assigned
to correspond with each port of DES to control its operation.
Because we cannot assign the addresses based only on an
interface protocol, designers need to assign addresses
through GUI steps, as shown in Figure 13. According to this
information, we assign the addresses not only on data ports
but also on control ports as shown in Figure 14. In this way,
a master IP (AHB) can control a slave IP (DES) directly.

IV. The Generation of a Product FSM and IPCs
A. Building a Product FSM

An algorithm to build a product FSM is shown in Figure
15. Two FSMs (PA, PB) and matching information are inputs
of an interface synthesis algorithm. The synthesis algorithm
constructs a product FSM PI = (QP, IP, OP, DP, VP, TP qP,
qA0B0). The output (input) ports of PI correspond to input
(output) ports of interface FSMs and DP is determined by
port pairings in matching information. qA0B0 is an initial state
of PI. QP is a subset of {< qA, qB, s(a), s(w), s(r)> | qA QA,
qBQB, a DP, w DP, r DP }, where s(a/w/r) indicates the
existence (0 or 1) of data in the buffer for address/write
data/read data port pairs.

We modified the synthesis algorithm presented in the
paper [3] in order to consider matching information and to
prune redundant states and transitions during the interface
synthesis. The meaning of valid() function is as follows.
valid(t1’ t2’, s(a), s(w), s(r)) at (a) in Figure 15 at some
state is defined true if the sender side has requested data
stored in a buffer or can directly send the requested data
from the sender side port to the receiver side port. The
function ModifyCounter() function at (b) in Figure 15
changes the number of data in each buffer as data comes in
and out of the buffer. The addresses sent from a master to the
address buffer are useless except for the first start address
when a slave needs the first address. Therefore, we changed
ModifyCounter() so that in that case, the counter of the
address buffer does not increase except for the first address
by ignoring the following addresses depending on modified
interface FSMs and matching information.

7B-2

592

Q := null; // Q is a set of product-FSM.
PS := { [PA0, PB0, s(a), s(w), s(r)] } // PS : a set of temporary states
Insert Initial State to PS;
while PS != null do

Assign a state of PS to CurrentState
Determine TA ={t1:qA}, TB ={t2:qB}

// TA ={t1:qA} : the set of transitions originating from qA

for all t1 TA, t2 TB do
t1’:= ComputeComplement(t1)

// an action with all its responses complementary in transition (t1)
t2’:= ComputeComplement(t2)
if valid(t1’ t2’, s(a), s(w), s(r)) then /* a */

ModifyCounter(s(a), s(w), s(r), t1’ t2’) /* b */
NTransition:=NewTransition(t1’ t2’,[q’A,q’B,s(a)’,s(w)’, s(r)’])

// ntransition’s action (t1’ t2’),
// ntransition’s next state ([q’A, q’B, s(a)’, s(w)’, s(r)’])

AddTransition(NTransition, CurrentState);
// Add new transition in CurrentState
if [q’A, q’B, s(a)’, s(w)’, s(r)’] (Q PS) then

Add [q’A, q’B, s(a)’, s(w)’, s(r)’] to PS
end if

end if
end for

Prune_Transition (CurrentState)
Add CurrentState to Q and remove from PS
end while

Q := null; // Q is a set of product-FSM.
PS := { [PA0, PB0, s(a), s(w), s(r)] } // PS : a set of temporary states
Insert Initial State to PS;
while PS != null do

Assign a state of PS to CurrentState
Determine TA ={t1:qA}, TB ={t2:qB}

// TA ={t1:qA} : the set of transitions originating from qA

for all t1 TA, t2 TB do
t1’:= ComputeComplement(t1)

// an action with all its responses complementary in transition (t1)
t2’:= ComputeComplement(t2)
if valid(t1’ t2’, s(a), s(w), s(r)) then /* a */

ModifyCounter(s(a), s(w), s(r), t1’ t2’) /* b */
NTransition:=NewTransition(t1’ t2’,[q’A,q’B,s(a)’,s(w)’, s(r)’])

// ntransition’s action (t1’ t2’),
// ntransition’s next state ([q’A, q’B, s(a)’, s(w)’, s(r)’])

AddTransition(NTransition, CurrentState);
// Add new transition in CurrentState
if [q’A, q’B, s(a)’, s(w)’, s(r)’] (Q PS) then

Add [q’A, q’B, s(a)’, s(w)’, s(r)’] to PS
end if

end if
end for

Prune_Transition (CurrentState)
Add CurrentState to Q and remove from PS
end while

Fig. 15. Modified Algorithm for a product FSM Generation

for all q PA, PB do // all states
for all t1 q do // all transitions

t1 := ComputeComplement(t1) // a
AddBufferControlSignals(t1); // b

end for;
CheckDeadStates(); // c
end for;

for all q PA, PB do // all states
for all t1 q do // all transitions

t1 := ComputeComplement(t1) // a
AddBufferControlSignals(t1); // b

end for;
CheckDeadStates(); // c
end for;

Fig. 16. IPC Generation Flow

S0’

S1’

S2’

htrans?”10”,
hwrite?‘1’, hready!‘1’,

c_haddr!’1’

htrans?”11”,
hready!‘1’,

c_haddr!’1’,
c_hwdata?’1’

hready!‘0’
hready!’0’

htrans?”10”,
hwrite?‘0’, hready!‘1’,

c_haddr!’1’

htrans?”11”, hready!‘1’
c_haddr!’1’, c_hrdata!’1’

htrans?”10”,
hwrite?‘0’, hready!‘1’,

c_hwdata!’1’, c_haddr!’1’

htrans?”10”,
hwrite?‘1’, hready!‘1’,

c_hrdata!’1’, c_haddr!’1’

hready!‘1’
c_hrdata!’1’

hready!‘1’
c_hwdata!’1’

Fig. 17. A IPC(complementary FSM) for AHB master

B. Building IPC
IPC generation flow is shown in Figure 16. A slave IPC

recognizes the behavior of a master IP and manages the
external buffer signals to store/read data to/from external
buffers. A master IPC starts operations depending on the
status of the external buffers. An IPC is a complementary
FSM of the interface FSM of each IP. We changed the port

direction on each transition and checked whether a transition
has distinguishable action or not (Fig. 16 a). Also in order to
control buffers, buffer control signals such as “load”,
“request”, “empty”, and “full” are inserted in a transition
with actions concerning addresses and data (Fig. 16 b). Next,
the dead state should be removed (Fig. 16 b). A dead state
means that the next state of all transitions in a state indicates
itself. Figure 17 is an IPC of the AHB master shown in
Figure 6(a). Buffer signals are omitted as space is limited in
Figure 17.

V. Experiments
We performed experiments to compare automatic

generated circuits with manual designs. The comparisons of
the synthesis results of interface circuits are shown in Table 2.
The manual designer has two years experience using digital
circuit design with VHDL and Verilog. Interface circuits are
synthesized by Xilinx ISE with Xilinx Virtex II XC2V6000.
In Table 2, ‘Area’ means the number of slices and ‘fmax’ is the
maximum frequency of an interface circuit. We could not
show all our experimental results as space is limited.
Automatic designs of “Type I” are 1.8 times larger in area
and 0.7 times faster in the maximum frequency than manual
designs on average. The test examples “OCN:AHB” and
“PCI:AHB” show a particularly larger area than others
because a 32bit adder is inferred from the generated VHDL
description, which is used to generate addresses for “OCN”
and “PCI” which, in turn, does not send addresses except for
the first address in a burst. We hope to reduce the size of
adders inferred later. In “Type II,” there are examples for IPs
with different data widths and different clock frequencies.
We assume that the depth of buffers that store data
temporarily is four. Automatic designs of “Type II” are 1.2
times larger in area and 0.9 times faster in maximum
frequency than manual designs on the average. However,
every address and data has at least one cycle delay because
all data have to be stored and then passed to other IPs. In
addition, we could generate and verify the interface circuit
for an IP with no address. Table 2 shows that our proposed
approach generates interface circuits that are comparable
with manual designs especially in the case of IPC-based
structure (i.e., “Type II”).

In the second experiment, as shown in Table 3, we
compare product FSM-based structure with IPC-based
structure for the test examples where we can apply two
structures. “Type I” usually has more states and transitions
than “Type II.” The area of “Type I” is also 1.2 times larger
and the maximum frequency of “Type I” is 0.9 times faster
than “Type II” on average. “AHB:PVCI” is a case where the
area of “Type I” can be smaller than that of “Type II”. In
that case, the area for buffer control of “Type II” is larger
than that of a product FSM that has a few states and
transitions. However, “Type I” has smaller latency than
“Type II.” In Table 3, “W” and “R” mean the number of
cycles to finish a write transaction and a read transaction
(length 4) on a master IP, respectively. We assume that slaves
are always ready to respond. In case of the read transaction,
“Type II” needs two more cycles than “Type I” because data
has to pass through the buffers. With this experiment, we
observed that “Type I” has a generally less data transmission
latency but a somewhat larger area and slower maximum
operating frequency than ‘type II’.

We compared our method with a previous work [3] in
Table 4. This experiment also shows the effectiveness of
IPC-based interface structure when there are differences in
clock frequencies or data widths. The experiment of the
approach [3] only considers read transactions. We observed

7B-2

593

that the approach [3] and our approach show similar results
in cases where product FSM-based structure was employed.
However, our approach results in a smaller number of
states(# S) and transitions(# T) over product FSM-based
approach [3] in cases where there are differences in clock
frequencies and/or data widths. In that case, our approach
automatically chooses IPC-based structure.

We verified the functionalities of each generated circuit.
We especially observed that the generated interface circuits
(AHB:OCN, OCN:AHB) could replace manually-designed
interface circuits and work correctly on a H.264 decoder
system[13].

VI. Conclusion
In this paper, we have presented a method to automate the

synthesis of interface circuits based on protocol
categorization. In previous studies, the structure of
interface circuit was fixed, but our synthesis algorithm chose
an appropriate structure of interface circuits based on the
categorization and the differences in clock frequencies and
data widths. Moreover, we observed that, generally, product
FSM-based structure has less data transmission latency but
somewhat larger area and slower maximum operating
frequency than IPC-based structure.

We could generate interface circuits for IPs with different
clocks, with different data widths, and with no address
concepts. Through our experiments, we noticed that the
performance of the generated circuits is comparable with that
of the manual designs especially when the corresponding IPs
have different clock frequencies and/or data widths.

References
[1] Seawright A., and Brewer F., “Clairvoyant: a synthesis system

for production based specification,” Very Large Scale
Integration (VLSI) Systems, IEEE Transaction, Volume 2 Issue
2, June 1994, Page(s):172-185

[2] Passerone R., Rowson J.A., Sangiovanni-Vincentelli A.,
“Automatic synthesis of interfaces between incompatible
protocols,” Proceedings of Design Automation Conference,
15-19 Jun 1998 Page(s):8 - 13

[3] Vijay D’silva, S. Ramesh and Arcot Sowmya, “Bridge Over
Troubled Wrappers: Automated Interface Synthesis,”
Proceedings of the 17th International Conference on VLSI
Design 2004 Page(s):189 – 194

[4] Vijay D’silva, S. Ramesh, “Synchronous Protocol Automata: A
Framework for Modeling and Verification of SoC
Communication Architectures,” Proceedings of Design,
Automation and Test in Europe Conference and Exhibition,
Volume 1, Feb. 2004 Page(s): 390-395

[5] Yin-Tsung Hwang and Sung-Chun Lin, “Automatic Protocol
Translation and Template Based Interface Synthesis for IP
Reuse in SoC,” Proceedings of the 2004 IEEE Asia-Pacific
Conference on Volume 1, Dec. 2004, Page(s): 565-568

[6] Dongwan Shin and Daniel Gajski, “Interface Synthesis from

Protocol Specification,” Technical Report (CECS-02-13), April
12 2002, Center for Embedded Computer Systems University of
California, Irvine

[7] ChangRyul Yun, YoungHwan Bae, HanJin Cho, KyoungSon
Jhang, “Automatic Synthesis of Interface Circuits from
Simplified IP Interface Protocols,” Proceedings of the Eleventh
Asia-Pacific Computer Systems Architecture Conference
(ACSAC 2006), September 6-8th, Page(s):581-587

[8] O.C.P.I.P.A. Inc. Http://www.ocpip.org
[9] ARM Inc. AMBATM Specification Rev 2.0m, document Number

ARMIHI0011A
[10] ChangRyul Yun, KyoungSon Jhang, “An Interface Protocol

Component Modeling Language,” Proceedings of the 15th
ASIC/SOC Conference, Sept. 2002, Page(s): 456-460

[11] http://www.opencores.org
[12] Se-Joong Lee, Seong-Jun Song, Kangmin Lee, Jeong-Ho Woo,

Sung-Eun Kim, Byeong-Gyu Nam, Hoi-Jun Yoo, “An 800MHz
star-connected on-chip network for application to systems on a
chip,” Proceedings of 2003 IEEE International on Solid-State
Circuits (ISSCC 2003), Page(s):468 – 469

[13] Jin Ho Han, Mi Young Lee, Younghwan Bae, and Hanjin Cho,
“Application Specific Processor Design for H.264 Decoder with
a Configurable Embedded Processor,” ETRI Journal, vol.27,
no.5, Oct. 2005, Page(s):491-496

Table 2. The comparison between manual designs and automatic designs

0.91.1197225145134AHB:DESII-4

1.01.3204204316237
AHB:PVCI

(12.5Mhz, 32bit:
50Mhz, 8bit)

II–3

0.91.3208225316244
AHB:PVCI

(50Mhz, 32bit:
50Mhz, 8bit)

II–2

0.91.1191214356310
AHB:PVCI

(50Mhz, 32bit:
12.5Mhz, 32bit)

II–1

0.62.614425821282PCI:AHB

0.91.42383157250AHB:PCI
I–2

0.91.824926812166AHB:APB

0.61.43565806144BVCI:AHB

0.53.3105197374112OCN:AHB

0.81.818123410357AHB:OCN

I–1

fmaxAreaAMAM

A / Mfmax
Area

(Slices)Master : SlaveType

0.91.1197225145134AHB:DESII-4

1.01.3204204316237
AHB:PVCI

(12.5Mhz, 32bit:
50Mhz, 8bit)

II–3

0.91.3208225316244
AHB:PVCI

(50Mhz, 32bit:
50Mhz, 8bit)

II–2

0.91.1191214356310
AHB:PVCI

(50Mhz, 32bit:
12.5Mhz, 32bit)

II–1

0.62.614425821282PCI:AHB

0.91.42383157250AHB:PCI
I–2

0.91.824926812166AHB:APB

0.61.43565806144BVCI:AHB

0.53.3105197374112OCN:AHB

0.81.818123410357AHB:OCN

I–1

fmaxAreaAMAM

A / Mfmax
Area

(Slices)Master : SlaveType

(M: Manual Design, A: Automatic Generated Design)

Table 4. The comparison with previous work [3]
Previous Method Our MethodMaster:Slave Clocks Data

Width # S # T # S # T
AHB:PLB 1:1 1:1 7 12 6 12
OCP:AHB 1:1 1:1 8 18 9 20
AHB:PLB 1:2 1:1 12 15 6 8
OCP:PLB 1:1 1:3 17 32 6 8

 Table 3 The comparison between "Type I" and "Type II" structure
Type I (Product FSM Based) Type II (IPC Based) Type I/ Type II Master:Slave # S # T Area fmax W R # S # T Area fmax W R Area fmax

AHB:OCN 9 53 203 181 5 12 6 34 174 198 5 14 1.2 0.9
OCN:AHB 12 89 374 105 4 12 6 35 256 121 4 14 1.5 0.9
AHB:BVCI 18 48 324 219 5 8 6 20 276 228 5 10 1.2 1.0
BVCI:AHB 10 42 249 201 4 8 7 21 205 217 4 10 1.2 0.9
AHB:PVCI 10 39 252 204 5 8 6 19 267 212 5 10 0.9 1.0

7B-2

594

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

